# HENLEY BROOK AVENUE EXTENSION

### **REVEGETATION MANAGEMENT PLAN**

| Prepared for: | City of Swan   |
|---------------|----------------|
| Report Date:  | 17 August 2023 |
| Version:      | 1              |
| Report No.    | 2023-772       |





## Contents

| Content   | ts       |                                | i  |
|-----------|----------|--------------------------------|----|
| List of A | ttachme  | ents                           | ii |
| 1 INT     | TRODUC   | CTION                          | 1  |
| 1.1       | Backg    | ground                         | 1  |
| 1.2       | Locati   | ion of Revegetation            | 1  |
| 1.3       | Purpo    | ose                            | 1  |
| 1.4       | Objec    | tive                           | 1  |
| 1.5       | Scope    | e of Work                      | 1  |
| 1.6       | Legisl   | ation and Regulatory Framework | 2  |
| 2 EXI     | ISTING E | ENVIRONMENT                    | 3  |
| 2.1       | Clima    | te and Rainfall                | 3  |
| 2.2       | Торо     | graphy                         | 3  |
| 2.3       | Geolo    | bgy and Soils                  | 3  |
| 2.4       | Hydro    | blogy                          | 4  |
| 2.4       | l.1 (    | Groundwater                    | 4  |
| 2.4       | 1.2 5    | Surface Water                  | 4  |
| 2.5       | Veget    | tation                         | 5  |
| 2.5       | 5.1 \    | Vegetation Description         | 5  |
| 2.5       | 5.2 \    | Vegetation Condition           | 5  |
| 3 REV     | VEGETA   | TION MANAGEMENT PLAN           | 6  |
| 3.1       | Reve     | getation Context               | 6  |
| 3.2       | Site P   | reparation                     | 6  |
| 3.3       | Specie   | es                             | 6  |
| 3.4       | Planti   | ing                            | 7  |
| 3.5       | Weed     | ling                           | 7  |
| 3.6       | Comp     | oletion Criteria               | 7  |
| 3.7       | Monit    | toring                         | 7  |
| 3.8       | Weed     | Management                     | 7  |
| 3.9       | Timin    | g                              | 8  |
| 3.10      | Conti    | ngencies                       | 9  |
| 3.11      | Repor    | rting                          | 9  |
| 4 REF     | FERENC   | ES1                            | 0  |



## List of Attachments

#### Tables

| Table 1:  | Relevant Legislation                 |
|-----------|--------------------------------------|
| Table 2:  | Native Species for Rehabilitation    |
| Table 3:  | Timing for Revegetation Works        |
|           |                                      |
| Graphs    |                                      |
| Graph 1:  | Mean Climate Statistics              |
|           |                                      |
| Plates    |                                      |
| Plate 1:  | Wetland Mapping (National Map, 2023) |
| Plate 2:  | St Leonards Creek Excavation in 1965 |
|           |                                      |
| Figures   |                                      |
| Figure 1: | Site Location                        |
| Figure 2: | Site Boundary and Topography         |
|           |                                      |

#### Appendices

Appendix 1: Road Design



#### **1** INTRODUCTION

#### 1.1 Background

The City of Swan is in the process of planning for the extension of Henley Brook Avenue from its current alignment near Gnangara Road to south of Henley Street (Figure 1). The proposed road works will be partly within an unmade road reserve at the northern end and through mostly private lots at the southern end (Figure 2).

The road works will result in the clearing of approximately 2.0ha of native vegetation, of which 0.64ha is foraging habitat for Black Cockatoos. An application for a Clearing permit was originally submitted to the Department of Water and Environmental Regulation (DWER) (CPS 9953/1) for the entire road to be constructed, however the northern part of the reserve does not contain any significant vegetation so was split from the southern part. The northern part was granted a clearing permit approval on 26 July 2023. The southern part is the subject of a new application. During discussions DWER indicated that a Revegetation Management Plan (RMP) should accompany the application for the southern part of the road works.

PGV Environmental was commissioned by the City of Swan to prepare a Revegetation Management Plan (RMP) to be implemented to manage the impact of the proposed road works.

#### **1.2** Location of Revegetation

The proposed revegetation will be undertaken in the Henley Brook Avenue Road Reserve upon the completion of the construction of the road. The parts of the road reserve that are proposed for revegetation include the median strips and central parts of the roundabouts, and around the drainage basin. The revegetation works include the southern portion that is subject to a new clearing permit as well as the northern portion which received a clearing permit on 26 July 2023.

#### 1.3 Purpose

Planting of trees in the constructed Henley Brook Avenue road reserve is being undertaken for the purpose of offsetting the impact of clearing Black Cockatoo foraging and potential breeding habitat in association with the road works. The RMP has been prepared to set out the strategies for the design, implementation, monitoring and maintenance activities of revegetation works.

#### 1.4 Objective

The overall objective of the RMP is to re-establish Black Cockatoo foraging and potential breeding habitat in the Henley Brook Avenue Road reserve. The final planting will result in a net gain of habitat within the road reserve.

#### **1.5** Scope of Work

The RMP has been prepared in accordance with DWER's *Guide to Preparing Revegetation Plans for Clearing Permits* and includes the following:



- A description of the area to be revegetated within the road reserve;
- Revegetation commitments;
- Site preparation;
- Species list compilation and revegetation techniques;
- Monitoring and analysis;
- Schedule of Works;
- Targets and completion criteria; and
- Maintenance and contingency measures.

#### 1.6 Legislation and Regulatory Framework

Legislation directly relevant to the management of native vegetation in Western Australia and to this RMP is provided in Table 2.

| Legislation                                                                          | Application                                                                                                                                                                                                                                         |
|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Biodiversity Conservation Act (WA) 2016<br>(BC Act)                                  | Conservation and protection of biodiversity and biodiversity components. This Act repeals the <i>Wildlife Conservation Act 1950.</i>                                                                                                                |
| Environment Protection Act 1986 (WA)<br>(EP Act)                                     | Prevention, control and abatement or pollution and<br>conservation protection and enhancement of<br>environment. Application for the Clearing Permit is<br>made under S38.                                                                          |
| Environmental Protection (Clearing of<br>Native Vegetation) Regulations 2004<br>(WA) | Regulates the clearing of native vegetation.                                                                                                                                                                                                        |
| Rights in Water and Irrigation Act 1914<br>(WA) (RIWI Act)                           | Relates to rights in water resources, to make provisions<br>for the regulation, management, use and protection of<br>water resources, to provide for irrigation schemes and<br>for related purposes. Applies to works around St<br>Leonard's Creek. |

#### Table 1: Relevant Legislation



#### 2 EXISTING ENVIRONMENT

#### 2.1 Climate and Rainfall

Western Australia experiences a Mediterranean climate with warm dry summers and wet cool winters. Peak rainfall periods are between May and September. Climate statistics from the Bureau of Meteorology (BOM, 2023) provide mean values for maximum and minimum temperature and rainfall (Graph 1). The statistics have been measured on the Perth Aero Site (BOM Site Number 009021), which has been collecting data from 1951.



Graph 1: Mean Climate Statistics

#### 2.2 Topography

The site is mostly flat 30-32 m Australian Height Datum (AHD) with a ridge line at the northern end rising up to 40m AHD (Figure 2).

#### 2.3 Geology and Soils

The site is mapped on the Bassendean Dune System and consists of very low relief, leached, grey siliceous Pleistocene sand dunes, intervening sandy and clayey swamps and gently undulating plains (Bolland, 1998). These soils are very leached, infertile and mildly acidic (DPIRD, 2023).

The soil phases mapped on the site are:

 Bassendean, Jandakot Phase (212Bs\_Ja) which is associated with low, gently sloping dunes on Aeolian sands. The soils are described as grey sand over pale yellow sands generally underlain by humic and iron podzols;



- Bassendean Yanga Phase (Bassendean) Phase (212Bs\_Ya) which are located on poorly drained flats on alluvial deposits. The soils are semi-wet soils, yellow-brown shallow sands and grey deep sandy duplexes and are usually associated with dense *Melaleuca* scrub; and
- Bassendean Joel Phase (212Bs\_J) which are poorly drained depressions with humus podzols; and
- VC Valley complex (Bassendean) (212Bs\_VC) which are variable soils associated with drainage lines associated with St Leonards Creek (DPIRD, 2023).

#### 2.4 Hydrology

#### 2.4.1 Groundwater

The site is on the Perth Surficial Swan and Mirrabooka aquifer. The Superficial Swan overlays the Leederville aquifer which is further described as the sub area Wanneroo member under the site and consists of poorly sorted fine – to medium-grained quartz with feldspar and occasionally trace heavy minerals. This overlays the Yarragadee aquifer (DoW, 2015).

Groundwater flows generally to the south-east and is between 27mAHD and 30mAHD (DWER, 2023). The depth to groundwater from the natural surface ranges from approximately 3 to 5m (DoW, 2015b). Annual average maximum water levels will be higher than the May 2003 levels as indicated.

#### 2.4.2 Surface Water

The southern end of the road extension works site passes through a 'Multiple Use' palusplain wetland (UFI 13396) (shown in blue on Plate 1). The wetland in this location is highly modified and largely cleared of native vegetation.



Plate 1: Wetland Mapping (National Map, 2023)



The southern part of the extension crosses over a portion of the northern arm of St Leonards Creek. In this location the creek has been highly modified into a drain. The aerial photograph from 1965 (Landgate, 2023) shows the creekline has been excavated (Plate 2), most likely to facilitate draining of the Multiple Use palusplain wetland.





#### 2.5 Vegetation

#### 2.5.1 Vegetation Description

The vegetation on the site is a mixture of planted trees such as River Red Gums (*Eucalyptus camaldulensis*) and Tuart (*Eucalyptus gomphocephala*) and scattered remnant native Jarrah (*Eucalyptus marginata*), Banksia (*Banksia attenuata*, *B. menziesii*) and Marri (*Corymbia calophylla*). Most of the Marri trees are young (Plate 8), however several larger trees also occur.

A stand of *Acacia saligna* (Orange Wattle) shrubs and *Adenanthos cygnorum* (Woolly Bush) occur in the central part of the site.

The northern part of the road works contains only 0.043ha of scattered native vegetation and otherwise contains non-native Geraldton Wax, weeds or bare ground.

#### 2.5.2 Vegetation Condition

The vegetation condition of the road reserve is Completely Degraded according to the condition scale of Keighery (1994) published in Bush Forever (Government of Western Australia, 2000).



#### 3 REVEGETATION MANAGEMENT PLAN

#### 3.1 Revegetation Context

The proposed revegetation in the road reserve will be the planting of trees in landscaped areas rather than the re-creation of intact native trees and understorey. The landscaping will consist of a tree canopy over mulch due to insufficient water allocation for the installation of a reticulation system for smaller shrubs. The canopy will provide habitat for Black Cockatoos, similar to the current habitat, with Eucalypt/Corymbia and Banksia trees.

The drainage basin located near St Leonards Creek Landscaping in the drainage basin will be landscaped with largely native species. The basin will be planted with a mixed of reeds to trap any sediments and utilise any nutrient run-off from the road. The upper banks and top will be planted with an overstorey consistent with the species utilised for the median strips.

The revegetation will result in the planting of at least 44 trees being established within the road reserve and a net gain in foraging habitat. (replacing potential breeding habitat at a ratio of 3.4:1) The revegetation will establish a canopy in the northern part of the road extension that is currently non-existent.

#### 3.2 Site Preparation

The site will be completely cleared and median strips established as per standard road construction. The soil within the median strip will be stabilised with mulch prior to planting.

#### 3.3 Species

The proposed revegetation will consist of tree species that will be procured as more mature specimens in 45 to 100L pots. The native species recommended for use (Table 2) have been selected using four criteria as follows:

- 1. The species will be consistent with other sections of the constructed road;
- 2. The species are known Black Cockatoo foraging and potential breeding habitat species;
- 3. The species used will be able to tolerate the site conditions without the requirement for water; and
- 4. The species should be available from plant nurseries.

#### Table 2: Native Species for Rehabilitation

| Species                                   | Common Name       | Foraging<br>habitat | Potential<br>Breeding<br>Habitat |
|-------------------------------------------|-------------------|---------------------|----------------------------------|
| Banksia prionotes                         | Acorn Banksia     | ✓                   |                                  |
| Callistemon viminalis/King's Park Special | Bottle Brush      |                     |                                  |
| Corymbia calophylla                       | Marri             | ~                   | ~                                |
| Eucalyptus accedens                       | Powderbark Wandoo |                     | ~                                |
| Eucalyptus marginata                      | Jarrah            | ✓                   | ~                                |
| Eucalyptus todtiana                       | Black Butt        | ~                   |                                  |
| Hakea laurina                             | Pincushions       | ×                   |                                  |



The drainage basin will be planted with native vegetation to encourage biological nutrient uptake, consistent with the *Vegetation guidelines for stormwater biofilters in the south-west of Western Australia* (Monash University, 2014). The species chosen will have extensive and fine root systems, be relatively fast growing, be able to withstand temporary and regular inundation, and have long growing seasons. A sufficient density of plants of at least 4/m2 is recommended to provide adequate initial coverage and room for growth. Species will be native and planting in accordance with WQPN 84: Rehabilitation of disturbed land in PDWSAs (DWER, 2009).

#### 3.4 Planting

Species will be planted in rows within the median strip and in the central part of roundabouts. Infill planting will be undertaken if any areas do not meet the completion criteria after 1 year.

#### 3.5 Weeding

Weeds will be minimal in the median strip as the soil will be stripped from the site during roadworks. Revegetation of road reserve median strips will commence at the first break of season where any weeds that have subsequently grown on the site will be sprayed or removed by hand by an appropriately qualified weed contractor using methodology guided by the species profile in Florabase (https://florabase.dpaw.wa.gov.au/) (DBCA, 2023).

#### 3.6 Completion Criteria

The following targets will be used to assess the performance of the rehabilitation and identify if additional seeding/planting or management works are required:

- Survival of 80% of trees planted in the median strip and in the central areas of the roundabouts;
- A maximum weed cover of 5%; and
- No bulbous weeds, Declared Pests (such as Pampas grass, Bridal Creeper, Cape Tulip, Narrow-Leaf Cotton Bush, Paterson's Curse, Caltrop), noxious weeds, or woody weeds within the revegetated area.

#### 3.7 Monitoring

Monitoring of the revegetation will be a visual inspection of all planted trees within the median strip and in the roundabouts.

Monitoring of the revegetation area will commence in October/November following planting to establish initial survival rates and a follow-up in March/April the following year to monitor the survival rate over summer. Monitoring will continue annually in October/November and March/April each subsequent year until the completion criteria have been reached for a period of at least three years.

#### 3.8 Weed Management

Post planting weed control will be undertaken for a minimum of 2 years post planting and be undertaken twice a year to ensure weeds do not dominate the site. Management measures will be guided by monitoring result to identify the weeds present. Appropriate management techniques as



per the species profile in Florabase (<u>https://florabase.dpaw.wa.gov.au/</u>) (DBCA, 2023) will be utilised to manage any emergent weeds on the site.

If weed species are considered likely to pose a threat to achieving successful revegetation results, then weed control appropriate to the species will be undertaken. Weed management will be effective for two years after initial planting.

#### 3.9 Timing

Planting will take place after earthworks for the road batters and roundabouts have been completed and mulched. Planting will commence after opening rains of 100mm in the autumn/winter period which generally is in June/July, consistent with *Guide to Preparing Revegetation Plans for Clearing Permits*. Table 3 outlines the proposed timing for revegetation works.

| Year | Time         | Phase                      | Pest/Weed Control                                        | Planting                                         | Monitoring           |
|------|--------------|----------------------------|----------------------------------------------------------|--------------------------------------------------|----------------------|
|      | Commencement | Soil pile to be<br>removed | Not required – all<br>weeds will be<br>removed with soil |                                                  |                      |
| 1    | Winter       | Planting<br>commences      |                                                          | After 100mm of rain has fallen (break of season) |                      |
|      | Spring       |                            | Spray September to<br>October if required                |                                                  | Monitoring commences |
|      | Summer       |                            |                                                          |                                                  | Monitoring           |
|      | Autumn       | Infill Planting            | Spray in April to May<br>if required                     |                                                  | Monitoring           |
| 2    | Winter       |                            |                                                          | Break of season                                  | Monitoring           |
| 2    | Spring       |                            | Spray September to<br>October if required                |                                                  | Monitoring           |
|      | Summer       |                            |                                                          |                                                  | Monitoring           |
|      |              | If survival com            | pletion criteria not met                                 | repeat Year 2                                    |                      |
|      | Autumn       |                            | Spray in April to May<br>if required                     |                                                  | Monitoring           |
| 2    | Winter       | Maintenance                |                                                          |                                                  | Monitoring           |
| 3    | Spring       | Year 1                     | Spray September to<br>October if required                |                                                  | Monitoring           |
|      | Summer       |                            |                                                          |                                                  | Monitoring           |
|      | Autumn       |                            | Spray in April to May<br>if required                     |                                                  | Monitoring           |
| 4    | Winter       | Maintenance                |                                                          |                                                  | Monitoring           |
| 4    | Spring       | Year 2                     | Spray September to<br>October if required                |                                                  | Monitoring           |
|      | Summer       |                            |                                                          |                                                  | Monitoring           |
|      |              | Co                         | mpletion if criteria are m                               | et                                               |                      |

Table 3: Timing for Revegetation Works



#### 3.10 Contingencies

If the completion criteria are not likely to be met after the first two monitoring periods, then further planting will occur in the second year using the species from Table.

If there is a significant decline or loss in surviving plants the following contingency plan will be implemented:

- 1. Determine if the decline may be within normal limits ie due to harsh summer conditions.
- 2. Consider potential causes for decline in vegetation health including but not limited to:
  - a. Increase in competition with weed species;
  - b. Predation by herbivores including rabbits and possibly kangaroos; or
  - c. Water stress.
- 3. Implement measures to manage identified causes which may include, but not limited to:
  - a. Management of weed species;
  - b. Use of tree guards; or
  - c. Watering during summer months.
- 4. Infill plants into impacted areas in the next planting season to ensure that the completion criteria can be met.
- 5. Continue monitoring vegetation health and the effectiveness of remedial actions.

#### 3.11 Reporting

A letter report addressing compliance with this management plan and results of the monitoring to demonstrate meeting the completion criteria will be prepared and retained as part of the records keeping required for the Clearing Permit after the completion criteria have been met.



#### 4 **REFERENCES**

- Bolland, M. (1998) *Soils of the Swan Coastal Plain.* Department of Agriculture. Bunbury, Western Australia.
- Department of Primary Industries and Regional Development (DPIRD) (2023) Natural Resource Management Shared Land Information Platform. Accessed July 2023 <u>http://maps.agric.wa.gov.au/nrminfo/framesetup.asp</u> Government of Western Australia, Perth.
- Department of Water and Environmental Regulation (DWER) (2009) Water Quality Protection Note 84 *Rehabilitation of disturbed land in public drinking water source areas* Government of Western Australia, Perth.
- Department of Water and Environmental Regulation (DWER) (2018) *Guide to Preparing Revegetation Plans for Clearing Permits* Perth, Western Australia
- Government of Western Australia (2000) Bush Forever *Keeping the Bush in the City. Volume 2:* Directory of Bush Forever Sites. Perth, Western Australia.
- Landgate (2023) Historical Aerial Photography Accessed June 2023 https://www.landgate.wa.gov.au/bmvf/app/mapviewer/ Government of Western Australia,
- Monash University (2014) Vegetation Guidelines for Stormwater Biofilters within Southwest of Western Australia Melbourne Victoria
- National Map (2023) Map-Based Access to Spatial Data from Australian Government Agencies <u>http://nationalmap.gov.au/#wa</u> Accessed July 2023 Government of Australia

## **FIGURES**



(08) 9562 7136 CARTOGRAPHICS PINPOINT



## **APPENDIX 1**

Drainage Design







| VOU DIC | EGEND<br>EAGINE<br>FREE FORMATIN<br>CARLED EAG<br>FREE FORMATIN<br>SAME FOR<br>CARLEN FLANDALL<br>CONTERT FORMATIN<br>CONTERT FORMATIN<br>CONTERT FORMATIN<br>CONTERT FORMATIN<br>CONTERT FORMATIN<br>CONTERT FORMATIN<br>CONTERT FORMATIN<br>CONTERT FORMATIN<br>CONTERT FORMATIN<br>FIL MARE<br>FORMATIN<br>FIL MARE<br>FIL MARE<br>FORMATIN<br>FIL MARE<br>FORMATIN<br>FIL MARE<br>FORMATIN<br>FIL MARE<br>FORMATIN<br>FIL MARE<br>FORMATIN<br>FIL MARE<br>FIL MARE                                                                     | 0 5 10 135 15 20m<br>1:500 | CAUTION<br>ESEVCES SHALL EN MALLY L'ACTED PA GUE QUY<br>SERVCES SHALL EN MALLY L'ACTED PA VAD PADO TO<br>SERVCES SHALL EN MALLY L'ACTED PA VAD PADO TO<br>RECMARC SHALL EN MALLY L'ACTED PA VAD PADO TO<br>RECMARC SHALL EN MALLY L'ACTED PADO TOMARC<br>SERVES MALLE L'ALL'ARE CHALLE RECENT<br>SERVES MALLE L'ALL'ARE CHALL RECENT<br>SERVES MALLE R'ALL'ARE CHALL RESPONDANCES ART<br>EXERVES ARE TA 'LL'INSC. CHALL'ARE SERVES ARE<br>EN ER RECENTATIONES TO THE ANTICATED PADO<br>ARTICLATION FOR TOTAL RESPONDANCES ART ARE<br>RESPONDANCE AND TOTAL RESPONDANCES ART ARE<br>RESPONDANCE ART ART ALL'ARE CHALL'ARE SERVES ARE<br>EXERVENTATION FOR TOTAL RESPONDANCES ART ARE RESPONDANCE ART<br>RESPONDANCE ART | DRAWING NO:<br>R771-113 0                                                           | OPERATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | S <sup>a</sup> g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                     | CAN CITY OF SWAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|         | - QUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PROFOR MCIVIL                                                                       | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|         | LINIT<br>LINIT<br>LINIT<br>LINIT<br>CI Pasa<br>LINIT<br>CI Pasa<br>CI P |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | HENLEY BROOK AVE - STAGE 3<br>MESSARA AVENUE TO PARK STREET<br>DI LAI CARPILACEDUAY | DRAINAGE PLAN SHEET 4 CF 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|         | ACTION OF A CONTRACT OF A CONT                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SCALE: 1:500 (A1)<br>DATUM: A.H.D.                                                  | ATTE<br>THE PARCES FOR WARTER WAS COMPARED AND INCOMPARED WITH THE TEAM OF<br>THANKING DIFFERENCE.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         | Statut PC<br>Statut PC                                                                                         |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | APPROVED<br>DESIGN CO-ACIMATICIA DATE                                               | S OHEOKED DATE DRAWN LLAY<br>ALL RAWN IN FRYSPERY OF THE OTY OF SWAN INE DOCUMENT WAY BE USED OR<br>AND RAWN AN ADDRESS WITH INCOME TO AN ADDRESS WAY AN ADDRESS WITH INCOMENT AN ADDRESS WAY AND ADDRESS WAY AN ADDRESS WAY ADDR |
|         | CH 3000<br>ELIT-TLLUT DIMINIC UT DI DIE SUBSCRIPTION<br>ELITER TO DIVINICUT DI DIVINICUT DI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AUTHORISATIO                                                                        | ESIGNED UNLING<br>0.00000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SLASIVOR                                                                            | AND<br>0 04.23 DW ISSUED FOR CONSTRUCTION<br>REV. DATE BY DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |















OR CONSTRUCTION

04.23 DATE

**OPERATIONS** 

city of swan

**DRAINAGE PROFILES SHEET 7 OF 7** 

DRAWN CCAYATTE

DATE

CHECKED

DESIGNED D.WEERTS

C COPYRIGHT THIS DOCUMENT IS AND SHALL VEMAN THE PRO DIMANSMENT FOR THE COMMISSION AS ADDSEN

DIAL BEFORE YOU DIG www.1100.comau

| MME         MME/18         MME/18 <th>CAUTION<br/>CAUTION<br/>ERVECTS SPORVA RET TO R. LEED AS A LODD ONLY<br/>SERVECTS SPORVA RET TO R. LEED AS A LODD ONLY<br/>SERVECTS SPORVA RET LOW TERMS TO RET VARATING SPORT<br/>DI RETENDENT CONVINCION RET. LAND TERMS SPORT<br/>DI RETENDENT CONVINCION RET. LAND TERMS SPORT<br/>DI RETENDENT CONTRIPUENT CONTRICTOR SPORT<br/>DI RETENDENT CONTRIPUENT CONTRICTOR SPORT<br/>DI RETENDENT CONTRIPUENT CONTRICTOR SPORT<br/>DI RETENDENT CONTRIPUENT CONTRIPUENT CONTRIPUENT<br/>DI RETENDENT CONTRIPUENT CONTRIPUENT CONTRIPUENT<br/>DI RETENDENT CONTRIPUENT CONTRIPUENT CONTRIPUENT<br/>DI RETENDENT CONTRIPUENT CONTRIPUENT CONTRIPUENT<br/>DI RETENDENT CONTRIPUENT CONTRIPUENT CONTRIBUTION<br/>DI RETENDENT CONTRIPUENT CONTRIPUENT CONTRIPUENT<br/>DI RETENDENT CONTRIPUENT CONTRIPUENT CONTRIBUTION<br/>DI RETENDENT CONTRIPUENT CONTRIPUENT CONTRIPUENT CONTRIPUENT<br/>DI RETENDENT CONTRIPUENT CONTRIPUENT CONTRIPUENT CONTRIBUTION<br/>DI RETENDENT CONTRIPUENT CONTRIPUENT CONTRIPUENT<br/>DI RETENDENT CONTRIPUENT CONTRIPUENT CONTRIPUENT CONTRIBUTION<br/>DI RETENDENT CONTRIPUENT CONTRIPUENT CONTRIPUENT CONTRIPUENT<br/>DI RETENDENT CONTRIPUENT CONTRIPUENT CONTRIPUENT CONTRIBUTION<br/>DI RETENDENT CONTRIPUENT CONTRI CONTRIPUENT CONTRIPUENT CONTRIPUENT CONTRI CONTRI CONTRIPUEN</th> | CAUTION<br>CAUTION<br>ERVECTS SPORVA RET TO R. LEED AS A LODD ONLY<br>SERVECTS SPORVA RET TO R. LEED AS A LODD ONLY<br>SERVECTS SPORVA RET LOW TERMS TO RET VARATING SPORT<br>DI RETENDENT CONVINCION RET. LAND TERMS SPORT<br>DI RETENDENT CONVINCION RET. LAND TERMS SPORT<br>DI RETENDENT CONTRIPUENT CONTRICTOR SPORT<br>DI RETENDENT CONTRIPUENT CONTRICTOR SPORT<br>DI RETENDENT CONTRIPUENT CONTRICTOR SPORT<br>DI RETENDENT CONTRIPUENT CONTRIPUENT CONTRIPUENT<br>DI RETENDENT CONTRIPUENT CONTRIPUENT CONTRIPUENT<br>DI RETENDENT CONTRIPUENT CONTRIPUENT CONTRIPUENT<br>DI RETENDENT CONTRIPUENT CONTRIPUENT CONTRIPUENT<br>DI RETENDENT CONTRIPUENT CONTRIPUENT CONTRIBUTION<br>DI RETENDENT CONTRIPUENT CONTRIPUENT CONTRIPUENT<br>DI RETENDENT CONTRIPUENT CONTRIPUENT CONTRIBUTION<br>DI RETENDENT CONTRIPUENT CONTRIPUENT CONTRIPUENT CONTRIPUENT<br>DI RETENDENT CONTRIPUENT CONTRIPUENT CONTRIPUENT CONTRIBUTION<br>DI RETENDENT CONTRIPUENT CONTRIPUENT CONTRIPUENT<br>DI RETENDENT CONTRIPUENT CONTRIPUENT CONTRIPUENT CONTRIBUTION<br>DI RETENDENT CONTRIPUENT CONTRIPUENT CONTRIPUENT CONTRIPUENT<br>DI RETENDENT CONTRIPUENT CONTRIPUENT CONTRIPUENT CONTRIBUTION<br>DI RETENDENT CONTRIPUENT CONTRI CONTRIPUENT CONTRIPUENT CONTRIPUENT CONTRI CONTRI CONTRIPUEN |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MME         ME         ME         ME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| TYPE         TAYNE         ACAVIAL         ACA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Rune         Rune           1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 </td <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Method with the province of th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

Copyright Insoccament is not seall remain the properity of the City of Saway The Davagement for the commission as Alterd with the City of Saway Lawuth PROJECT MANAGER DATE DESIGNED D.WEERTS CHECKED 0 04.23 DW ISSUED FOR CONSTRUCTION REV. DATE BY DESCRIPTION

REV No:

DRAWING NO: R771-121

**OPERATIONS** 

city of swan

PROFOR MCIVIL ENGINEERING GROUP

(41) HENLEY BROOK AVE - STAGE 3 MESSARA ANENUE TO PARK STREET DUAL CARRIAGEWAY DUAL CARRIAGEWAY DRAINAGE SCHEDULES

A.H.D.

DATUM: SCALE:

DESIGN CO-ORDINATOR DATE

DATE

APPROVED

AUTHORISATION

MENT MAY BE USED FOR THE PURPOSE ED USE OF THIS DOCUMENT IN ANY WAY F DRAWN CCAYATTE









|   | FORE   | Dig | com.au   |
|---|--------|-----|----------|
|   | NAL BE | 100 | ww.1100. |
|   |        | C   |          |
| Į | V      | ć   | /        |

|                                   |                                     | Naire Type<br>(-1 -)<br>A1 SEP         | Easting Northing<br>(m) (m)                 | RL R. RL D<br>(m) (m) (m) (-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ) (-)                    | (m) (%)             | (=1 (minl (mm/hr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (ha) (hz                           | Sum CA DC=CIA                   | CA SumCA GC=CA Flow G:                                | Flow Gdg Flow Ga | Capacity Depth Wid                              | h Vel.Jep Grade X13<br>[sq.n/s] (%) (% | (I Depth Factor Cu<br>) (m) (-) | rve Name Flow Gg Flow Gb<br>(-1 (1/s) (L/s) | Node                                                                           |                                                                                             |        |
|-----------------------------------|-------------------------------------|----------------------------------------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|---------------------------------|-------------------------------------------------------|------------------|-------------------------------------------------|----------------------------------------|---------------------------------|---------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------|
|                                   |                                     |                                        | /C3/0 0/ 1 mm mm                            | 1 11 12 1 11 11 11 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                    | Inal Luter                      | (Ha) (ha) (L/S) (ha)                                  | 1.1.31 1.1.4     | Lt. 91                                          |                                        |                                 |                                             |                                                                                |                                                                                             |        |
|                                   |                                     | A2 MH                                  | 6537115 280499442                           | 36.16 36.06 36.06<br>36.15 36.05 36.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ż                        |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                    |                                 | 0 000 0 000 0 0 0 0 0 0 0 0 0 0 0 0 0                 | 0                |                                                 |                                        |                                 | 0                                           | 1. 2                                                                           |                                                                                             |        |
|                                   |                                     | Mi 199                                 | 54489.15 dl.69464                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | > Kinematic Wave         | 790.59 0.5          | 0.25 328.23 9.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.4 15.9029 6.76                   | 2 0.00.32 1.0.0                 | 0.103 14 202.0 201.0                                  | 1/0.0            |                                                 |                                        |                                 | 1/0.0                                       |                                                                                |                                                                                             |        |
|                                   |                                     | ABZ GULLY                              | 654.92.2 2794.89.75                         | 1 31.66 31.66 31.66 1.<br>FE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | > Kinematic Wave         | 100 2.5             | 5 117.65<br>0.25 32.17 4.2.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.4 0.2456 0.05                    | 12 0.1558 19.1                  | 0.0153 0.0765 25 25                                   | 25               | 244.8 0.049 0.5                                 | 0.04 2.1 30                            | -                               | 2G,5.0X 215 3.5                             | 1051                                                                           |                                                                                             |        |
|                                   |                                     | AB3 MH<br>AB4 MH                       | 65514.09 279474.46<br>65517.33 279468.57    | 32.37 32.37 32.37<br>32.39 32.39 32.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                    |                                 |                                                       |                  |                                                 |                                        |                                 |                                             | 1 1                                                                            |                                                                                             |        |
|                                   |                                     | AB5 GULLY<br>AD1 GULLY                 | 65544.37 279418.43<br>6557133 279487.82     | 31.54 31.54 30.55<br>31.78 31.78 31.78 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Direct                   |                     | 5 117.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.9 0.0692 0.06.                   | 102 8200 81                     | 702 707 207                                           | 20.4             | 770.0 265                                       |                                        | 03 1                            | 20.4                                        | LOST                                                                           |                                                                                             |        |
|                                   |                                     | ADZ GULY<br>AFI SEP                    | 65570.94 279387<br>65537.14 279398.8        | 31.84 31.84 31.84 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Direct                   |                     | 5 117.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.9 0.0542 0.04                    | 87 0.0487 15.9                  | 0.04.87 0.04.87 15.5 15.9                             | 15.9             | 397 0.038                                       | 0.8 21                                 | F F 60 9                        | 16,15X 0                                    | AG1                                                                            |                                                                                             |        |
|                                   |                                     | AG1 SEP<br>AH1 HW Triple               | 65535.73 279378.53<br>65472.95 279356.43    | 31.24 31.24 31.24<br>29.88 33 30.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                    |                                 |                                                       | 0                |                                                 | E 70                                   | -                               | 56,3.0X 0                                   | A015 -                                                                         |                                                                                             |        |
|                                   |                                     | AH2 HW out et Triple<br>Al1 SEP        | 65538.75 279361.72<br>65502.9 279200.58     | 29.68 312 30.68<br>31.85 31.85 31.85 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Direct                   |                     | 5 117.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.9 0.0566 0.054                   | 9 0.0509 16.6                   | 0.0509 0.0509 16.6 16.6                               | 1741             | 482.9 0.049 1.7                                 | 0.(2 0.5 3                             | -                               | 56,30X 16.7 0.4                             | ALT                                                                            |                                                                                             |        |
|                                   |                                     | AJI SEP<br>AKI SEP                     | 65512.36 279319.99<br>65508.83 279280.22    | 11 213 313 313 11<br>11 212 213 113 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Direct                   |                     | 5 117.65<br>5 117.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.9 0.0583 0.05                    | 24 0.0524 17.1<br>6 0.0496 16.2 | 0.0524 0.0524 17. 17.1                                | 17.5             | 476.7 0.052 1.9<br>4.98 0.049 1.71              | 0.(2 0.4 3                             |                                 | 56,15X 15.5 2 56.3.0X 16.3 0.3              | BG1<br>AJ1                                                                     |                                                                                             |        |
|                                   |                                     | AL1 SEP<br>AM1 HW Deuble               | 65506.05 279240.31<br>65493.63 279181.58    | 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Direct<br>Kinematic Wave | 597.18 0.4          | 0.25 296.87 10.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.4 19.6082 7.44                   | 15 0.0505 16.5<br>13 7.4433 207 | 0.0505 0.0505 16.5 16.5 16.5 14.433 7.44.33 2.07 2.07 | 16.9             | 482.9 0.049 1.7                                 | 0.(2 0.5 3                             | -                               | 56,30X 16.5 0.4 207                         | AKI                                                                            |                                                                                             |        |
|                                   |                                     | AM2 HW autlet Dauble                   | 65525.35 279166.53                          | 30.17 30.95 30.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                        |                     | 2744                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 00 0000                            | 1 0.050 H                       | 0.0044 0.00544 44.° 44.7                              | 64               | 0100 0001                                       | c 30 670                               |                                 | 50 031 AC                                   | -                                                                              |                                                                                             |        |
|                                   |                                     | A01 GULLY                              | 65467.16 278839.28                          | 35.83 35.83 35.83 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Direct                   |                     | 5 117.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | E0.0 6EE0.0 6.0                    | 15 11.8964 14.20.2              | 0.0305 1.874.8 612.7 14.20.2                          | 1420.2           | 1579.1 0.14.6 5.9                               | 0.16 3.2 1                             |                                 | 16,0.5X 74 134.6.2                          | LOST                                                                           |                                                                                             |        |
|                                   |                                     | A02 SEP                                | 65482.53 278859.15                          | 36.03 36.03 36.03 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Direct                   | C.7 0.01            | 0.25 32.11 44.20<br>5 117.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.4 29.0040 11.01                  | 7.61 60.0663 19.7               | 0.0603 0.0603 19.7 19.7                               | 1.61             | 14.75.2 0.032 1.74                              | 0.(2 2.7 15                            | -                               | 2G,15X 13.9 5.8                             | AZ1                                                                            |                                                                                             |        |
|                                   |                                     | A03 SEP<br>A04 MH                      | 65495.39 278874.71<br>65496.55 278950.97    | 35.87 35.87 35.87 11<br>33.78 33.78 33.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Direct                   |                     | 5 117.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.9 0.0151 0.01                    | 5'7 9EL0'0 9E                   | 0.0136 0.0136 4.5 4.5                                 | 4.5              | 3048.7 0.014 1.5                                | 1 9.6 11.0                             | -                               | 4G,0.5X 3.6 0.9                             |                                                                                |                                                                                             |        |
|                                   |                                     | ADS SEPTWIN<br>ADS CED                 | 65507.66 278964.22<br>6550937 279000.2      | 11 33.16 33.16 33.16 11 33.16 11 33.16 11 33.16 11 33.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13. | Direct                   |                     | 5 117.65<br>5 117.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.9 0.14.11 0.12                   | 7 0.127 415                     | 0.127 0.127 4.15 4.15                                 | 415              | 553.5 0.056 19<br>321.6 0.059 2.0               | 0.04 15 3                              |                                 | 20,30X 29.6 119<br>56.30X 23 36             | A06<br>A07                                                                     |                                                                                             |        |
|                                   |                                     | A07 SEP                                | 65512.51 279039.32                          | 32.62 32.62 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Direct                   |                     | 5 117.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 70'0 7ESO'0 6'0                    | 12:51 1870.0 18                 | 1.51 1.51 1.870'0 1.870'0                             | 7.61             | 321.6 0.052 1.8                                 | 0.(2 0.5                               |                                 | 56,3.0X 18.5 0.9                            | A08                                                                            |                                                                                             |        |
|                                   |                                     | A03 SEP<br>A09 SEP                     | 65514.42 279119.16<br>65517.66 279119.16    | 32.46 32.46 32.46 1<br>32.23 32.23 32.23 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Direct                   |                     | 5 117.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0 9700 0.04                      | 32 0.0432 14.1                  | 0.0432 0.0432 14.2 14.1<br>0.0414 0.0414 13.5 13.5    | 15               | 321.6 0.048 161<br>321.6 0.046 1.6              | 0.02 0.5 3                             |                                 | 56,3.0X 15<br>56,3.0X 13.5                  | A010                                                                           |                                                                                             |        |
|                                   |                                     | A010 SEP<br>A011 SEP                   | 65520.4.4 279159.06<br>65523.22 279198.96   | 32.04 32.04 32.04 11<br>31.85 31.85 31.85 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Direct                   |                     | 5 117.65<br>5 117.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.9 0.0466 0.04                    | 22 0.0422 13.8<br>2 0.042 13.7  | 0.0422 0.0422 13.6 13.8<br>0.042 0.042 13.7 13.7      | 13.8             | 321.6 0.046 16<br>321.6 0.046 1.6               | 0.(2 0.5 3                             |                                 | 56,30X 138 56,30X 13.7                      | A011<br>A012                                                                   |                                                                                             |        |
|                                   |                                     | A012 SEP<br>2012 SEP                   | 65526 279238.87                             | 31.66 31.66 31.66 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Direct                   |                     | 5 117.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.9 0.0455 0.04                    | 1 0.041 13.4                    | 0.041 0.041 13.4 13.4                                 | 13.4             | 321.6 0.046 1.5                                 | 0.(2 0.5 3                             |                                 | 56,3.0X 13.4                                | A013                                                                           |                                                                                             |        |
|                                   |                                     | A015 2EP<br>A014 SEP                   | 6553156 279318.67                           | 11 03140 31.40 31.40 11<br>31.27 31.27 31.27 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Direct                   |                     | 5 117.65<br>5 117.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20.0 61.00 0.03<br>0.0 0.0433 0.03 | 9 0.039 12.7                    | 0.0377 0.0377 12: 12:3                                | 12.3             | 283.5 0.047 1.6                                 | 0.(2 0.5 3                             |                                 | 56,30X 12.3<br>56,30X 12.7                  | A015                                                                           |                                                                                             |        |
|                                   |                                     | A015 COMB0 SEP TWIN<br>A016 HW sufflet | 65533.97 279353.34                          | 31.2 31.2 31.2 1<br>29.7 31.2 31.2 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Direct                   |                     | 5 117.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.9 0.0812 0.07                    | 31 0.0731 23.9                  | 0.0731 0.0731 23.9 23.9                               | 23.9             | 36.8 0.036                                      |                                        | 0.04.5 1                        | 23.9                                        | 1 0                                                                            |                                                                                             |        |
|                                   |                                     | AP1 SEP<br>AQ1 SEP                     | 55497.7 279120.4<br>55494.47 279074.03      | 32.24 32.24 32.24 1<br>32.47 32.47 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Direct                   |                     | 5 117.65<br>5 117.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.9 0.0568 0.05                    | 11 0.0511 16.7<br>5 0.0515 16.8 | 0.0511 0.0511 16.1 16.7<br>0.0515 0.0515 16.4 16.8    | 18.1             | 482.9 0.05 1.8<br>482.9 0.053 1.9               | 0.(2 0.5 3                             |                                 | 56,30X 17.5 0.6<br>56,30X 19.6 1.4          | AN1<br>AP1                                                                     |                                                                                             |        |
|                                   |                                     | ARI GULLY                              | 654.97.64 278862.01                         | 36.37 36.37 36.37 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Direct                   |                     | 5 117.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.9 0.0177 0.01                    | (9 0.0159 5.2                   | 0.0159 0.0159 5.2 5.2                                 | 5.2              | 1158.9 0.02 3.8                                 | 0 11 39 2                              | -                               | 46,15X 5.1 0.1                              | A03                                                                            |                                                                                             |        |
|                                   |                                     | AS2 GULLY                              | 65502.03 278789.94                          | 35.36 35.36 35.36 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Direct                   |                     | 5 117.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.9 0.0653 0.05                    | 18 0.0588 19.2                  | 0.0588 0.0588 19.2 19.2                               | 19.2             | 7073.4 0.035 1.24                               | 0.03 3.9 2.1                           | -                               | 46,15X 13.7 5.5                             | AS3                                                                            |                                                                                             |        |
|                                   |                                     | AS3 SEP<br>AS4 SEP                     | 65541.567 27874.2.79<br>65541.56 278694.49  | 33.44 33.44 31.44 11<br>31.44 31.44 31.44 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Direct                   |                     | 5 117.65<br>5 117.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.9 0.0819 0.07                    | 9 0.0737 24.1                   | 0.0737 0.0737 24.1 24.1 0.0739 0.0739 24.1            | 35.9             | 1278 0.041 14<br>2594.8 0.034 2.7               | 0.04 3.7 3                             |                                 | 26,15X 17.9 11.8<br>26,15X 18.8 17.1        | AS6<br>AS6                                                                     |                                                                                             |        |
|                                   |                                     | AS5 MH<br>AS6 SEP                      | 65555.9 278689.43<br>65579.52 278646.89     | 31.3 31.3 31.3<br>29.81 29.81 29.81 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Direct                   |                     | 5 117.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 580.0 6560.0 5.0                   | 9 0.0859 29.4                   | 3.0899 0.0899 29.4 29.4                               | 46.5             | 633.5 0.055 1.9;                                | 0.05 2.1 3                             | -                               | 2G,3 0X 26 20.6                             |                                                                                |                                                                                             |        |
|                                   |                                     | AS7 GULY TWIN<br>AT1 KEP               | 65602.37 278644.4<br>645434.28 278827.3     | 28.76 28.76 28.76<br>27.6 37.6 37.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                    |                                 |                                                       | c                |                                                 | 56                                     | -                               | 26.15X 0                                    |                                                                                |                                                                                             |        |
|                                   |                                     | AT2 GULLY<br>AM1 CFD                   | 65514.31 278802.33<br>65514.78 278567.67    | 36.21 36.21 36.21 11<br>29.05 29.05 29.05 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Direct                   |                     | 5 117.65<br>6 117.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.9 0.103 0.09                     | 0.0527 30.3<br>8 32 9005 1      | E.0E 5027 0.0927 30.2 80.7 80.7                       | 30.3             | 0.4 0.005 1.7                                   | 0.0 4.2 21                             |                                 | 46,15X 20.1 10.2<br>56.3 nV 105 94.8 5      | LOST                                                                           |                                                                                             |        |
|                                   |                                     | 2m2                                    | 2222050                                     | 30 12 20 12 30 15 30 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | > Kinematic Wave         | 624.5 0.6           | 0.25 247.65 11.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.4 82.2567 32.91                  | 27                              | E1999.0                                               |                  |                                                 |                                        |                                 |                                             |                                                                                |                                                                                             |        |
|                                   |                                     | AZI SEPTWIN                            | 65485.95 278951.69                          | 33.37 33.37 33.37 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Direct                   |                     | 5 117.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.9 0.1607 0.14                    | E.74 74410 T.                   | 0.1447 0.1447 47.3 47.3                               | 53.1             | 945.1 0.058 2.1                                 | 0.05 2 3                               | -                               | 2G,3.0X 34.2 18.9                           | 801                                                                            |                                                                                             |        |
|                                   |                                     | BI SEPTIMIN<br>BBI COMBO SEP           | 654.08.88 280240.86                         | 35.43 35.43 35.43 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Direct                   |                     | cerrit c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.9 0.1226 0.110                   | 3 0.1103 36                     | 0.1103 0.1103 36 36                                   | 2772             | 7/1 C0/0 1/9189<br>7/2 5809/6 0.069             | 0.05 0.9 3                             | 0.61                            | 16,3.0X 215 33.2                            | 12                                                                             |                                                                                             |        |
|                                   |                                     | BB2 MH<br>BC1 SEP                      | 65409.58 280242.28<br>65422.38 280246.13    | 35.43 35.43 35.43 11<br>35.43 35.43 35.43 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Direct                   |                     | 5 117.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.9 0.0723 0.06                    | 1 0.0651 21.3                   | 0.0651 0.0651 21.2 21.3                               | 27.1             | 454.9 0.052 1.8                                 | 0.0 1 3                                | -                               | 16,3.0X 213 5.8                             | . =                                                                            |                                                                                             |        |
|                                   |                                     | BC2 MH<br>BD1 SEP                      | 65423.87 280247.73<br>65489.42 279001.59    | 35.44 35.44 35.44 11<br>32.82 32.82 32.82 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Direct                   |                     | 5 117.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.9 0.0771 0.065                   | 4 0.0654 22.7                   | 0.0694 0.0694 22.7 22.7                               | 415              | 482.9 0.069 2.4                                 | 0.03 0.5 3                             | -                               | 56,3.0X 30.6 10.9                           | - 861                                                                          |                                                                                             |        |
|                                   |                                     | BEI SEP SEP                            | 65492.15 279040.81<br>654.00.55 279040.81   | 32.63 32.63 32.63 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Direct                   |                     | 5 117.65<br>5 117.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.9 0.0582 0.05.                   | 2 0.0524 17.1                   | 0.0524 0.0524 17. 17.1                                | 28               | 482.9 0.059 2.14                                | 0.03 0.5 3                             | 1                               | 56,30X 238 4.2                              | A01                                                                            |                                                                                             |        |
|                                   |                                     | BF2 MH                                 | 6549114 279359.76                           | 30.6 31.86 31.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                     | C0711                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10 00100                           | C'IC 24110 24                   | CUC 010 7400 7400                                     | 2                |                                                 |                                        |                                 | 696                                         |                                                                                |                                                                                             |        |
|                                   |                                     | EG1 COMBO SEP TWIN<br>C1 SEP TWIN      | 65367.05 280442.53                          | 31.26 31.26 31.26 1<br>36.4 35.4 36.4 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Direct                   |                     | 5 117.65<br>5 117.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.9 0.089 0.06                     | 01 0.0801 26.2<br>.9 0.0949 31  | 0.0801 0.0801 26.2 26.2 0.0949 0.0949 31 31           | 31               | 35.3 0.04.2 5675.7 0.056 1.9 <sup>-</sup>       | 0.03 0.8 3                             | 0.04.7 1                        | 10,3.0X 27.6 3.4                            | LOST                                                                           |                                                                                             |        |
|                                   |                                     | Ex.J1 GULLY<br>D1 GULLY                | 65368.75 280447.07<br>65347.56 280369.4     | 36.77 36.57 36.57 108 37.08 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Direct                   |                     | 5 117.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 50.0 70.0 5.0                      | s 0.035 11.8                    | 0.036 0.036 11.6 11.8                                 | 11.8             | 238.5 0.021 2.9                                 | 0.01 1.3 1                             | 1                               | 16,0.5X 6.7 5.1                             |                                                                                |                                                                                             |        |
|                                   |                                     | 02 MH<br>E1 SEP                        | 65353.57 280366.23<br>65393.2 280341.26     | 11 65.35 80.75 80.75 10 10 10 10 10 10 10 10 10 10 10 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Direct                   |                     | 5 117.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.9 0.0723 0.06                    | 5 0.065 21.3                    | 0.065 0.065 21: 213                                   | 213              | 2012 01049 111                                  | E 7.0 2).0                             | 1                               | 5G,30X 19.8 1.5                             | - 12                                                                           |                                                                                             |        |
|                                   |                                     | EX AK3 MH<br>F1 COMB0 SEP              | 65380.84 280338.34<br>65379.58 280335.58    | 36.77 36.77 36.77<br>36.28 36.28 36.28 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Direct                   |                     | 5 117.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11.0 1051.0 0.11                   | 1 0.1171 38.3                   | 0.1171 0.1711 38.3 38.3                               | 38.3             | 2975.7 0.061 2.1                                | 0.04 0.9 33                            | -                               | 16,3.0X 27 11.3                             | - 13                                                                           |                                                                                             |        |
|                                   |                                     | G1 SEP<br>G2 MH                        | 65391/73 280289.01<br>65391/22 280289.03    | 35.87 35.87 35.87 11<br>35.87 35.87 35.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Direct                   |                     | 5 117.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.9 0.125 0.11                     | 36.8                            | 0.1125 0.1125 36.8 36.8                               | 48.1             | 2995.4 0.066 2.3                                | 0.04 0.9 3.                            | -                               | 16,3.0X 29.4 18.6                           | 881                                                                            |                                                                                             |        |
|                                   |                                     | H1 SEP                                 | 654.05.51 280.293.54<br>654.43.4 280.192.46 | 35.92 35.92 35.92 11<br>34.88 34.88 34.88 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Direct                   |                     | 5 117.65<br>5 117.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.9 0.0677 0.06                    | 19 0.0609 19.9<br>5 0.1186 38.8 | 0.0609 0.0609 19.5 19.9 0.1186 0.1186 38.3            | 21.4             | 447.4 0.047 1.6 <sup>-</sup><br>454.9 0.063 2.2 | 0.03 1 3                               |                                 | 1G,1.5X 15.6 5.8<br>1G,3.0X 28.4 16.2       | BC1<br>K1                                                                      |                                                                                             |        |
|                                   |                                     | J1 COM60 SEP<br>I2 GIII 1Y             | 6543692 280169.22<br>654398 280169.22       | 34.77 34.77 34.77 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Direct                   |                     | 5 117.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.9 0.0455 0.04                    | 1 0.041 13.4                    | 7 61 7 61 137 137                                     | 22.7             | 2797.2 0.045 20<br>2584.7 0.057 2.0             | 0.02 0.9 2                             |                                 | 16,15X 15.1 7.6<br>16.30X 23.9 9.3          | L0ST                                                                           |                                                                                             |        |
|                                   |                                     | K1 SEP<br>K2 MH                        | 65461.39 280146.51<br>654.014 28014.65      | 11 177E 177E 177E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Direct                   |                     | 5 117.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.9 0.0514 0.04                    | 52 0.0462 15.1                  | 0.0462 0.0462 15.1                                    | 313              | 1672.8 0.055 1.9;                               | 0.(3                                   | -                               | 1G,3.0X 23.5 7.8                            | μ                                                                              |                                                                                             |        |
|                                   |                                     | K3 COMBO SEP                           | 65440.01 280138.03                          | 1 07.15 17.15 17.16<br>1 07.15 17.15 17.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Direct                   |                     | 5 117.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.9 0.0731 0.06                    | 18 0.0658 21.5<br>1 0.0221 0.0  | 0.0658 0.0658 215 215                                 | 215              | 2285 0.028 2.9                                  | 0.01 1.9 0.                            |                                 | 26.0.5X 10.5 11.1                           | M2<br>DCT                                                                      |                                                                                             |        |
|                                   |                                     | MI COMBOSEP TWIN                       | 65484,27 280088.05                          | 33.91 33.91 33.91 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Direct                   |                     | 5 117.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.9 0.1212 0.10                    | 10 10501 35.6                   | 0.1091 0.1091 35.6 35.6                               | 43.4             | 70.7 0.053                                      |                                        | 0.071 1                         | 13 0.0 001/0                                | 1021                                                                           |                                                                                             |        |
|                                   |                                     | M2 COMBUSEP I WIN<br>M3 MH             | 65454.96 280080.13<br>65454.96 280079.02    | 79.15 17.55 17.55<br>79.75 17.55 17.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                    |                                 |                                                       | 28.8             | 1540.7 0.076 2.7                                | F 10 Z10                               | -                               | 50,50X 28.8                                 | LOS I                                                                          |                                                                                             |        |
|                                   |                                     | N1 IW<br>N2 HW suffet                  | 65521.81 279075.98<br>65522.52 279088.07    | 91.15 81.15<br>97.15 97.15<br>97.15<br>97.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                    |                                 |                                                       | 0                |                                                 |                                        |                                 | 0                                           | 1 6                                                                            |                                                                                             |        |
|                                   |                                     | 01 SEP<br>R1 SEP                       | 65498.65 280051.33<br>65515.67 279984.54    | 34.22 34.22 34.22 1<br>35.96 35.96 35.96 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Direct<br>Direct         |                     | 5 117.65<br>5 117.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.9 0.084.9 0.07                   | 54 0.0764 25<br>2 0.0462 15.1   | 0.0764 0.0764 25 25<br>0.0462 0.0462 15 151           | 25<br>18.9       | 723.5 0.04.2 1.5<br>1018.1 0.034 1.7            | 0.03 2 21                              |                                 | 26,15X 15.5 9.5<br>26,15X 13.6 5.4          | LOST CAUTION<br>LOST SEPAVIFIC SHOWN ADF TO                                    | RETISED AS A GLIDE DNI V                                                                    | E<br>E |
|                                   |                                     | R2 SEP<br>01 SEP                       | 65530.46 279942.86                          | 35.24 35.24 35.24 1<br>36.72 36.72 36.72 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Direct                   |                     | 5 117.65<br>5 117.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.9 0.1085 0.09                    | 76 0.0976 31.9<br>4 0.0674 22   | 0.0976 0.0976 315 31.9                                | 425              | 1079.4 0.051 1.8<br>500.9 0.046 1.6             | 0.05 2.4 3 0.03 1.2 3                  |                                 | 2G,3.0X 24.7 17.7<br>16,3.0X 18.2 3.8       | M2 SERVICES SHALL BE MAN<br>R1 MECHANICAL EXCAVATIO                            | JALLY LOCATED BY HAND PRID                                                                  | R TO   |
|                                   |                                     | 0.2 SEP<br>0.3 MH                      | 65516.35 279938.44<br>65491.73 279996.69    | 36.43 36.43 36.43 11<br>35.23 35.23 35.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Direct                   |                     | 5 117.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.9 0.0995 0.08                    | 36 0.0896 29.3                  | 0.0896 0.0896 29.3 29.3                               | 29.3             | 765.8 0.05 1.8                                  | 0.03 1.2 3                             | -                               | 1G,1.5X 18.7 10.6                           | R2 DBTAINED PRIOR TO SITE<br>SHALL BE UNDERTAKEN I                             | WORKS AND A DBYD ENQUIRY<br>O EARLIER THAN 30 DAYS BEFO                                     | ORE    |
|                                   |                                     | 0.5 MH<br>S1 SEP                       | 654.69.14 279984.94<br>65554.08 279799.17   | 35.28 35.28 33<br>36.48 36.48 36.48 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Direct                   |                     | 5 117.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.9 0.0942 0.084                   | 8 0.0848 27.7                   | 0.0848 0.0848 27.2 27.7                               | 27.7             | 243 0.048 1.6                                   | 0.(3 1.6 3                             | -                               | 2G,3.0X 19.1 8.6                            | CONSTRUCTION A FULL S     BE KEPT ON SITE AT ALL     U1 TO BE DELOTATED (2001) | ET DF THE DBYD DOCUMENTS AN<br>TIMES, CONFLICTING SERVICES A<br>CTED TO THE SATISFACTION DF | ARE TO |
|                                   |                                     |                                        |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                    |                                 |                                                       |                  |                                                 |                                        | -                               |                                             | SERVICE AUTHORITY PRI                                                          | R TO WORKS.                                                                                 |        |
|                                   |                                     | AUTHORISATION                          | 7                                           | APPROVED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          | SCALE               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (A1) HE                            | ENLEY BF                        | ROOK AVE - ST                                         | AGE 3            |                                                 |                                        | 1                               | •                                           | DRAWING No:                                                                    | REV No:                                                                                     |        |
|                                   |                                     | FROJECT MANAGER                        | DATE                                        | DESIGN CO-ORDINATOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DATE                     | DATUM:              | A.H.D.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MES                                | SARA AVENUE TO                  | ) PARK STREET                                         |                  | PROFO                                           | RACIVIL                                |                                 |                                             | R771-126                                                                       | 0                                                                                           |        |
|                                   |                                     | DESIGNED DWEERTS                       | CHECKED                                     | DATE DF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3AWN CCAYATTE            |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DU                                 | AL CARRIAG                      | EWAY                                                  |                  | ENGINEER                                        | ING GROUP                              | X                               | city of <b>cwar</b>                         |                                                                                |                                                                                             |        |
|                                   |                                     | © COPYRIGHT                            | THE DOVIDER OF THE DOVIDER AND THE          | COTY OF SMARY THE POSTARENT MAY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DE HELD END THE DIDONE   | DO DOMINIO DE DE DE | N SCHWIGHTON IN CAN DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DR                                 | AINAGE HYD                      | IRAULICS Q10                                          |                  |                                                 |                                        | Z                               |                                             | OPER                                                                           | ATIONS                                                                                      |        |
| 0 04.23 DW ISS<br>REV. DATE BY DE | SUED FOR CONSTRUCTION<br>SIGNIPTION | INDAGEMENT FOR THE COL                 | MISSION AS AGREED WITH THE CIT              | ITY OF SWAN, UNJUTHORISED USE OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | THIS DOCUMENT IN ANY W.  | AV IS PROHIBITED.   | variation variation of the second seco |                                    |                                 |                                                       |                  |                                                 |                                        | ٢                               |                                             |                                                                                |                                                                                             |        |

HYDRAULICS Q10 (10% AEP)

|                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                          |                                                                                                                                   |                                                                                                                                                                                                                       |                                                                             |                                                                                                                                                             |                                                                                                                                                                                             |                                                                                                                |                                                                        |                                                                     |                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                  |                                                                                    |                                                                                                                 |                                                                                                  |                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                  |                                                                                                         |                                                                      |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                 |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                    |                                                                                                    |                                                                                                                |                                                                                                                                              |                                                                             |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                     |                                                                                                                                                      | ERVICES SHOWN ARE TO BE USED AS A GUDE DNLY<br>SERVICES SHOWN ARE TO BE USED AS A GUDE DNLY<br>SERVICES SHALL BE MANUALLY LICATED BY FAND PROR TO                                                                                                      | MECHANICAL EXCAVATION RELEVANT PERMITS SHALL BE<br>OBTAINED PRIOR TO SITE WORKS AND A DBYD ENQUIRY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SHALL BE UNDERTAKEN NO EARLIER THAN 30 DAY'S BEFORE<br>CONSTRUCTION A FULL SET OF THE DBY'D DOCUMENTS ARE<br>TO BE KEPT ON SITE AT ALL TIMES. CONFLICTING SERVICES ARE | TO BE RELOCATED/PROTECTED TO THE SATISFACTION OF THE SERVICE AUTHORITY PRIOR TO WORKS | DRAWING No: REV No:   | R771-127 0                  |                                           | UPERATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------|-----------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| x Panol ( Chake                                               | Epith         Factor         Curve Name         Flow QQ         Flow QD         Node           (m)         (-1         (-)         (1/5)         (1/5)         (-)         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 118.8                                                                                                                                       | 1 26,5,0X 215 3.5 L0ST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                          | 0.3 1 20.4 LOST<br>0.3 1 15.9 LOST                                                                                                | 1         16,15X         0         AG1           1         0.56,30X         0         A015                                                                                                                            | 1 0.56,30X 16.7 0.4 AL1                                                     | 1         0.56,15X         15.5         2         BG1           1         0.56,30X         16.3         0.3         AJ1                                     | 1 056,30X 165 0.4 AK1<br>207 =                                                                                                                                                              | 1 0.56,30X 16.9 0.5 4/1<br>1 4.6.05X 7.2 134.6 7.05T                                                           | 1 2615V 130 58 A71                                                     | 1 4.6,0.5X 3.6 0.9 LOST                                             | 1 26,30X 29.6 11.9 A06<br>1 056.30X 23 3.6 A07                                                                                            | 1 0.56,3.00 185 0.9 A00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 0.56,30X 15 AU9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 0.56,3.0X 13.8 A.011<br>1 0.56,3.0X 13.7 A.012<br>1 0.55,3.0Y 13.4 A.013                                       | 1 0.56,30X 12.3 A014<br>1 0.56,30V 12.3 A014                                       | 2040 1 23.9                                                                                                     | 1 0.56,3.0X 17.5 0.6 AN1<br>0.66,3.0Y 19.6 1.4 AD1                                               | 1 46,15X 510 0.1 A03                                                                                               | 1 46,15X 137 5.5 AS3<br>1 46,15X 137 5.5 AS3<br>1 46,10X 170 118 ACL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 26,15X 18.8 17.1 AS6                                                                           | 1 2G.3.0X 26 20.6 AW1                                                                                   | 1 26,15X 0 LOST<br>1 46,15X 201 10.2 LOST                            | 1 0.56,3.0X 105 948.5 L0ST                                                                                                                                                      | - 1 26,3.0X 34,2 18.9 801                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 16,1,5X 19,1 3,1 L0ST<br>0.61 16,3,0X 215 33.2 .2                                             | 1 16,30X 213 5.8 1                                                                                            | 1 0.56,3.0X 30.6 10.9 BE1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                | .04.7 1 28.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 16,0.5X 6.7 5.1 LOST                                             | 1 0.56,3.0X 19.8 1.5 H1                                                                            | 1 16,3.0X 27 11.3 61<br>1 16,3.0X 29,4 18,6 881                                                                | 1 16,15X 15.6 5.8 BC1                                                                                                                        | 1 16,3.0X 28.4 16.2 K1<br>1 16,1.5X 15.1 7.6 L0ST                           | 1 10,5.0X 23.5 9.5 11<br>1 16,3.0X 23.5 7.8 M1                              | 1 2G,0.5X 10.5 11.1 N2<br>1 1G,1.5X 6.8 1.7 LOST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1071 1 434 LOST<br>1 0.56.30X 288 LOST                                              | 0                                                                                                                                                    |                                                                                                                                                                                                                                                        | 1 20,30X 24.7 17.7 N2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 10,15X 18.7 10.6 R2                                                                                                                                                  |                                                                                       |                       | Y                           | citvof swan                               | i de la comercia de la comerc |
| Foart  Flonded  Flonded  Road  Road  Road  Max                | Capacity         Depth         Width         Vel.Dep         Grade         Xfat         Ds           (./s)         (m)         (sq.m/s)         1%)         1%)         1%)         1%)         1%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                             | 244.8 0.049 0.9 0.04 2.1 3011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                          | 397 0.044 397 0.038                                                                                                               | 0.8 2.6                                                                                                                                                                                                               | 482.9 0.04.9 1.78 0.02 0.5 3                                                | 476.7 0.052 1.9 0.02 0.4 3 1.98 0.049 1.76 0.02 0.5 3                                                                                                       | 482.9 0.04.9 1.77 0.02 0.5 3                                                                                                                                                                | 482.9 0.04.9 1.79 0.02 0.5 3<br>1179.1 0.11.6 5.96 0.36 3.2 1                                                  | 1112 1112 1112 1112 1112 1112 1112 111                                 | 1 6E 100 E51 7100 L874E                                             | 5535 0016 195 0.04 15 3<br>2716 0019 2.06 0.03 0.6 3                                                                                      | 2216 0.012 1.00 0.02 0.5 3<br>2216 0.012 1.83 0.02 0.5 3<br>2216 0.016 1.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 215 0.048 1.65 0.02 0.5 3<br>2216 0.046 1.6 0.02 0.5 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2216 0.0% 161 0.02 05 3<br>2216 0.0% 1.61 0.02 0.5 3<br>2316 0.0% 1.59 0.02 0.5 3                                | 2216 0.044 154 0.02 0.5 3<br>2215 0.04 154 0.02 0.5 3<br>2235 0.047 154 0.02 0.5 3 | 0 c c.v 2000 son 2000 | 482.9 0.05 1.82 0.02 0.5 3<br>482.0 0.05 1.82 0.02 0.5 3                                         | 1589 0.02 0.89 0.01 3.9 2.3                                                                                        | 7/73.4 0.015 1.24 0.03 3.9 2.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2/94.8 0.014 2.73 0.03 3 15                                                                      | 633.5 0.055 1.92 0.05 2.1 3                                                                             | 0.4 0.015 0.72 0.09 4.2 2.6                                          | 337.9 0.6 5.81 0.4 0.6 3                                                                                                                                                        | \$45.1         0.058         2.12         0.05         2         3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6316.1 0.05 1.75 0.03 0.8 3 5109.6 0.019 2.42 0.05 0.9 3                                        | 454.9 0.052 1.82 0.03 1 3                                                                                     | 482.5 0.069 2.49 0.03 0.5 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | E C/0 E0/0 19/7 6/0/0 6/200                                                                                    | 15.3         0.0v2         0.0v2         0.0v3         0.0v3 | 238.5 0.021 2.96 0.01 1.3 1                                        | 30.5 0.049 1.72 0.02 0.7 3                                                                         | 2475.7 0.051 2.12 0.04 0.9 3.5<br>295.4 0.066 2.31 0.04 0.9 3.5                                                | 4,7,4 0,0,7 1,67 0,03 1 3                                                                                                                    | 454.9 0.063 2.2 0.04 1 3<br>2'97.2 0.045 2.07 0.02 0.9 2.2                  | 2/84./ 0.05/ 2.01 0.03 0.9 3<br>1672.8 0.055 1.92 0.03 1 3                  | 2285         0.018         2.99         0.01         1.9         0.9           114         0.028         1.5         0.01         1.1         2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10.7 0.053 0.02 0.1 3 0                                                             |                                                                                                                                                      | 2336 0.042 1.67 0.03 2 2.6<br>2.167 0.03 2 2.6<br>2.181 0.010 1.17, 0.03 2.1 2                                                                                                                                                                         | 1(19) 0.00 1.0 0.0 2.1 3<br>1(19) 0.001 1.85 0.05 2.4 3<br>7000 0.001 1.85 0.05 2.4 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 755.8 0.05 1.83 0.03 1.2 3                                                                                                                                             |                                                                                       |                       | <b>PROFORMCIVIL</b>         | ENGINEERING GROUP<br>www.pioformcivil.com |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| AEP)<br>M   Partial   Partial   Catchment   Direct   Annraach | CIA         CA         Sum CA         Qc=CIA         Flow Qc         Row Qcg         Fow Qa         Gw Qa         Gw Qa         C         Sum Ca         Fow Qa         C         Sum Ca         Sum Ca <ths< td=""><td>8.8 0.102 0.205 67 178.8 178.8</td><td>0.003 0.003 25 25 25 25 25 00153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.01</td><td></td><td>1.4         0.0623         0.0623         20.4         20.4           1.9         0.0487         0.0487         15.9         15.9</td><td></td><td>1.71 6.0509 15.6 16.6 16.6</td><td>7.1         0.0524         0.0524         17.1         17.1         17.5           1.2         0.0496         0.0496         16.2         16.2         16.6</td><td>15         0.0505         0.0505         16.5         16.5         16.9           07         7.4433         7.4433         207         207         207</td><td>17 00511 00511 16.7 16.7 17.3 17.3 17.20 2</td><td></td><td></td><td>15 0127 0127 415 415 415 415 415 415 415 415 415 415</td><td>10.00120 0.00120 15.7 15.7 15.00<br/>1 0.00120 0.00120 15.7 15.7 15.4 15.4 15.4 15.4 15.4 15.4 15.4 15.4</td><td>1 00422 00432 14.1 14.1 14.1 15<br/>15 00414 00414 13.5 13.5 13.5 13.5</td><td>88 0.0422 0.0422 138 148 151 158 158 158 158 158 158 158 158 15</td><td>L3 0.0377 0.0377 12.3 12.3 12.3 12.3 12.3 12.3 12.3 12.3</td><td>23.9 0.0731 0.0731 23.9 23.9 23.9 23.9</td><td>1.7 0.0511 0.0511 16.7 16.7 18.1<br/>8 0.0555 0.6515 14.8 14.8 24.8 21</td><td>20 00551 00555 52 52 52<br/>1 00555 00555 101 101 101 101 101</td><td>1.2 0.0588 0.0588 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2</td><td>1 0.0739 0.0739 24.1 24.1 35.9</td><td>3.4 0.0839 0.0899 29.4 29.4 46.5</td><td>0 E 0E 200 200 200 200 200 200 200 200 2</td><td>12.9 0.0878 0.7521 245.8 1032.9 1053.5<br/>0.6643</td><td>1/2 0/11/2 0/11/2 1/3 1/3 2/3</td><td>2.2 0.0678 0.0678 22.2 22.2 22.2 22.2 54.7 54.7</td><td>13 0.0651 0.0651 213 213 27.1</td><td>27 0.0694 0.0694 22.7 22.7 41.5</td><td>7.3 0.1142 0.1142 37.3 37.3 37.3 37.3</td><td>5.2 0.0801 0.0801 26.2 26.2 28.2 11 0.0949 0.0949 31 31</td><td>18 0.036 0.036 118 118 118 118</td><td>213 0.065 0.065 213 213 213</td><td>3.3 0.1171 0.1171 38.3 38.3 38.3 38.3 38.3 38.3 38.3 38.</td><td>(9 0.0609 0.0609 19.9 19.9 21.4</td><td>3.8 0.1186 0.1186 38.8 38.8 44.6<br/>14 0.041 0.041 13.4 13.4 22.7</td><td>51 0.0462 0.0462 15.1 15.1 31.3</td><td>15         0.0658         0.0658         215         215         215           .5         0.0261         0.0261         8.5         8.5         8.5</td><td>5.6 0.1091 0.1091 35.6 35.6 43.4<br/>28.8</td><td>0</td><td>5 0.0764 0.0764 25 25 25</td><td>01 0.0976 0.0976 31.9 31.9 0.0576 0.0976 31.9 0.0576 0.0976 31.9 31.9 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.</td><td>2. 0.0895 0.0895 29;3 29;3 29;3 29;3 29;3</td><td></td><td>Y BROOK AVE - STAGE 3</td><td>ENUE TO PARK STREET</td><td>RRIAGEWAY</td><td>E HYDROLOGY Q10</td></ths<> | 8.8 0.102 0.205 67 178.8 178.8                                                                                                              | 0.003 0.003 25 25 25 25 25 00153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.01 |                                                                                                          | 1.4         0.0623         0.0623         20.4         20.4           1.9         0.0487         0.0487         15.9         15.9 |                                                                                                                                                                                                                       | 1.71 6.0509 15.6 16.6 16.6                                                  | 7.1         0.0524         0.0524         17.1         17.1         17.5           1.2         0.0496         0.0496         16.2         16.2         16.6 | 15         0.0505         0.0505         16.5         16.5         16.9           07         7.4433         7.4433         207         207         207                                      | 17 00511 00511 16.7 16.7 17.3 17.3 17.20 2                                                                     |                                                                        |                                                                     | 15 0127 0127 415 415 415 415 415 415 415 415 415 415                                                                                      | 10.00120 0.00120 15.7 15.7 15.00<br>1 0.00120 0.00120 15.7 15.7 15.4 15.4 15.4 15.4 15.4 15.4 15.4 15.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 00422 00432 14.1 14.1 14.1 15<br>15 00414 00414 13.5 13.5 13.5 13.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 88 0.0422 0.0422 138 148 151 158 158 158 158 158 158 158 158 15                                                  | L3 0.0377 0.0377 12.3 12.3 12.3 12.3 12.3 12.3 12.3 12.3                           | 23.9 0.0731 0.0731 23.9 23.9 23.9 23.9                                                                          | 1.7 0.0511 0.0511 16.7 16.7 18.1<br>8 0.0555 0.6515 14.8 14.8 24.8 21                            | 20 00551 00555 52 52 52<br>1 00555 00555 101 101 101 101 101                                                       | 1.2 0.0588 0.0588 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 0.0739 0.0739 24.1 24.1 35.9                                                                   | 3.4 0.0839 0.0899 29.4 29.4 46.5                                                                        | 0 E 0E 200 200 200 200 200 200 200 200 2                             | 12.9 0.0878 0.7521 245.8 1032.9 1053.5<br>0.6643                                                                                                                                | 1/2 0/11/2 0/11/2 1/3 1/3 2/3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.2 0.0678 0.0678 22.2 22.2 22.2 22.2 54.7 54.7                                                 | 13 0.0651 0.0651 213 213 27.1                                                                                 | 27 0.0694 0.0694 22.7 22.7 41.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.3 0.1142 0.1142 37.3 37.3 37.3 37.3                                                                          | 5.2 0.0801 0.0801 26.2 26.2 28.2 11 0.0949 0.0949 31 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18 0.036 0.036 118 118 118 118                                     | 213 0.065 0.065 213 213 213                                                                        | 3.3 0.1171 0.1171 38.3 38.3 38.3 38.3 38.3 38.3 38.3 38.                                                       | (9 0.0609 0.0609 19.9 19.9 21.4                                                                                                              | 3.8 0.1186 0.1186 38.8 38.8 44.6<br>14 0.041 0.041 13.4 13.4 22.7           | 51 0.0462 0.0462 15.1 15.1 31.3                                             | 15         0.0658         0.0658         215         215         215           .5         0.0261         0.0261         8.5         8.5         8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.6 0.1091 0.1091 35.6 35.6 43.4<br>28.8                                            | 0                                                                                                                                                    | 5 0.0764 0.0764 25 25 25                                                                                                                                                                                                                               | 01 0.0976 0.0976 31.9 31.9 0.0576 0.0976 31.9 0.0576 0.0976 31.9 31.9 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0.0576 0. | 2. 0.0895 0.0895 29;3 29;3 29;3 29;3 29;3                                                                                                                              |                                                                                       | Y BROOK AVE - STAGE 3 | ENUE TO PARK STREET         | RRIAGEWAY                                 | E HYDROLOGY Q10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| HYDROLOGY 010 (10% )                                          | P         Tc         I         C         A         CA         Sum CA         Cc=1           (min)         (nm/hri)         (-)         (ha)         (ha)         (ha)         (L/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5 117.65 0.9 0.1133 0.102 6.8632 178                                                                                                        | 328.23         9.38         0.4         16.9023         6.7612         8           5         117.65         0.9         0.068         0.0612         0.1598         19           32.17         4.298         0.4         0.2466         0.0986         5         16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                          | 5 117.65 0.9 0.0692 0.0623 0.0623 20<br>5 117.65 0.9 0.0542 0.0487 0.0487 15.                                                     |                                                                                                                                                                                                                       | 91 60500 60500 99500 60 59711 5                                             | 5 117.65 0.9 0.0583 0.0524 0.0524 17<br>5 117.65 0.9 0.0551 0.0496 0.0496 16.                                                                               | 5         117.65         0.9         0.0561         0.0505         0.0505         16.           296.87         10.01         0.4         18.6082         7.44.33         7.44.33         20 | 5 117.65 0.9 0.0568 0.0511 0.0511 16<br>5 117.65 0.9 0.0548 0.0511 1.01                                        | 32.17 4.2.98 04 29.5648 11.8659 1.2.2.4<br>- 117.65 02 0.4.7 0.0603 10 | 5 117.65 0.9 0.0151 0.0136 0.0136 4.1                               | 5 117.65 0.9 014.11 0.127 0.127 4.1<br>5 117.65 0.9 0.05 0.045 0.045 14                                                                   | 1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 | 11/100         0.0404         0.0404         0.0404         0.0404         0.0404         0.0404         0.0404         0.0404         0.0404         0.0404         0.0404         0.0404         0.0404         0.0404         0.0404         0.0404         0.0404         0.0404         0.0404         0.0404         0.0404         0.0404         0.0404         0.0404         0.0404         0.0404         0.0404         0.0404         0.0404         0.0404         0.0404         0.0404         0.0404         0.0404         0.0404         0.0404         0.0404         0.0404         0.0404         0.0404         0.0404         0.0404         0.0404         0.0404         0.0404         0.0404         0.0404         0.0404         0.0404         0.0404         0.0404         0.0404         0.0404         0.0404         0.0404         0.0404         0.0404         0.0404         0.0404         0.0404         0.0404         0.0404         0.0404         0.0404         0.0404         0.0404         0.0404         0.0404         0.0404         0.0404         0.0404         0.0404         0.0404         0.0404         0.0404         0.0404         0.0404         0.0404         0.0404         0.0404         0.0404 <th0.0404< th=""> <th0.0404< th=""> <th0.0404< td="" th<=""><td>5 117.65 0.9 0.0469 0.0422 0.0422 13<br/>5 117.65 0.9 0.0466 0.042 0.042 13<br/>5 117.65 0.9 0.0466 0.042 0.042 13</td><td>5 117.65 0.9 0.0419 0.0377 0.0377 12.<br/>5 117.65 0.9 0.0419 0.0377 0.0377 12.</td><td>5 117.65 0.9 0.0812 0.0731 0.0731 23</td><td>5 117.65 0.9 0.0568 0.0511 0.0511 16.<br/>5 117.65 0.9 0.0558 0.0515 0.0515 16.</td><td>5 117.65 09 00.177 00.159 0.059 5 0<br/>5 117.65 09 0.0177 0.0159 0.0159 5.0<br/>5 117.65 09 0.0475 0.0158 0.0568 19</td><td>Control         Control         <t< td=""><td>24 10.00 0.0821 0.0739 0.0739 24</td><td>5 117.65 0.9 0.0999 0.0899 0.0899 29</td><td>5 117.65 0.9 0.103 0.0927 0.0927 30</td><td>5         117.65         0.9         0.0975         0.0878         32.9905         103.           247.65         11.27         0.4         82.2567         32.9027         103.</td><td>L7 L7710 L771V0 L0910 6/0 59111 5</td><td>5 117.65 0.9 0.0753 0.0678 0.0678 22.<br/>5 117.65 0.9 0.1226 0.1103 0.1103 36</td><td>5 117.65 0.9 0.0723 0.0651 0.0651 21</td><td>5 117.65 0.9 0.0771 0.0694 0.0694 22</td><td>11 42c0 42c0 0 28c0 0 40 c0.11 c 2 117.65 0.1262 0.1262 37. 5 117.65 0.9 0.1269 0.1263 37.</td><td>5 117.65 0.9 0.089 0.0801 0.0801 26<br/>5 117.65 0.9 0.1055 0.0949 0.0949 3</td><td>5 117.65 0.9 0.04 0.036 0.036 11</td><td>5 117.65 0.9 0.0723 0.065 0.065 21</td><td>5 117.65 0.9 0.1301 0.1125 36</td><td>5 117.65 0.9 0.0677 0.0609 0.0609 19.</td><td>5 117.65 0.9 0.1318 0.1186 0.1186 38<br/>5 117.65 0.9 0.0455 0.041 0.041 13</td><td>5 117.65 0.9 0.0514 0.0462 15</td><td>5 117.65 0.9 0.0731 0.0658 0.0658 21<br/>5 117.65 0.9 0.029 0.0261 0.0261 8:</td><td>5 117.65 0.9 0.1212 0.1091 0.1091 35</td><td></td><td>5 11125 0.0 0.0849 0.0714 2</td><td>5 117.05 0.5 0.1085 0.0742 0.07402 1.<br/>5 117.65 0.5 0.1085 0.0746 31<br/>5 117.65 0.5 0.1085 0.0746 31</td><td>27 2000 2000 2000 2000 2011 0<br/>29 2000 2000 2000 2000 2011 0<br/>20 2000 2000</td><td></td><td>(A1) HENLE</td><td>H.D. MESSARA AVE</td><td>DUAL CAF</td><td>SSICHED AND IN ACCORDANCE WITH THE TERMS OF</td></t<></td></th0.0404<></th0.0404<></th0.0404<> | 5 117.65 0.9 0.0469 0.0422 0.0422 13<br>5 117.65 0.9 0.0466 0.042 0.042 13<br>5 117.65 0.9 0.0466 0.042 0.042 13 | 5 117.65 0.9 0.0419 0.0377 0.0377 12.<br>5 117.65 0.9 0.0419 0.0377 0.0377 12.     | 5 117.65 0.9 0.0812 0.0731 0.0731 23                                                                            | 5 117.65 0.9 0.0568 0.0511 0.0511 16.<br>5 117.65 0.9 0.0558 0.0515 0.0515 16.                   | 5 117.65 09 00.177 00.159 0.059 5 0<br>5 117.65 09 0.0177 0.0159 0.0159 5.0<br>5 117.65 09 0.0475 0.0158 0.0568 19 | Control         Control <t< td=""><td>24 10.00 0.0821 0.0739 0.0739 24</td><td>5 117.65 0.9 0.0999 0.0899 0.0899 29</td><td>5 117.65 0.9 0.103 0.0927 0.0927 30</td><td>5         117.65         0.9         0.0975         0.0878         32.9905         103.           247.65         11.27         0.4         82.2567         32.9027         103.</td><td>L7 L7710 L771V0 L0910 6/0 59111 5</td><td>5 117.65 0.9 0.0753 0.0678 0.0678 22.<br/>5 117.65 0.9 0.1226 0.1103 0.1103 36</td><td>5 117.65 0.9 0.0723 0.0651 0.0651 21</td><td>5 117.65 0.9 0.0771 0.0694 0.0694 22</td><td>11 42c0 42c0 0 28c0 0 40 c0.11 c 2 117.65 0.1262 0.1262 37. 5 117.65 0.9 0.1269 0.1263 37.</td><td>5 117.65 0.9 0.089 0.0801 0.0801 26<br/>5 117.65 0.9 0.1055 0.0949 0.0949 3</td><td>5 117.65 0.9 0.04 0.036 0.036 11</td><td>5 117.65 0.9 0.0723 0.065 0.065 21</td><td>5 117.65 0.9 0.1301 0.1125 36</td><td>5 117.65 0.9 0.0677 0.0609 0.0609 19.</td><td>5 117.65 0.9 0.1318 0.1186 0.1186 38<br/>5 117.65 0.9 0.0455 0.041 0.041 13</td><td>5 117.65 0.9 0.0514 0.0462 15</td><td>5 117.65 0.9 0.0731 0.0658 0.0658 21<br/>5 117.65 0.9 0.029 0.0261 0.0261 8:</td><td>5 117.65 0.9 0.1212 0.1091 0.1091 35</td><td></td><td>5 11125 0.0 0.0849 0.0714 2</td><td>5 117.05 0.5 0.1085 0.0742 0.07402 1.<br/>5 117.65 0.5 0.1085 0.0746 31<br/>5 117.65 0.5 0.1085 0.0746 31</td><td>27 2000 2000 2000 2000 2011 0<br/>29 2000 2000 2000 2000 2011 0<br/>20 2000 2000</td><td></td><td>(A1) HENLE</td><td>H.D. MESSARA AVE</td><td>DUAL CAF</td><td>SSICHED AND IN ACCORDANCE WITH THE TERMS OF</td></t<> | 24 10.00 0.0821 0.0739 0.0739 24                                                                 | 5 117.65 0.9 0.0999 0.0899 0.0899 29                                                                    | 5 117.65 0.9 0.103 0.0927 0.0927 30                                  | 5         117.65         0.9         0.0975         0.0878         32.9905         103.           247.65         11.27         0.4         82.2567         32.9027         103. | L7 L7710 L771V0 L0910 6/0 59111 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5 117.65 0.9 0.0753 0.0678 0.0678 22.<br>5 117.65 0.9 0.1226 0.1103 0.1103 36                   | 5 117.65 0.9 0.0723 0.0651 0.0651 21                                                                          | 5 117.65 0.9 0.0771 0.0694 0.0694 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11 42c0 42c0 0 28c0 0 40 c0.11 c 2 117.65 0.1262 0.1262 37. 5 117.65 0.9 0.1269 0.1263 37.                     | 5 117.65 0.9 0.089 0.0801 0.0801 26<br>5 117.65 0.9 0.1055 0.0949 0.0949 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5 117.65 0.9 0.04 0.036 0.036 11                                   | 5 117.65 0.9 0.0723 0.065 0.065 21                                                                 | 5 117.65 0.9 0.1301 0.1125 36                                                                                  | 5 117.65 0.9 0.0677 0.0609 0.0609 19.                                                                                                        | 5 117.65 0.9 0.1318 0.1186 0.1186 38<br>5 117.65 0.9 0.0455 0.041 0.041 13  | 5 117.65 0.9 0.0514 0.0462 15                                               | 5 117.65 0.9 0.0731 0.0658 0.0658 21<br>5 117.65 0.9 0.029 0.0261 0.0261 8:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5 117.65 0.9 0.1212 0.1091 0.1091 35                                                |                                                                                                                                                      | 5 11125 0.0 0.0849 0.0714 2                                                                                                                                                                                                                            | 5 117.05 0.5 0.1085 0.0742 0.07402 1.<br>5 117.65 0.5 0.1085 0.0746 31<br>5 117.65 0.5 0.1085 0.0746 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 27 2000 2000 2000 2000 2011 0<br>29 2000 2000 2000 2000 2011 0<br>20 2000 2000                                                                                         |                                                                                       | (A1) HENLE            | H.D. MESSARA AVE            | DUAL CAF                                  | SSICHED AND IN ACCORDANCE WITH THE TERMS OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| e [Cover   Catch   Catch   Catch   Catch                      | RL         ID         Method         Length         Slope         Refardance           (m)         (-)         (-)         (-)         (-)         (-)         (-)           5         36.16         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8 36.06 Direct Direct                                                                                                                       | 3P         Kinematic Wave         790.59         0.5         0.25           5         31.66         11         Direct             0.25           3P         Kinematic Wave         100         2.5         0.25          0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7 22.37<br>9 22.39<br>4 30.55                                                                            | 8 31.78 11 Direct<br>4 31.84 11 Direct                                                                                            | 5 31.35<br>L 31.24<br>30.88                                                                                                                                                                                           | a 30.68 Direct Direct                                                       | 1 31.3 11 Direct<br>7 31.4.7 11 Direct                                                                                                                      | 5 31.66 11 Direct 597.18 0.4 0.25                                                                                                                                                           | 5 30.95<br>5 32.05 11 Direct<br>3 35.83 11 Direct                                                              | 3 36 03 11 0100 2.5 0.25                                               | 7 35.87 11 Direct                                                   | 5 3316 11 Direct<br>1 32 81 11 Direct                                                                                                     | 2 32.62 11 Direct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6 32.45 11 Direct<br>3 32.23 11 Direct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4 32.04 11 Direct<br>5 31.85 11 Direct<br>4 31.56 11 Direct                                                      | 8 31.46 11 Diret                                                                   | 7 21.2 11 Direct                                                                                                | 4 32.24 11 Direct 32.24 11 Direct                                                                | 7 36.57 11 Direct                                                                                                  | 2 33.35 11 Direct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4 31.44 11 Direct                                                                                | 1 2/12 11 Direct                                                                                        | i 37.6<br>1 36.21 11 Direct                                          | 5 29.05 11 Direct 524.5 0.6 0.25                                                                                                                                                | 5 28.15 28.37 11 Direct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7 36.37 11 Direct<br>3 35.43 11 Direct                                                          | 9 55.69<br>3 35.43 11 Direct                                                                                  | 2 32.82 11 Direct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3 32.53 III Direct<br>5 30.65 11 Direct<br>5 31.2                                                              | 5 3126 11 Direct 36.4 11 Direct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7 36.57 36.57 37.08 11 Direct                                      | 9 36.39 11 Direct                                                                                  | / 36.//<br>8 56.28 11 Direct<br>7 35.87 11 Direct                                                              | 7 35.87 2 35.92 11 Direct                                                                                                                    | 8 34,88 11 Direct<br>7 34,77 11 Direct                                      | 4 34.94<br>1 34.41 11 Direct                                                | 9 34.39 11 Direct 4 34.44 11 Direct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 3391 11 Direct                                                                    | 1 33.97<br>5 31.86                                                                                                                                   | 9 31.79 2 34.22 11 Direct 6 35 66 11 Direct                                                                                                                                                                                                            | 0 33.70 II Direct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | a 36.4.3 11 Direct 33.5.4                                                                                                                                              | 8 33                                                                                  | OVED SCALE:           | CO-ORDINATOR DATE DATUM: A  | DRAWN CCAYATTE                            | WAY. THE DOCUMENT MAY BE USED FOR THE PURPOSE FOR WHICHT WAS COMM<br>& LAWUTHORSED USE OF THIS DOCUMENT IN ANY MAY IS PROHIBITED.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| dade Seturt Seturt Seturt Gra                                 | Ype         Easting         Northing         RL         R1           [-]         (m)         (m)         (m)         (m)         (m)           SEP         65363.86         2804;9;4,2         36:16         36:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MH         65371 15         280542.61         36.16         36.0           HW         65468.16         279452.43         30.62         31.6 | ULLY 654.522 2794.89.75 3166 316                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MH 6551.09 279474.46 32.37 32.3<br>MH 6551133 2794.48.57 32.39 32.3<br>ULLY 65541.37 2794.94.3 31.54 315 | JLLY 65571.33 2794.87.82 31.78 31.7<br>JLLY 65571.34 2794.87.82 31.78 31.7                                                        | SEP         6553/14         279398.8         3135         313           SEP         6553/73         279378.53         3124         312           Trinute         65427.95         279376.43         298.83         33 | tlet Triple 65533.75 27934172 29.68 31.5<br>SEP 655C2 9 27920058 31.85 31.8 | SEP 6551:36 2793'9.99 31.3 31.3 SEP 65503.83 279280.22 31.4.7 31.4                                                                                          | SEP         65503.05         279240.31         3164         316           Double         65493.63         279181.58         30.37         311                                               | Let Dcuble 6552x.35 279166.53 30.17 30.3<br>SEP 65504.49 279160.43 32.05 32.0<br>IIIIY 6554.44 278839.23 33.83 | CED (CL/B) 53 2788(015 36.02 36.0                                      | SEP 65495.39 2788%4.71 35.87 35.8<br>MH 654.65 2788%4.71 35.87 35.8 | TWIN         6550/16         278994.22         3316         331           SEP         6550137         7790302         32.84         32.84 | SEP 6551251 2790/92 32.62 32.6<br>SEP 6551251 2790/93 32 62 32.6<br>66541,50 2000/92 32.62 32.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 55P 65511.42 2/90.259 32.45 32.55<br>55P 65511.66 2/919.16 32.23 32.2<br>777511 77751 77751 7273 32.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3EP 0552/04 279159/06 32.04 32.0<br>5EP 65523/22 279158.96 31.85 31.6<br>65523/22 27938.87 31.64 31.6            | SEP 65523.22 2792'874 3146 314<br>Accel e4 2792'874 3134 314                       | SEP TWIN 65531.97 279353.54 312 313<br>SEP TWIN 65531.97 279353.34 312 313<br>65531.97 279353.34 312 313        | UDURE 020021 279202 271 314<br>SEP 654(377 2791)0.4 32.24 32.24<br>654.01.47 2700/2.03 33.77 371 | ULLY 6549764 278812.01 36.37 36.5<br>0.1.1.Y 654.97.64 278812.01 36.37 35.5<br>0.1.1.Y 654.97.64 27355             | ULL 100000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SEP 6554156 218642.12 JJA4 JJA<br>SEP 6554156 278654.49 3144 314<br>MH 65555 2 738650.13 313 313 | SEP 6557352 278616.89 29.81 29.8<br>SEP 6557352 278616.89 29.81 29.8<br>AMM 6566337 27861.6.4 28.7 28.7 | SEP 65534.28 278827.3 37.6 37.4 65534.28 65534.28 278827.3 37.6 37.4 | SEP 65615.78 278557.47 29.05 29.0                                                                                                                                               | ULLY         6563159         278596.7         28.15         28.15         28.15         28.15         28.15         28.15         28.15         28.15         28.15         28.15         28.15         28.15         28.15         28.15         28.15         28.15         28.15         28.15         28.15         28.15         28.15         28.15         28.15         28.15         28.15         28.15         28.15         28.15         28.15         28.15         28.15         28.15         28.15         28.15         28.15         28.15         28.15         28.15         28.15         28.15         28.15         28.15         28.15         28.15         28.15         28.15         28.15         28.15         28.15         28.15         28.15         28.15         28.15         28.15         28.15         28.15         28.15         28.15         28.15         28.15         28.15         28.15         28.15         28.15         28.15         28.15         28.15         28.15         28.15         28.15         28.15         28.15         28.15         28.15         28.15         28.15         28.15         28.15         28.15         28.15         28.15         28.15         28.15         28.15         28.15 | <sup>2</sup> TWIN 65381.44, 2804.49.66 36.37 36.3<br>BO SEP 654.03.88 2802.40.86 35.43 35.4<br> | MH 654.07.58 280242.28 35.69 35.6<br>SEP 654.22.38 280246.13 35.43 35.4<br>MH 654.22.387 306047173 35.41 35.4 | SEP 648142 27901159 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.882 32.882 32.882 32.882 32.882 32.882 32.882 32.882 32.882 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 32.82 3 | SEP 054% 054% 15 2190/081 32.65 32.6<br>JLLY 654,91.55 279387.73 30.65 30.6<br>MH 654,81.14 27939.976 30.6 318 | SEP TWIN 65511.88 2793/7.43 31.26 31.2<br>TWIN 65561.05 2804.253 36.4 36.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MH 6536375 28044707 36.77 36.5<br>ULLY 6534756 280359.4 37.03 37.0 | MH 65353.2 28036.23 37.08 37.0<br>SEP 65353.2 28034.126 36.39 36.3<br>ML 7735.00 000000 27.73 27.2 | MH 0.358/36/ 2003/3.54 36.// 36./<br>BO SIP 65371.58 2803/3.58 36.23 36.2<br>SEP 65391.73 2802/9.01 35.87 35.8 | MH         65391.42         280250.03         35.87         35.8           SEP         65405.51         280253.54         35.92         35.9 | SEP 65443,4 280152,46 34,88 34,8<br>B0 SP 654,3,92 280159,22 34,77 34,7<br> | ULLY b544,918 28018/143 34,94 34,9<br>SEP 6546139 28014651 34,41 34,41 34,4 | BO SEP 654/001 280158/03 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,444 34,444 34,444 34,444 34,444 34,444 34,444 34,444 34,444 34,444 34,444 34,444 34,444 34,444 34,444 34,444 34,444 34,444 34,444 34,444 34,444 34,444 34,444 34,444 34,444 34,444 34,444 34,444 34,4444 34,4444 34,4444 34,4444 34,4444 34,4444 34,4444 34,4444 34,4444 34,4444 34,4444 34,4444 34,4444 34,4444 34,4444 34,4444 34,4444 34,444 34,4444 34,4444 34,4444 34,4444 34,444 34,444 34,444 34,4444444 34,44444444 | SEP TWIN 65481.27 280068.05 33.91 33.95<br>SEP "WIN 654.51.92 280010.13 33.71 33.71 | MH         654596         2800'9.02         33.71         33.71         33.71           HW         65521.81         2790'5.98         31         318 | outlef         6552!52         279088.07         30.93         31.7           SEP         654.93.65         28005133         34.22         34.2         34.2           SEP         654.93.65         770664.51         36.64         35.6         35.0 | SEP 012400000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SEP 6551635 279956.69 35.23 35.2 MM 6549173 279956.69 35.23 35.2                                                                                                       | MH 654.69.14 2799.44.94 35.23 35.2                                                    | AUTHORISATION APPR    | PROJECT MANAGER DATE DESIGN | DESIGNED D.WEERTS CHECKED DATE            | C COPYRIGHT<br>INSI DOCUMENT IS AND SHULL REMARINE REPORTY OF THE CITY OF S<br>DRANGEMENT FOR THE COMMESSION AS AGREED WITH THE CITY OF SWAR<br>DRANGEMENT FOR THE COMMESSION AS AGREED WITH THE CITY OF SWAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Note                                                          | Name (-)<br>A1 S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A2<br>AB1                                                                                                                                   | AB2 Gi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AB5 GU                                                                                                   | AD1 6L<br>AD2 6U                                                                                                                  | A61 AH1 AH1 AH1                                                                                                                                                                                                       | AH2                                                                         | AJ1<br>AK1 S                                                                                                                                                | AL1 AM1 HW1                                                                                                                                                                                 | AM2 HW out<br>AN1 5                                                                                            | 200<br>200                                                             | 504<br>707                                                          | AD5 SEF                                                                                                                                   | 407                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A08<br>A09<br>S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | A011 5 4012 5                                                                                                    | A013 60                                                                            | VOIS COMBO                                                                                                      | AP1 AP1                                                                                          | AR1 61                                                                                                             | AS2 61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 425 ASS                                                                                          | AS6                                                                                                     | AT1 51                                                               | AW1                                                                                                                                                                             | AZ1 SEP<br>50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | B1 SEF<br>BB1 COM                                                                               | 882<br>8C1 6                                                                                                  | 801 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 861<br>8F1 GL                                                                                                  | 861 (0MB0<br>01 SEP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ex.J1<br>01 64                                                     | EI                                                                                                 | EX AKS<br>F1 COM                                                                                               | 62<br>H1                                                                                                                                     | - 11<br>- 12                                                                | 72<br>K1<br>K2                                                              | F1 COM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | M1 (0MB0<br>M2 (0MB0                                                                | E W                                                                                                                                                  | N2 HW                                                                                                                                                                                                                                                  | R2 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 032                                                                                                                                                                    | 05                                                                                    |                       |                             |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                          |                                                                                                                                   |                                                                                                                                                                                                                       |                                                                             |                                                                                                                                                             |                                                                                                                                                                                             |                                                                                                                |                                                                        |                                                                     |                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                  |                                                                                    |                                                                                                                 |                                                                                                  |                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                  |                                                                                                         |                                                                      |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                 |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                    |                                                                                                    |                                                                                                                |                                                                                                                                              |                                                                             |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                     |                                                                                                                                                      |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                        |                                                                                       |                       |                             |                                           | 0 04.23 DW ISSUED FOR CONSTRUCTION<br>REV. DATE BY DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

DIAL BEFORE YOU DIG www.1100.com.au

|                                 |                       |              |                        |           |                       |                          |                       |                      |                       |                   |                      |                       |                      |                      |                      |                      |                      |                        |                        |                      |                      |           |                       |                                |                      |                                  |                        |                        |                     |                      |              |                                  |                      |                      |                          |                      |                             |                        |                      |                        |                     |                                     |                                    |                      |                      |           | <b>_</b>            |                                                                                                           |             |          | _            |             |                                            |
|---------------------------------|-----------------------|--------------|------------------------|-----------|-----------------------|--------------------------|-----------------------|----------------------|-----------------------|-------------------|----------------------|-----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|------------------------|------------------------|----------------------|----------------------|-----------|-----------------------|--------------------------------|----------------------|----------------------------------|------------------------|------------------------|---------------------|----------------------|--------------|----------------------------------|----------------------|----------------------|--------------------------|----------------------|-----------------------------|------------------------|----------------------|------------------------|---------------------|-------------------------------------|------------------------------------|----------------------|----------------------|-----------|---------------------|-----------------------------------------------------------------------------------------------------------|-------------|----------|--------------|-------------|--------------------------------------------|
| . BEFORE<br>U DIG<br>100.com.au | rd F'board            | ΞĒ           | 0 00                   | 0.74      | 0.05                  | 0.05                     | 0.02                  | 0.73                 | 0.63                  | 0.19              | 0.2                  | 0.92                  | 6                    | 1.4.8                | 1.25                 | 0.87                 | 0.48                 | 0.22                   | 0.62                   | 0.59                 | 0.64                 | 0.65      | 0.59                  | 0.86                           | 0.45                 | 0.57                             | 0.36                   | 0.48                   | 0.53                | 0.67                 | 0.6          | 0.58                             | 0.68                 | 0.53                 | 0.85                     | 0.56                 | 0.55                        | 0.75                   | 0.65                 | 0.05                   | 0.01                | 0.1                                 | 0.07                               | 0.03                 | 0.01                 | •         | INLY.               | SHALL BE<br>NOURY<br>AYS BEFORE<br>AYS BEFORE<br>FOULTS ARE TO<br>REVICES ARE<br>CTION OF THE             | M No.       |          |              | U           | 0                                          |
|                                 | GL F'boar             | in) (m)      | 615.5 0.3<br>953.1 0.3 | E.0 7.EEC | 213 0.3               | 16.6 0.3<br>0000 0.3     | 57.2 0.3              | 5.4 0.3<br>15.7 0.3  | 77.5 0.3              | 0.3 0.3<br>52 0.3 | 3.9 0.3              | 3.1 0.3<br>00 0.3     | 00 03                | 0000 0.3             | E.0 0000             | E0 0000              | E.0 0000             | 731.3 0.3<br>9.7 0.3   | 9.9 0.3                | 8.2 0.3              | 2.6 0.3              | E0 67     | 8.8 0.3               | 1.4 0.3                        | 9.3 0.3              | 53 03                            | 5.1 0.3<br>00.5 0.3    | 3.9 0.3<br>2.3 0.3     | 6.4 0.3<br>36.6 0.3 | 858 03               | 36.7 0.3     | 5.2 0.3                          | 8.6 0.3              | -9.9 0.3<br>4.2 0.3  | 5.1 0.3                  | 5.7 0.3<br>16.7 0.3  | 2.4 0.3 8.3 0.3             | E0 E4                  | 18.1 0.3             | 32.6 0.3<br>16.3 0.3   | E.0 2.03            | 23.6 C1<br>23.6 C1<br>23.6 C1       | 111 0.3                            | 719 03               | 15.4 0.3             | 56.4 0.3  | AS A GUIDE O        | NT PERMITS S<br>VD A DBYD EN<br>R THAN 30 DA<br>DBYD DDCUN<br>NFLICTING SEI<br>NFLICTING SEI              | KS I        | 쎂        | -            | Ň           |                                            |
|                                 | HGL H                 | (%) (1       | 1516 0                 | 0 320     | 0.15 68               | 0.14 71                  | 0.06 100              | 0.07 14              | 0.03 28               | 1.61 15           | 1.15 8               | 3.02 3                |                      | 0.73 13 0.73         | 0 100                | 0 100                | 0 1001               | 2.52 31                | 2.5 39<br>5.16 15      | 0.85 11<br>3.74 31   | 3.07 3.              | 154 6     | 5.32 16               | 4.68 2 <sup>-</sup><br>0.75 13 | 2.55 37              | 2.22 4                           | 2.85 3                 | 4.18 2                 | 0.6 15              | 0.04 221             | 2010 BE      | 0.8 12                           | 5.38 101             | 0.13 74              | 0.58 17                  | 0.5 15 0.21 1.6      | 3.09 37 0.72 13             | 3.03 3.03 3.03         | 2.08 4               | 0.54 18                | 0.38 26             | 0.19 52                             | 3.22 3                             | 0.05 15              | 0.09 110             | 0.01 765  | TO BE USED /        | ON RELEVAN<br>E WORKS AN<br>I NO EARLIER<br>SET OF THE<br>SET OF THE<br>L TIMES. CON                      | RIDR TO WOR | a        |              | F < 0       |                                            |
|                                 | DS Node               | (m)          | 31.63                  | 31.63     | 31.66                 | 31.36<br>31.31           | 31.24<br>30.98        | 30.98                | 30.98                 | 30.98             | 35.19<br>34.95       | 32.3<br>32.03         | 31.64<br>31.22       | 30.98                | 30.98                | 30.98                | 30.98                | 30.98                  | 30.98                  | 34.5                 | 31 45                | 29.69     | 35.35                 | 34.5<br>28.54                  | 32.3                 | 31.64                            | 30.98                  | 35.64                  | 35.74               | 35.25                | 34.12        | 33.61                            | 33.37                | 33.23                | 30.94                    | 35.23                | 35.68                       | 35.45                  | 32.47<br>32.33       | 32.07<br>31.85         | 31.66<br>31.56      | 31.24                               | 33.55                              | 32.33                | 31.85<br>31.65       | 31.66     | SHOWN ARE           | LL EXCAVATI<br>PRIOR TO SIT<br>UNDERTAKEN<br>UNDERTAKEN<br>TION. A FULL<br>V SITE AT ALL<br>V SITE AT ALL | NO No-      | NG NO:   | 2            |             |                                            |
|                                 | pe Pipe               | a) (a)       | 63 3163<br>63 3163     | 63 3163   | 58 30.85<br>68 31.66  | 62 31.55<br>31.3<br>31.3 | 21 31.21<br>02 30.98  | 12 30.98<br>99 30.98 | 99 30.98<br>99 30.98  | 32 30.98          | 4.9 35.19            | 94 32.64<br>3 32.13   | 03 31.68             | 22 30.98<br>98 30.98 | 96.0E 86.98          | 98 30.98<br>98 30.98 | 98 30.98<br>98 30.98 | 56 31.04               | 78 31.26<br>61 34.95   | 87 34.47<br>37 37.78 | 66 30.98<br>70 30.67 | 42 29.67  | 42 29.05              | 29 34.47<br>72 28.54           | 75 32.48<br>64 35.62 | 14 3168<br>9 3153                | 22 30<br>04 30.98      | 81 35.62<br>34 36.03   | 13 35.72            | 21 35.21             | T0.4E 20.    | 71 33.6                          | 75 33.6<br>75 33.6   | 26 33.23<br>89 32.79 | 10.55 10.94              | 37 35.23<br>18 35.18 | 12 35.68<br>63 35.18        | 89 35.44               | 44 32.47             | 24 32.05<br>2 3184     | 76 31.65            | 46 51.2<br>26 31.21<br>11 31.00     | 112 33.54                          | 33 32 32<br>08 32.05 | 86 31.84<br>66 31.66 | 65 31.65  | CAUTION<br>SERVICES | MECHANICA<br>DBTAINED F<br>SHALL BE L<br>CONSTRUC<br>BE KEPT OF<br>BE KEPT OF                             | SERVICE AL  |          |              | C           | D                                          |
|                                 | S Node Pi             |              | 31.63 31<br>16 6315    | 3163 31   | 31.63 31              | 31.56 31<br>31.3 3'      | 31.21 31              | 31.13 31<br>31.03 30 | 31.02 30              | 31.36 31          | 35.63 35<br>35.19 35 | 34.95 34<br>32.3 34   | 32.03 32             | 30.98 30             | 30.98 30.0E          | 30.98 30<br>30.98 30 | 30.98 30<br>30.98 30 | 30.98 30<br>31.61 31   | 31.84 31<br>35.62 35   | 37° 25 37            | 32.8 32              | 30.65 30  | 47 69.67<br>101 37.01 | 35.35 35<br>28.97 28           | 32.91 32<br>35.69 35 | 32.21 32<br>32.05 3 <sup>-</sup> | 30.29 30<br>31.19 31   | 35.92 35<br>36.35 36   | 35.85 35            | 35.26 35             | 34.17 34     | 33.83 33<br>33.83 33<br>33.61 33 | 33.51 33<br>33.76 33 | 33.38 33<br>33.23 32 | 31.01 31                 | 35.4 35              | 36.17 35<br>35.68 35        | 35.93 35<br>35.45 35   | 33.55 33<br>32.47 32 | 32.33 32<br>32.07 3    | 31.85 31            | 31.31 31<br>31.31 31<br>31.31 31    | 34, 19 34<br>36 55 34              | 32.15 32             | 31.89 31<br>31.66 31 | 31.66 31  |                     |                                                                                                           |             |          |              | <b>C</b>    |                                            |
|                                 | Pipe U                | (m)          | 0 0                    |           | 0.73                  | 0.08                     | 0.04                  | 0.14                 | 0.01                  | 0.33              | 0.3                  | 2.19<br>0.18          | 0.36                 | 0.24                 | 0 0                  | 0 0                  | 0 0                  | 0.4.4                  | 0.66                   | 0.39                 | 1.68                 | 0.75      | 0.35                  | 0.18                           | 0.03                 | 0.38                             | 0.14                   | 0.16                   | 0.08                | 0.01                 | 0.02         | 0.11                             | 0.08                 | 0.04                 | 10.0                     | 0.15                 | 970                         | 0.44                   | 95.0                 | 0.17<br>0.15           | 0.11                | 0.05                                | 69.0                               | 0.01                 | 0.02                 | 0         |                     |                                                                                                           |             |          |              | BWS         |                                            |
|                                 | SE Loss<br>Vrboadh T' | milling      |                        | 0         | <0.0                  | 50.04                    |                       |                      |                       |                   | 0.01                 | •                     |                      |                      |                      |                      |                      | 0                      |                        | 613                  | 0.14                 | 0.22      | 87.0                  |                                |                      |                                  |                        |                        |                     |                      | 0.50         | 200                              | 70'0                 | 75 0                 |                          | 700                  | 0.05                        | 0.05                   | 0.11<br>0.07         | 0.07                   | 0.05                | 0.05                                | 2                                  |                      |                      |           |                     |                                                                                                           |             |          | ľ            | ityof       |                                            |
|                                 | Interval Interv       | (m)          | 0 0                    | 0         | 05                    | 6                        | .02                   | 03                   | 00                    | 05                | 101                  | 0                     |                      |                      |                      |                      |                      | 0                      | 0                      | 217                  | 210                  | 222       | 9                     | 25                             | 05                   | 07                               | 07                     | 100                    | 05                  | 04                   | 10           | 12                               | 10                   | 11                   | 03                       | 03                   | 50                          | 04                     | 90                   | -08<br>-06             | 05                  | 90                                  | 02                                 | 02                   | 03                   | 0         |                     |                                                                                                           |             | ľ        | $\mathbf{x}$ |             | Ŧ                                          |
|                                 | Pipe P'he.            | (m) IAU.     | 0 0                    |           | 0.01                  | 0.02                     | 0.02                  | 0.01                 | 0 0                   | 0.21              | 0.01                 | 0 0                   | 0 0                  | 0 0                  | 0 0                  | 0 0                  | 0 0                  | 0.01                   | 0.01                   | 0.01                 | 0.08                 | 0.1       | 500                   | 0.01                           | 0.02                 | 0.01 0.02                        | 0.05                   | 0.01                   | 0.01                | 0                    | 10.0         | 0.01                             | 0.03                 | 0.01                 | 0 0                      | 0 0 0                | 0 0 0                       | 0.02                   | 0.05 0.00            | 0.07 0                 | 0.08                | 0.05                                | 000                                | 0.0                  | 0.01                 | 0         |                     |                                                                                                           | 1           |          | ľ            | 0           | X                                          |
|                                 | US Node               | 23           | 75 0                   | 1.92      | 0.23                  | 2.09                     |                       |                      |                       |                   | 129                  | 2.33                  |                      |                      |                      |                      |                      | 1.78                   |                        | 2 4.4                | 1.76                 | 2.16      | 781                   |                                |                      |                                  |                        |                        |                     |                      | 76.6         | or 7                             | 121                  | 3 18                 |                          | 2 09                 | 27                          | 2.69                   | 2.01<br>1.89         | 1.26<br>0.83           | 1.15<br>2.04        | 0.77<br>0.77                        | 64.3                               |                      |                      |           |                     |                                                                                                           |             |          | ╡            | d 1 0       |                                            |
|                                 | US Node               | (-)<br>d     | 1.5                    | 152       | 3.58                  | 6                        | -                     | 4.9                  | 9.7                   | 1.6               | 9.7                  | 1.91                  |                      |                      |                      |                      |                      | 9.7                    | 7.9                    | 9.7<br>1 9.7         | 15                   | 1.93      | 1.09                  | 344                            | 9.52                 | 7.9.7                            | 1.5                    | 7.6                    | 9.7                 | 9.7                  | - L          | CO.2                             | 12                   | 8.82<br>3.16         | 9.7                      | 9.7                  | 9.7                         | 9.7                    | 1.64                 | 1.13<br>0.73           | 1.03                | 0.69                                | 50.2<br>7.9<br>5.83                | 3.46                 | 3.37                 | 3.65      |                     |                                                                                                           |             |          |              | G G R       |                                            |
|                                 | adia Di Pripe         | (m) (parage) | 0 5                    | 5 -0.93   | 7 0.065               | 12 0.211                 | 0.202                 | 0.065                | 0.1 0.065             | 9.9 1.315         | 9 0.05<br>3.4 0.035  | 35 0.091              | 4 0.04               | 0.02                 | 1 1.085              | 1 0.034              | 2 0.02               | 9.7 0.265              | 0.1 0.281<br>8 0.304   | 5 0.035              | 2.4 0.061            | 570'0 E   | 5 0.118               | 0.188                          | 2.8 0.045            | 0.07                             | 8.5 0.237              | 1.2 0.32               | 12 0.155            | 4 0.08               | 570.0 7      | 000                              | 9 0 119              | 8 0.02               | 0.02                     | 15 0.045             | 5 0.06<br>+ 6 3.098         | 5.3 0.06<br>4 0.145    | 5 0.258<br>.2 0      | 0 0                    | 3 0.02<br>8 0       | 2000 J                              | 7.6 0.04                           | 0.065                | 5.9 0.06<br>6 0.286  | 9.1 0.207 |                     |                                                                                                           |             |          | OR           | W. proforme |                                            |
|                                 | Cover Pij             | ab) (m)      | -0.11 9.               | 2.51 0.   | 0.7 94                |                          | -0.52 0               | 0.7 -91              | 0.7 -9                | 0.76 0.7 -8'      | -0.01 3              | 0.62 -31              | 0.81 1.              | 0.95 -0              | 2.16 0               | 0.91 0               | 0.82 -0              | 0.2 (0.65 -8'          | 0.65 -9                | 0.7 30               | - 10<br>             | 0.72 -9   | 0.43 5.               | 0.75 -61                       | 0.6 -5               | 0.65 -91                         | 0.45 0.65 -15          | 0.7 -1                 | 0.51 115            | 0.7 12               | 0.7 59       | 0.67                             | 0.95                 | 0.7 1.               | 0.12 0.7 0               | 0.7 -5               | 0.7 84                      | 0.7 -81                | 0.72 0.0             | 0 36:0                 | 0.7 3.              | 0.7 83                              | 0.7 -4-                            | 0.7 -9               | 0.7 -8               | 0.63 -8   |                     |                                                                                                           |             |          | RO<br>RO     | N G N B     |                                            |
|                                 | lode Cover            | (m)          | 66 0<br>37 0.7         | 39 0.7    | 84 0.7                | 45 0.7                   | 32 0.7                | 85 0.7<br>27 0.7     | 46 0.7<br>66 0.7      | 95 0.7            | 03 0.7<br>87 0.7     | 78 0.7<br>16 0.7      | 81 0.7<br>62 0.7     | 46 0.7<br>23 0.7     | 04 0.7<br>85 0.7     | 66 0.7<br>46 0.7     | 27 0.7<br>2 0.7      | 23 0.7                 | 46 0.7<br>87 0.7       | 36 0.7               | 44 0.7               | 81 0.7    | 21 0.7<br>21 0.7      | 36 0.7                         | 78 0.6<br>57 0.7     | 81 0.7<br>62 0.7                 | 86 1.1<br>2 0.7        | 57 0.7<br>08 0.7       | 77 0.7              | 87 0.7               | 94 0.7       | 71 0.7                           | 53 0.7               | 71 0.7               | 79 0.7                   | 24 0.7               | 43 0.7<br>23 0.7            | 2 0.7<br>2 0.7         | 88 0.7<br>38 0.7     | 08 0.7<br>86 0.7       | 67 0.7<br>45 -2     | 41 -2<br>32 0.7<br>80 0             | 2 0.7<br>88 0.7                    | 38 0.7               | 86 0.7<br>66 0.7     | 67 0.7    |                     |                                                                                                           |             |          | <u>م</u> ا   | ш           |                                            |
|                                 | Pipe DS N             | (m) (n       | 30.49 31               | 29.34 32  | 16 17.67<br>30.64 31. | 30.24 32<br>30.1 31      | 29.95 31.<br>29.68 31 | 30.54 31<br>30.08 31 | 30.16 31.<br>30.35 31 | 30.73 32          | 34.86 36<br>34.6 35. | 32.57 33.<br>32.13 33 | 31.68 32             | 30.89 32             | 30.5 32<br>29.26 31  | 30.32 31<br>30.13 31 | 29.93 31<br>29.77 31 | 29.71 31<br>30.93 32   | 31.15 32<br>34.87 35   | 34.1 35              | 30.37 31<br>30.16 31 | 28.86 29  | 35.11 36              | 34.26 35.<br>27.48 28          | 32.35 33.            | 31.56 32<br>31.39 32.            | 29.95 31<br>29.95 31   | 35.47 36.<br>35.97 37. | 35.4 36.            | 34.75 35<br>28 27.45 | 33.55 34     | 33.27 34<br>33.27 34<br>33.48 34 | 33.16 34<br>33.39 34 | 32.61 33             | 30.94 31.<br>32.92 34.   | 34, 22 35            | 35.39 36                    | 35.16 36<br>33.29 34   | 31.82 32<br>31.06 32 | 30.76 32<br>30.54 31   | 30.24 32            | 29.81 31.<br>29.81 31.<br>29.72 30  | 33.18 34.<br>33.18 34.<br>31.62 37 | 31.12 32 32 32       | 30.6 31              | 30.6 31   |                     |                                                                                                           | L           | GE 3     |              |             |                                            |
|                                 | ode Ape               |              | 31.62                  | 37 21.38  | 59 31.78<br>18 31.77  | 1. 31.57<br>15 31.34     | 21.88                 | IS 31.75<br>3 31.28  | 6 31.56               | 4 31.37           | 33 35.11<br>03 34.81 | 87 34.57<br>18 32.3   | 16 32.03<br>31 31.64 | 52 31.22<br>+6 31.87 | 23 31.66<br>04 29.42 | IS 31.48<br>6 31.29  | 6 31.05              | 2 21.73<br>24 31.19    | 7 31.41<br>37 35.31    | 57 34.57<br>86 34.07 | 4 31.36<br>L 31.35   | 3 30.12   | 51 23.81              | 21 34.99                       | 37 32.45<br>37 35.34 | 32 3176<br>53 31.6               | 55 21.92<br>16 30.2    | 4 35.51                | 89 35.5<br>88 36.6  | 22 34.9<br>28 2185   | 17 33.74     | 1 33.41                          | 33.18                | 91 32.88<br>71 32.88 | 101<br>22 33.19          | 35.07                | 12 31.82<br>31.33           | 8 35.59<br>2 35.1      | 2 33.14<br>38 31.56  | 38 31.06<br>31.76      | 1 31.54             | 13.24<br>1 23.89<br>24.75<br>24.75  | 33.86                              | 31.36<br>11 31.08    | 9 31.87<br>8 31.25   | 6 3).71   |                     |                                                                                                           |             | - STA    |              |             |                                            |
|                                 | Vel US N              | D/AL ULATE   | 316                    | 32        | 31.7                  | 919<br>10                | 312                   | 316                  | JE SE                 | 32.0              | 35.0                 | 35.8                  | 33.                  | 32.6                 | 32.3                 | 316                  | 31.2                 | 32.2                   | 32.4                   | 35.5                 | 33.0                 | 31.       | 31.                   | 29.0                           | 33.                  | 32.6<br>32.6                     | 30.6                   | 36.                    | 36.3                | 35.0                 | 34.          | 34                               | 34.1                 | E E                  | 31.5                     | 35.55                | 36.                         | 36.1                   | 34.                  | 32.                    | ane<br>ane          | 32.0<br>31.1<br>31.2                | 34.8                               | 32                   | H H                  | 31.6      |                     |                                                                                                           | ļ           | AVE      | EET          | 0010 0      | 2 100                                      |
|                                 | Eapacity              | [n/s]        | 2.47                   | 128       | 1.17                  | 137                      | 137                   | 1.37                 | 159                   | 1.18              | 1.6                  | 2.57                  | 1.79                 | 1.79                 | 1.26                 | 1.26                 | 137                  | 137                    | 1.77                   | 137                  | 2.6                  | 2.21      | 3.38                  | 2.81                           | 137                  | 1.37                             | 153                    | 137                    | 121                 | 131                  | 137          | 137                              | 137                  | 137                  | 136                      | 2.55                 | 235                         | 2.33                   | 2.3                  | 1.55                   | 136                 | 1.48                                | 2.55                               | 6                    | 137<br>2.93          | 0.97      |                     |                                                                                                           |             | <b>X</b> | PARK STR     | WAY         | AULIC                                      |
| AEP)                            | Crit Bepth            | VEI VC=U/A   | 52.96                  | 2.43      | 1.07                  | 0 17                     | 1.58                  | 0.97                 | 0.96                  | 2.12<br>0.98      | 0.98                 | 0.84                  | 0 0                  | 0 0                  | 0 0                  |                      |                      | 0.58                   | 101<br>0.63            | 1.04                 | 151                  | 162       | 781                   | 147                            | 1.1<br>0.9           | 1.03                             | 133                    | 1.02                   | 0.92                | 0.88                 | 101          | 1.04                             | 123                  | 164                  | 0.84                     | 0.84                 | 0.9                         | 0.9                    | 1.37                 | 163                    | 1.74                | 186                                 | 0.81                               | 0.93                 | 0.98                 | 1.68      |                     |                                                                                                           |             | Y BR     |              |             |                                            |
| 00 (1%                          | orm Bepth             | (m/s)        | 53.43                  | 233       | 128                   | 0                        | 141                   | 1.22                 | 121<br>122            | 1.23              | 144                  | 0                     | • •                  |                      |                      | • •                  |                      | 0.51                   | 137                    | 126<br>230           | 2.58                 | 2.35      | 0                     | 2.07                           | 131                  | 1.29                             | 1.62<br>1.59           | 123<br>0.84            | 1.03                | 108                  | 122          | 1.26                             | 141                  | 126                  | 0                        | 15                   | 153                         | 1.61<br>1.76           | 2.24                 | 121                    | 153                 | 152                                 | 1.54                               | E E                  | 12<br>0              | 151       |                     |                                                                                                           |             | INLE     | SARA AVI     |             | AINAG                                      |
| ICS 01                          | II Pipe N             | m/s)         | 24                     | 233       | 0.52                  | 0.59                     | 0.67                  | 0.36                 | 0.29                  | 2.01              | 0.31                 | 0.18                  | 0 0                  | 0 0                  | 0 0                  |                      | 0 0                  | 0.02                   | 0.09                   | 0.49                 | 126                  | 142       | 0                     | 0.34                           | 0.57                 | 0.37                             | 0.79                   | 0.46<br>0.12           | 0.33                | 0.29                 | 0.45         | 0.49                             | 0.78                 | 0.5                  | 0                        | 0.24                 | 0.31                        | 0.31                   | 103<br>0.85          | 1.18<br>1.31           | 123                 | 11                                  | 0.21                               | 0.33                 | 0                    | 151       |                     |                                                                                                           |             | T        | ΞΨ C         | 3 2         | 5                                          |
| DRAUI                           | /Ocap Fu              | (-) VEL      | 0.97                   | 1.83      | 0.38                  | 0 48                     | 97:0                  | 0.19                 | 0.18                  | 0.2               | 0.33                 | 0.07                  | 0 0                  | 0 0                  | 0 0                  | 0 0                  |                      | 0.02<br>0.18           | 0.19                   | 0.36                 | 0.48                 | 0.65      | 0                     | 0.12                           | 0.42                 | 0.23                             | E9:0                   | 0.09                   | 0.28                | 0.21                 | 0.33         | 0.36                             | 0.15                 | 0.37                 | 0                        | 0.09                 | 0.13                        | 0.13<br>0.29           | 0.45                 | 0.75                   | 0.91                | 0.75                                | 0.08                               | 0.23                 | 0.3                  | 1.56      |                     |                                                                                                           | 0           | 2        |              |             | WITH THE TERMS                             |
| 뇌                               | Capacity 0            | (L/s)        | 393.5                  | 203       | 2.cb2                 | 157.7<br>96.7            | 96.7<br>3127.9        | 175.4                | 175.4                 | 261.7             | 176.9                | 283.8<br>175.4        | 175.4<br>285.2       | 285.2<br>272.1       | 272.1<br>272.1       | 388.5                | 388.5<br>388.5       | 388.5<br>195.3         | 195.3                  | 96.7                 | 183.9<br>GK T        | 156.1     | 238.6                 | 198.5                          | 96.7                 | 175.4                            | 108.2<br>175.4         | 96.7<br>96.7           | 85.3<br>96.7        | 7.96                 | 96.7<br>1.92 | 96.7<br>96.7                     | 96.8<br>61.2         | 96.7                 | 216.4                    | 180.4                | 156.4                       | 164.9                  | 162.8<br>319.6       | 241.1                  | 291.5<br>610        | 610<br>652.1<br>7.31.6              | 180.6                              | 96.7<br>96.7         | 96.7<br>206.9        | 68.4      |                     |                                                                                                           |             |          |              |             | N ACCORDANCE                               |
|                                 | cess Pipe             | (L/S)        | 378.6                  | 354.9     | 613                   |                          |                       |                      |                       |                   |                      |                       |                      |                      |                      |                      |                      |                        |                        |                      |                      |           |                       |                                |                      |                                  |                        |                        |                     |                      |              |                                  |                      |                      |                          |                      |                             |                        |                      |                        | 132                 | 385                                 | 0.00                               |                      |                      | 5.7       |                     |                                                                                                           |             | ЦН       | 5            |             | ISSIONED AND I                             |
|                                 | Pipe Ex               | (L/s)        | 3815<br>3711           | 370.9     | 37.1                  | 6.59                     | 0771                  | 33.5                 | 31.9<br>32.7          | 34.6              | 34.1                 | 20                    | • •                  | 0 0                  | • •                  | • •                  | • •                  | 6.4<br>35.9            | 37.6<br>6.1            | 34.8                 | 88.9                 | 100.7     | 8171                  | 24.1<br>84                     | 40.5                 | 40.7                             | 68<br>87.6             | 32.5<br>8.3            | 23.5                | 20.2                 | 31.6<br>31.6 | 34.9                             | 55.3                 | 35.3                 | 0                        | 17                   | 21.6                        | 21.7<br>41.8           | 72.8<br>134.7        | 187<br>209             | 266.5               | 510.8<br>4.86.7<br>4.70.5           | 14.8                               | 23.7                 | 29                   | 106.8     |                     |                                                                                                           |             | A        |              |             | ICHIT WAS COM                              |
|                                 | Net Bypass            | (L/s)        | -18 q                  | -18.9     | 6 RL -                |                          |                       | 3.2                  | 2.4                   | 41                | -3262                | -3289.1               | -3376.9<br>-3371.8   | -3361                | -334.0.4             | -3329.2<br>-3325.1   | -3320.3<br>-3324.8   | -3268.2<br>5.4,        | -33                    | -48 S                | 111-                 | -93.1     | -114.2                | -2148.1                        | -45.6<br>-18.6       | -0.6<br>7.8                      | 07                     | -24                    | -15.2               | -16                  | 72           | 7.4                              | -25.7                | -29.6                | -28.6                    | - 10.6               | -18.5<br>-513               | -28.8<br>-84           | -152.6<br>-160.2     | -160.9<br>-191.1       | -176.2<br>-60.3     | -603                                | -315                               | -13.2                | 6.0-                 | 45.8      |                     |                                                                                                           | SCALE       | NUTLE    |              |             | IRPOSE FOR MHI<br>AY WAY IS PROHI          |
|                                 | Peak<br>Flow Draf     | (L/S)        | 381.5                  | 389.8     | 37.1                  | 6.cg                     | 0771                  | 30.3                 | 30                    | 30.4              | 3321.2<br>3317       | 3309.1<br>3288.4      | 3306.3<br>3307.8     | 3303.8<br>3302.7     | 3291.9<br>3286.2     | 3280.6<br>3274.8     | 3268.3<br>3262.9     | 3274.6<br>30.4         | 30.7                   | 34.8                 | 160.3<br>195.6       | 193.8     | 0                     | 2232.1                         | 86.1                 | 413<br>312                       | 68<br>68               | 56.5<br>21.4           | 38.7                | 36.2                 | 24.4         | 27.5                             | 81                   | 64.9                 | 0                        | 275                  | 40.1                        | 50.5<br>125.8          | 225.4                | 348<br>400.1           | 529.6               | 21/2                                | 6.700<br>6.84                      | 317<br>35.2          | 29.9                 | 61        |                     |                                                                                                           |             |          | DATE         | N CCAYATTE  | ISED FOR THE PL<br>DOCUMENT IN AV          |
|                                 | Direct Node           | (5/-)        |                        |           |                       |                          | 07%                   |                      |                       |                   |                      |                       |                      |                      |                      |                      |                      |                        |                        |                      |                      |           |                       |                                |                      |                                  |                        |                        |                     |                      |              |                                  |                      |                      |                          |                      |                             |                        |                      |                        |                     |                                     |                                    |                      |                      |           |                     |                                                                                                           |             |          | TOR          | DRAW        | UMENT MAY BE L                             |
|                                 | Part-area             | (L/s)        | 149.8                  | 244.6     | 37.1                  | 65.3                     |                       | 30.3                 | 30                    | 30.4              | 1673.2               | 1676.9<br>1678.3      | 1729.5               | 1765.4               | 1779.6<br>1786.2     | 1792.3               | 1801<br>1806.2       | 1843.1<br>30.4         | 30.7                   | 34.8                 | 160.3<br>105.6       | 193.8     | 957                   | 55.2<br>629.8                  | 85.1                 | 413<br>312                       | 89<br>89               | 56.5<br>21.4           | 38.7                | 36.2                 | 24.4         | 27.5                             | 81                   | 64.9                 | 45.5                     | 27.5<br>84.5         | 40.1                        | 50.5<br>125.8          | 225.4                | 348<br>400.1           | 442.7<br>529.6      | 5/7.1<br>5/7.1                      | 10.28                              | 317<br>35.2          | 29.9                 | 51        |                     |                                                                                                           | SOVED       |          | N CO-ORDINA  |             | SWAN. THE DOC<br>VA. UNMUTHORIS            |
|                                 | Part-area             | (ha)         | 0.2517                 | 0.9915    | 0.0523                | 0.1097                   |                       | 0.0509               | 0.0196                | 0.0511            | 2.8715               | 3.0457                | 3.1727<br>3.2871     | 3.3876<br>3.4823     | 3.5748<br>3.6681     | 3.761<br>3.8525      | 3.9398<br>4.0312     | 4.184.4                | 0.0515                 | 0.0585               | 0.281                | 6755.0    | 0.4104                | 0.0927                         | 0.1447               | 0.0524                           | 0.114.2                | 9E0'0<br>6760'0        | 0.065               | 0.0509               | 0.041        | 0.0462                           | 0.1381               | 0.1091               | 0.0764                   | 0.0462               | 0.0574                      | 0.0348                 | 0.3992               | 0.7371                 | 0.8207              | 555                                 | 0.0778                             | 0.0533               | 0.0503               | 0.1025    |                     |                                                                                                           | Appr        |          | DESIG        | DATE        | OF THE CITY OF<br>THE CITY OF SW           |
|                                 | Part-area             | (mm/hr)      | 214.27                 | 8832      | 214.27                | 214.27                   |                       | 214.27               | 214.27                | 214.27            | 214.27<br>210.8      | 20809<br>19838        | 19625<br>19203       | 187,61               | 179.22<br>175.3      | 17156<br>16799       | 164.57               | 15857<br>214.27        | 214.27                 | 214.27               | 20534                | 194.6     | 76761                 | 214.27                         | 214.27<br>214.27     | 214.27<br>214.27                 | 214.27                 | 214.27                 | 214.27              | 214.27               | 214.27       | 214.27                           | 214.27               | 214.27               | 214.27                   | 214.27               | 214.27                      | 214.27<br>214.27       | 20328                | 201.3                  | 194,19              | 17742<br>17742                      | 214.27                             | 214.27               | 214.27               | 214.27    |                     |                                                                                                           |             |          | DATE         | CKED        | A THE PRIPERIT                             |
|                                 | Part-area             | (vim)        | s 2                    | 24.23     | 5 24.28               | ~                        |                       | s 5                  | s s                   | 5                 | 5.11                 | 5.38                  | 6.15<br>6.46         | 6.79                 | 7.79                 | 8.72<br>8.45         | 8.79<br>9.72         | 9.11                   | 5 U                    | 5                    | 555                  | 9<br>14 9 | ò                     |                                | ۍ <u>ه</u>           |                                  | 5 V                    |                        |                     |                      | <del>-</del> |                                  | 192 ur               | 523                  | 5                        | · · ·                |                             |                        | 5.69<br>6.08         | 5.89                   | 6.31<br>6.55        | 7.61                                | e                                  |                      | 5                    | ŝ         |                     |                                                                                                           | NO          | 2        | H I          | ERTS CHE    | A NOISSIMMOO 3                             |
|                                 | a Full-trea           | (L/S)        | 38:5                   | 38:86     | 17582                 | 655                      |                       | 303                  | 36                    | 304               | 3321.2<br>3317       | 3309.1<br>3283.4      | 3305.3<br>3307.8     | 3303.8               | 3291.9               | 3283.6<br>3274.8     | 3263.3               | 3274.6<br>304          | 307                    | 348                  | 159                  | 1919      | 5353                  | 22221                          | 861 403              | 413<br>312                       | 68<br>477              | 565<br>214             | 387                 | 362                  | 244          | 275                              | 809                  | 649                  | 455                      | 275                  | 401                         | 505<br>125.8           | 224.5<br>29:14       | 347.9                  | 435.4<br>511.6      | 5351                                | 1,28                               | 317<br>352           | 299                  | 19        |                     |                                                                                                           | THORISAT    |          | JECT MANAGE  | GNED D.WE   | PYRIGHT<br>DOCUMENT IS //<br>GEMENT FOR TH |
|                                 | ea Full-are           | r) (Fa)      | 7.7383                 | 7.8305    | C058./ 7              | 6                        |                       | 7 0.0509             | 7 0.0505              | 7 0.0511          | 13.2797              | 13.4696               | 13.7412              | 2 14.(508            | 14.1367              | 14.129               | 14,599               | 7 0.0511               | 7 0.0515               | 7 0.0585             | 3 0.2338             | 0.3577    | 0/110                 | 7 0.0927                       | 7 0.0578             | 7 0.0524                         | 7 0.114.2              | 7 0.034.9              | 7 0.65              | 7 0.0509             | 7 0.441      | 0.0,62                           | 0.1381               | 1901.0 7             | 10.0164                  | 7 0.0162             | 7 0.0574                    | 7 0.0348               | 3 0.4013<br>9 0.5398 | 4 0.55<br>9 0.7616     | 8 0.8547<br>9 1.C33 | 177<br>177                          | 7 0.078                            | 7 0.0533             | 7 0.0503             | 7 0.1)25  |                     |                                                                                                           | ALL         | 2        | ON           | DES         | NG HIS                                     |
|                                 | area Full-ar          | - (um/h      | 93 1.82<br>99 1.82     | 21 1.81   | 214.2                 | 787                      |                       | 211.2                | 211.2                 | 211:2             | 21 8130              | 38 88.44<br>32 81.95  | 17 85.62<br>47 85.94 | 79 85.22<br>37 84.62 | 46 83.75<br>79 83.1  | 13 82.42             | 13 80.40             | 211.2                  | 214.2                  | 211-2                | 3 2016<br>5 10: 0    | 19119     | 0.181                 | 72 2:56                        | 214.2                | 211.2                            | 211.2                  | 214.2                  | 211.2               | 211.2                | 211.2        | 214.2                            | 211.2                | 211.2                | 24.2                     | 21:2                 | 211.2                       | 211.2                  | 1 2014               | 3 191.04               | 2 183.3<br>6 183.3  | 2 163.3<br>2 163.3<br>7 146.3       | 211.2                              | 211.2                | 211.2                | 211.2     |                     |                                                                                                           |             |          |              |             |                                            |
|                                 | Pipe Full-            | (1 in) (mi   | 52.6 253               | 197.4 254 | 100 25                | 100 5.1                  | 330                   | 100 5                | 100 5                 | 100 5             | 98.3 2/<br>100 24.   | 38.2 24.<br>100 25.   | 100 25.<br>100 25.   | 100 25.<br>250 26.   | 250 26.1<br>250 26.2 | 250 27.              | 250 27.<br>250 28.   | 250 28J<br>80.6 5      | 80.7 5<br>29.3 5       | 100 5<br>29 9 5 3    | 27.7 51<br>27.7 51   | 38.4 6.3  | 16.4 b./              | 23.8 5                         | 100 5                | 100 5                            | 100 5                  | 100 5                  | 128.5 5             | 100                  | 100          | 100                              | 100 5.2              | 100 5.2              | 173.8                    | 28.7 5               | 33.8 5<br>33.8 5<br>5.1 5.1 | 34.4 5                 | 35.3 5.8<br>79.7 6.1 | 133.2 6.5<br>139.9 6.8 | 217.8 7.1           | 291.7 8.4<br>291.7 8.4<br>666.6 8.6 | 28.7 5<br>28.7 5                   | 100 5 5              | 100 5<br>21.9        | 200 5     |                     |                                                                                                           |             |          |              |             |                                            |
|                                 | at Grade              | AT UFADE     | 0 19                   | 0.51      |                       | 1 1                      | 0.3                   |                      | :                     | 1 0.56            | 1.02                 | 2.62                  |                      | 9 1<br>5 0.4         | 5 0.4                | 3 0.4                | 3 0.4                | 3 0.4                  | 1.24                   | 1 1                  | 1 361                | 1 2.6     | 1 6.08                | 1 4.21                         |                      |                                  | 1 1.25                 |                        | 1 0.78              |                      |              |                                  | 1 1                  |                      | 9 0.58                   | 1 3.48               | 1 2.96                      | 1 2.91                 | 1 2.83<br>9 1.26     | 9 0.75                 | 5 0.46<br>2 0.3     | 2 0.34<br>2 0.34                    | 1 3.48                             |                      | 1 1                  | 1 0.5     |                     |                                                                                                           |             |          |              |             |                                            |
|                                 | Full P                | (sq.n        | 0.15                   | 0.15      | 0.0                   | 0.07                     | 0.07 0.07             | 0.07                 | 0.1                   | 0.11              | 0.1                  | E 0                   | 0.15                 | 0.15                 | 0.21                 | 0.21                 | 0.28                 | 0.28                   | 0.11                   | 0.07                 | 0.07                 | 0.07      | 0.07                  | 0.07                           | 0.07                 | 0.07                             | 0.07                   | 0.07                   | 0.07                | 0.07                 | 0.07         | 0.07                             | 0.07                 | 0.07                 | 0.15                     | 0.07                 | 0.07                        | 0.07                   | 0.07                 | 0.15                   | 0.21                | 0.44                                | 0.07                               | 0.07                 | 0.07                 | 0.01      |                     |                                                                                                           |             |          |              |             |                                            |
|                                 | IE Pipe               | 1 (mm)       | 22 450                 | 2 450     | 157 151               | 33 300                   | 71 300<br>21 (3x)x6-  | 79 375<br>300 300    | 72 375                | 1 (2x)3<br>375    | 375 375              | 27 375<br>51 375      | 55 450               | 32 450               | 0 525<br>1 525       | 525                  | 75 600               | 3 600<br>12 375        | 85 375<br>'8 300       | 53 300               | 8 300                | 52 300    | 300                   | 47 300                         | 53 300               | 65 375<br>75 300                 | 1 375                  | 1 300                  | 300 300             | 300                  | 300 300      | 300 300                          | 300                  | 24 300               | 12 450                   | 35 300               | 37 300                      | 52 300                 | 94 300<br>11 450     | 1 450                  | 99 525<br>75 750    | 15 750<br>7 750                     | 5 300                              | 5 300<br>36 300      | 7 300                | 75 300    |                     |                                                                                                           |             |          |              |             | TRUCTION                                   |
|                                 | did ad d              | (-) (m.      | CP 4 6.6               | CP 4 6.7  | CP 4 72.5             | CP 4 23.                 | RCB 4 25.<br>RCB 66.1 | CP 4 20.             | CP 4 20.              | CP 4 35.          | CP 4 25.             | CP 4 75.              | 7.6E 7 dD            | CP 4 33.             | CP 4 40              | 07 7 dD              | CP 4 34.7            | CP 4 20.6              | CP 4 20.0<br>CP 4 12.8 | 157 7 d              | 10 4 54              | CP 4 48.0 | CD 7 312              | CP 4 23.4                      | 101 7 101<br>13.4    | CP 4 20.1<br>CP 4 20.7           | PE SN8 8<br>CP 4 235   | CP 4 6.9               | CP 4 121            | 10 4 14.4            | CP 4 195     | CP 4 13.5                        | CP 4 19              | CP 4 271             | PE SNB 12.1<br>CP 4 26.4 | CP 4 24              | CP 4 63 2                   | CP 4 14.1<br>CP 4 82.6 | CP 4 39.5            | CP 4 30                | CP 4 28.            | CP 4 76.                            | CP 4 19.                           | CP 4 26.3            | CP-4 27.             | 31 to 53  |                     |                                                                                                           |             |          |              |             | ED FOR CONS<br>TRIPTION                    |
|                                 | adi                   | ~            | 0 AB2 R                | 8 198 P.  | 0 AD2 R               | to S10 R                 | to S11 F              | o AG11 F             | o A013 H              | o AM2 k           | o A02 F              | e A04 F               | to A05 F             | e A09 F              | o A010 F             | o A012 F             | to A014 F            | to A016 R.<br>o A09 R. | Po AOB R               | O AS2 R              | A 454 P              | 0 AS6 R   | O ATZ R               | o AW2 R                        | o AO4 F              | o AO5 F                          | • BF2 HD.<br>• A015 R. | o D2 R                 | EX Ak3 R            | 0.051 R              | 0 J2 R       | o K2 R                           | Ex A01 R             | o M2 R               | o N2 HD:<br>x A03 R      | 0 R2 R               | 0 D2 R                      | 0 S2 R                 | 10 S4 F              | to S6 F                | to S8 F             | 10 S10 F                            | 0 S3 R                             | 0 S6 R               | 10 S7 R              | 10 S8 R   |                     |                                                                                                           |             |          |              |             | 3 DW ISSL                                  |
|                                 | ď                     | -            | AB11<br>AB2 +-         | AB3 1.    | AD1 F.                | AD2<br>AF1 +             | AG1<br>AH1 h.         | AI1 to<br>AJ1 to     | AK1+<br>AL1+c         | AN1 Hc            | A01 F<br>A02 F       | A04 F                 | A05 1<br>A06 h       | A07 1<br>A08 †       | A010 †               | A011 F<br>A012 ±     | A013 1<br>A014 h     | A015 1<br>AP1 h        | A011<br>AR1 ht         | AS11<br>AS2+         | 423 t                | 455 +     | ATT                   | AT2 1<br>AW1 h                 | AZ1 +<br>B1 to       | BE1 tc                           | BF11<br>BG11c          | C1 10<br>D1 h          | E1 to L             | Ē                    | 110          | K1F<br>K1F                       | K3 to                | M1 F                 | N1 F                     | R1 F<br>R2 ±         | 01+                         | S1 F                   | S4 †<br>S4 †         | S6 h                   | S7  <br>S8 +        | S101<br>S101                        | 10                                 | W11<br>X1 ft         | 711<br>Z1 h          | 22 1      |                     |                                                                                                           |             |          |              |             | 0 04.2<br>BEV DATE                         |

\_\_\_\_\_

| BEFORE<br>J DIG<br>00.com.au |  |
|------------------------------|--|
|                              |  |
|                              |  |

|                     |                 | Nacip<br>Varip                         | Setaut                                 | Setaut Setaut Gra                                                                           | te Caver Catch             | Tc Catch                     | Catch Catch T             | HYDROL<br>Intensity Runaff   |                                  | 1% AEP)                              | ial Partial Partial                             | Catchment Dire      | + Annraeri R       | Flooded Flo                  | oded Flocded Ros                                                | d Road Max Pond           | Chake Inlet                    | Intet Bynass By            | Ster                                                    | VOU D                                                              | S C R          |
|---------------------|-----------------|----------------------------------------|----------------------------------------|---------------------------------------------------------------------------------------------|----------------------------|------------------------------|---------------------------|------------------------------|----------------------------------|--------------------------------------|-------------------------------------------------|---------------------|--------------------|------------------------------|-----------------------------------------------------------------|---------------------------|--------------------------------|----------------------------|---------------------------------------------------------|--------------------------------------------------------------------|----------------|
|                     |                 | Name [ype (-)                          | Easting (m)                            | Varthing RL RL<br>(m) (m) (m)                                                               | RL ID (m) (-)              | Method Length<br>(-) [m]     | Slope Retardance (x) (r   | c I C<br>n) (mm/hr) [-)      | A CA<br>(ha) lha)                | Sum CA Qc=CIA Ci<br>(ha) (L/s) (hi   | A Sum CA Qc=fIA<br>(ha) (L/s)                   | Flow Gc Flow        | rcg Flow Qiz Cal   | acity Depth N                | dth VelDep Gra                                                  | de Xfall Depth<br>(%) (%) | Factor Curve Nam<br>(-) [-)    | E Flow 3g Flow 0b N        | -                                                       | WWW.1100.co                                                        | no.mo          |
|                     |                 | A1 SEP<br>A2 MH                        | 65368.86 2                             | 80499.42 36.16 36.<br>80507.61 36.16 36.                                                    | 16 36.16<br>16 36.06       |                              |                           |                              |                                  |                                      |                                                 |                     | 0                  |                              |                                                                 |                           |                                | 0                          |                                                         |                                                                    |                |
|                     |                 | AB1 HW                                 | 65486.16 2                             | 79492,43 30.62 316                                                                          | 3 3163 1                   | Direct 700 ro                |                           | 214.27 0.9                   | 0.1133 0.102                     | 7.7083 381.5 0.1                     | 02 0.2517 1498                                  | 381.5               | 381.5              |                              |                                                                 |                           |                                | 381.5                      | ī                                                       |                                                                    |                |
|                     |                 | AB2 GULLY                              | 65492.2 2                              | 19489.75 31.66 31.6                                                                         | i6 31.66 11 K              | Direct 290.59                | 0.5 0.25 25               | .93 17.82 0.45<br>214.27 0.9 | 16.9029 7.6063<br>0.068 0.0612   | 0.1722 4.2.7 0.06                    | 98<br>12 0.0843 50?                             | 50.2                | 50.2 2             | 4.8 0.056 0                  | 93 0.07 2.                                                      | 301.1                     | 0.8 2G,5.0X                    | 31.3 18.9 L                | 0ST                                                     |                                                                    |                |
|                     |                 | HM VB3                                 | 65514.09 2                             | 79474.46 32.37 32.                                                                          | 37 32.37 3P K              | nematic Wave 100             | 2.5 0.25                  | 6 89.36 0.45                 | 0.2465 0.111                     | 0.0                                  | 8                                               |                     |                    |                              |                                                                 |                           |                                |                            | 7                                                       |                                                                    |                |
|                     |                 | A84 MH<br>A85 CULLY                    | 65544.37 2                             | 79468:57 32.39 32.<br>79418.43 31.54 31.5                                                   | 39 32.39<br>44 30.55       |                              |                           |                              |                                  |                                      |                                                 |                     |                    |                              |                                                                 |                           |                                |                            | ē 1                                                     |                                                                    |                |
|                     |                 | A01 GULLY<br>A02 GULLY                 | 65570.94 2                             | 79473.87 31.78 31.7<br>79473.87 31.84 31.8                                                  | 11 31.78 11                | Direct<br>Direct             |                           | 214.27 0.9                   | 0.0542 0.0623                    | 0.0623 37.1 0.06                     | 23 00623 371<br>87 00487 29                     | 37.1<br>29          | 37.1 1 29 1        | 88.5 0.092<br>88.5 0.079     |                                                                 | 0.3                       | 0.5                            | 37.1 L                     | 0ST<br>0ST                                              |                                                                    |                |
|                     |                 | AFT SEP<br>Act SEP                     | 65537.14<br>20030 73                   | 279398.8 31.35 31.35                                                                        | 5 31.35                    |                              |                           |                              |                                  |                                      |                                                 |                     |                    |                              | 00                                                              | 2.6                       | 0.8 16,15X                     | 0                          | G1                                                      |                                                                    |                |
|                     |                 | AH1 HW Triple<br>AH2 HW nitlet Triple  | 65472.95 2<br>65472.95 2               | 79356.4.3 29.68 33<br>79356.4.3 29.68 33                                                    | 7. 30.88<br>7. 30.68       |                              |                           |                              |                                  |                                      |                                                 | 571                 | 1440               |                              |                                                                 |                           |                                | 1440                       |                                                         |                                                                    |                |
|                     |                 | All SEP                                | 65502.9                                | 79200.58 31.85 31.8                                                                         | 5 31.85 1                  | Direct                       |                           | 214.27 0.9                   | 0.0566 0.0509                    | 0.0509 30.3 0.05                     | 09 0 0 5 09 30.3                                | 30.3                | 731 4              | 32.9 0.085 3                 | 07 0.45 0.5                                                     |                           | 0.8 0.56,3.0X                  | 33.5 39.5                  | 11                                                      |                                                                    |                |
|                     |                 | AVI SEP                                | 65508.83 2                             | 79280.22 31.47 31.4<br>102.002 31.47 31.4                                                   | 7 31.0 1                   | Direct                       |                           | 214.27 0.9                   | 0.0551 0.0496                    | 0.0496 29.5 0.04                     | 24 0.0524 31.2<br>96 0.0496 29.5<br>or ocror 30 | 31.4<br>29.5<br>3.6 | 1.00               | 15.7 U.000 3<br>98 0.082 2   | 10 110 010 010 010 010 010 010 010 010                          | n m r                     | 0.8 0.56,30X                   | 31.5 34.5                  | 101                                                     |                                                                    |                |
|                     |                 | AM1 HW Double                          | 6549363                                | 719181,58 30,37 31,1<br>719181,58 30,37 31,1<br>7046 75 75 75 75 75 75 75 75 75 75 75 75 75 | 4 3114 3P K                | nematic Wave 597.18          | 0.4 0.25 22               | 3.3 19.1 0.45                | 18.6082 8.3737                   | 8.3737 444.2 8.37                    | 37 8,3737 444,2                                 | 2.444               | 7.444              | r                            |                                                                 |                           | Variana                        | 5 ac 2.444                 |                                                         |                                                                    |                |
|                     |                 | AN1 SEP                                | 67:00:559                              | 79160.43 32.05 32.0                                                                         | 25 32.05 11                | Direct                       |                           | 214.27 0.9                   | 0.0568 0.0511                    | 0.0511 30.4 0.0                      | 511 0.0511 30.4                                 | 30.4                | 77.3 4             | 32.9 0.087 3                 | 14 0.05 0.5                                                     |                           | 0.8 0.5G,3.0X                  | 34.6 428                   |                                                         |                                                                    |                |
|                     |                 | AUT CULLT                              | 0110400                                | 0100 00100 07160001                                                                         | = 0.00 0                   | nematic Wave 100             | 2.5 0.25                  | 57:0 9:17                    | 29.6648 13.3492                  | 2.78                                 | 75101 711017 CA                                 | 71700               | 1 71766            | D /CI/A  /2/                 | FIC 70:0 40                                                     | -                         | VC:0'D4 0'0                    | 7 7076 7:46                | 101                                                     |                                                                    |                |
|                     |                 | A02 SEP<br>A03 SEP                     | 65482.53                               | 78859.15 36.03 36.0<br>78874.71 35.87 35.8                                                  | 33 36.03 11<br>37 35.87 11 | Direct<br>Direct             |                           | 214.27 0.9                   | 0.0151 0.0136                    | 0.0603 35.9 0.06<br>0.0136 8.1 0.01  | 03 00603 35.3<br>36 0.0136 8.1                  | 35.9<br>8.1         | 35.9 14 30         | 75.2 0.04 2<br>48.7 0.02     | 17         0.03         2.           2         0.01         3.5 | 19                        | 0.8 26,15X<br>0.8 4G,05X       | 5.3 5.2 L                  | 21<br>35T                                               |                                                                    |                |
|                     |                 | A04 A05 SE <sup>2</sup> TWIN           | 65496.55 2                             | 78950.97 33.78 33.<br>78964.22 33.16 33                                                     | 18 33.78<br>16 33.16 11    | Direct                       |                           | 214.27 0.9                   | 0.14.11 0.127                    | 0.127 75.6 0.1                       | 27 0.127 75.5                                   | 75.6                | 75.6 5             | 53.5 0.07 2                  | 51 900 77                                                       | 8                         | 0.8 2G,3.0X                    | 33.3 42.2                  | - 05                                                    |                                                                    |                |
|                     |                 | A06 SEP<br>A07 SEP                     | 65509.37 65512.51 2                    | 279000.2 32.81 32.<br>79039.32 32.62 32.6                                                   | 31 32.81 11<br>52 32.62 11 | Direct<br>Direct             |                           | 214.27 0.9                   | 0.05 0.0481<br>0.0534 0.0481     | 0.04.91 28.6 0.0                     | 45 0.045 26.3<br>81 0.0481 28.5                 | 26.8<br>28.6        | 69 3               | 21.6 0.084 2<br>21.6 0.082 2 | 95 0.45 0.6<br>88 0.45 0.5                                      | m <i>m</i>                | 0.8 0.5G,3.0X<br>0.8 0.5G,3.0X | 32.6 36.5 J<br>31.6 33.5 J | 07<br>08                                                |                                                                    |                |
|                     |                 | A08 SEP                                | 65514.42 2                             | 79072.59 32.46 32.4                                                                         | 6 3246 11                  | Direct<br>Direct             |                           | 214.27 0.9                   | 0.048 0.0432                     | 0.0432 25.7 0.04                     | 32 00432 251<br>11 00111 21 5                   | 25.7                | 59.2 3             | 215 0.08 2                   | 78 0.41 0.5                                                     |                           | 0.8 0.50,30X                   | 30.1 29.1 /                | 03                                                      |                                                                    |                |
|                     |                 | A010 SEP                               | 71702529                               | 79159.06 32.04 32.0                                                                         | 04 32.04 11                | Direct                       |                           | 214.27 0.9                   | 0.0469 0.0422                    | 0.0422 25.1 0.04                     | 22 0.04.22 25.1                                 | 25.1                | 5 7:05             | 21.6 0.075 2                 | 62 0.44 0.                                                      |                           | 0.8 0.56,30X                   | 213 231 1                  | 110                                                     |                                                                    |                |
|                     |                 | A011 SEP<br>AC12 SEP                   | 65523.22 2                             | 79238.87 31.65 31.8<br>79238.87 31.66 31.6                                                  | 6 31.65 11<br>6 31.66 11   | Direct<br>Direct             |                           | 214.27 0.9                   | 0.0455 0.042                     | 0.042 25 0.0                         | 42 0.042 25<br>41 0.041 24.4                    | 25<br>24.4          | 48.1 3 45.9 3      | 21.6 0.074 2<br>21.6 0.072 2 | 57 0.44 0.5                                                     |                           | 0.8 0.5G,3.0X<br>0.8 0.5G,3.0X | 25.9 20 /                  | 013                                                     |                                                                    |                |
|                     |                 | AC13 SEP<br>AC14 SEP                   | 65529.22 2 65531.56 2                  | 79278.74 31.46 31.4<br>79318.67 31.27 31.2                                                  | 6 3146 11<br>17 3127 11    | Direct<br>Direct             |                           | 214.27 0.9                   | 0.0433 0.039<br>0.0433 0.039     | 0.0377 22.4 0.0                      | 77 0.0377 22.<br>39 0.039 232                   | 22.4                | 42.4 3             | 21.6 0.07 2<br>33.5 0.073 2  | 46 0.03 0.5<br>54 0.03 0.5                                      | <i>m</i> m                | 0.8 0.56,30X<br>0.8 0.56,30X   | 24.8 17.7 A<br>24.3 16.6 A | 314 015                                                 |                                                                    |                |
|                     |                 | ACIS COMBOSEP TWIN<br>ACI6 HW putter   | 65533.97 2                             | 79353.34 31.2 31.<br>79355.93 29.7 31                                                       | 2 312 11                   | Direct                       |                           | 214.27 0.9                   | 0.0812 0.0731                    | 0.0731 4.3.5 0.0'                    | 31 0.0731 4.3.5                                 | 43.5                | 60.1               | 8.4 0.09                     |                                                                 | 0.045                     | 0.5                            | 60.1                       | 7 5                                                     |                                                                    |                |
|                     |                 | AP1 SEP                                | 65497.7                                | 279120.4 32.24 32.2                                                                         | 24 32.24 11                | Direct                       |                           | 214.27 0.9                   | 0.0568 0.0511                    | 0.0511 30.4 0.0                      | 102 10211 30.4                                  | 30.4                | 82.8 4             | 32.9 0.089 3                 | 22 0.45 0.5                                                     |                           | 0.8 0.5G,3.0X                  | 35.9 46.9                  | LN .                                                    |                                                                    |                |
|                     |                 | AR1 SEP<br>AR1 CULLY                   | 65497.64 2                             | 79074.03 32.47 32.4<br>78862.01 36.37 36                                                    | 37 36.37 11                | Direct                       |                           | 214.27 0.9                   | 0.0572 0.0159                    | 0.0159 50.7 0.01                     | (15 0.0515 30.7<br>59 0.0159 9.5                | 30.7<br>9.5         | 90 4               | 58.9 0.092 3<br>58.9 0.025 1 | 32 0.05 0.5<br>11 0.02 3.5                                      | 23                        | 0.8 0.50,30X<br>0.8 46,15X     | 57.6 52.4<br>6.1 3.3       | C3                                                      |                                                                    |                |
|                     |                 | AS1 CULLY AS2 CULLY                    | 65468.1 2                              | 78921.88 35.57 35.<br>78789.94 35.36 35.                                                    | 57 35.57 11<br>36 35.36 11 | Direct                       |                           | 214.27 0.9                   | 0.065 0.0585 0.0588              | 0.0585 34.8 0.05                     | 85 0.0585 34.3<br>88 0.0588 35                  | 34.8<br>35          | 34.8<br>35 70      | 1 E70'0 7'EL                 | 55 0.05 3.5                                                     | 2.8                       | 0.8 46,1.5X                    | 34.8 17.4 /                | - ES                                                    |                                                                    |                |
|                     |                 | AS3 SEP<br>AS4 SEP                     | 65515.67 2<br>6554156 2                | 181 24 24 25 25 25 25 25 25 25 25 25 25 25 25 25                                            | 1 33.54 1                  | Direct                       |                           | 214.27 0.9                   | 0.0819 0.0737                    | 0.0737 4.3.9 0.07                    | 37 0.0737 4.33<br>39 0.0739 4.4                 | 43.9                | 613<br>843 25      | 278 0.054 1<br>34.8 0.054 1  | 96 0.05 3.<br>75 0.04 3                                         | 3.1                       | 0.8 4.6,3.0X<br>0.8 26.15X     | 21 40.3 1                  | S4<br>S6                                                |                                                                    |                |
|                     |                 | ASS MAL                                | 65555.9 2                              | 78689.43 31.3 31.                                                                           | 3 313                      | 1110                         |                           | 00 10 100                    |                                  |                                      |                                                 | 100                 | 440 C              |                              |                                                                 | ] ^                       | AVE 34 6.0                     |                            | 3 - 17                                                  |                                                                    |                |
|                     |                 | ASO GULY TWIN                          | 65602.37                               | 78644.4 28.76 28.                                                                           | 1 29.01                    | UILECT                       |                           | 6.0 17:417                   | 4400.0 4440.0                    | 20.0 0.00 4400.0                     | C.CC 4400.0 44                                  | 0.50                | 0                  | ///// 0.00                   | 7 64.0 /                                                        | n -                       | ¥6'5'07 5'0                    | 1 1 60 7 76                | I M                                                     |                                                                    |                |
|                     |                 | AT1 SEP<br>A-2 GULLY                   | 65534.28                               | 778827.3 37.6 37.<br>78802.33 36.21 36.                                                     | 6 37.6<br>21 36.21 11      | Direct                       |                           | 214.27 0.9                   | 0.103 0.0927                     | 0.0927 55.2 0.05                     | 27 0.0927 552                                   | 55.2                | 55.2               | 0 2002 0                     | 72 0.16 4.2                                                     | 3 26                      | 0.8 ZG,15X<br>0.8 4.G,15X      | 0<br>24.1 311 L            | 0ST DST                                                 |                                                                    |                |
|                     |                 | AW1 SEP                                | 65615.78 2                             | 78597.47 29.05 29.0                                                                         | 35 29.05 11 3P K           | Direct<br>nematic Wave 624.5 | 0.6 0.25 19               | 72 214.27 0.9                | 0.0975 0.0878<br>82.2567 37.0155 | 37.1033 2232.1 0.08                  | 78 1.0582 6298<br>04 04                         | 2232.               | 2315.2 3           | 37.9 0.15 5                  | 81 0.88 0.6                                                     | m                         | 0.8 0.5G,3.0X                  | 84 22312 L                 | ISI                                                     |                                                                    |                |
|                     |                 | AW2 CULLY AZ1 SE2 TWIN                 | 62639.59                               | 278596.7 28.15 28.<br>78951.69 33.37 33                                                     | IS 28.15<br>37 33.37 11    | Direct                       |                           | 214.27 0.9                   | 0.1507 0.1447                    | 0.1447 86.1 0.14                     | 47 0.1447 86.1                                  | 86.1                | 107 9              | 45.1 0.076 2                 | 75 0.08 2                                                       |                           | 0.8 26.3.0X                    | 40.5 66.5                  | - 10                                                    |                                                                    |                |
|                     |                 | BI SC TWIN                             | 65381.4.4 2                            | 80449.66 36.37 36                                                                           | 36.37 11                   | Direct                       |                           | 214.27 0.9                   | 0.0753 0.0678                    | 0.0678 40.3 0.00                     | 78 0.0578 4.0.3                                 | 40.3                | 6.04               | 16.1 0.063 2                 | 19 0.64 0.8                                                     |                           | 0.8 10,1.5X                    | 21.7 18.6 L                | 05T                                                     |                                                                    |                |
|                     |                 | BC1 CUMBU SEP                          | 65422.38                               | 80246.13 35.43 35.4                                                                         | 3 35.43 1                  | Direct                       |                           | 214.27 0.9                   | 0.0723 0.0651                    | 0.0 7.60 2011.0                      | 1.co 0.0651 38.7                                | 38.7                | 70 4               | 160.0 9.60                   | 56 0.05 1                                                       | n m 4                     | 0.3 16,3.0X                    | 28.8 412                   | 1                                                       |                                                                    |                |
|                     |                 | B01 SEP<br>B61 SEP                     | 65489.42 65492.15                      | 79001.59 32.82 32.8<br>7904.0.81 32.63 32.6                                                 | 32 32.63 11<br>53 32.63 11 | Direct<br>Direct             |                           | 214.27 0.9                   | 0.0771 0.0694 0.0524             | 0.0524 41.3 0.06                     | 94 00694 413<br>24 00524 312                    | 413<br>312          | 107.8 4 98.2 4     | 32.9 0.098 3<br>32.9 0.095 3 | 43 0.46 0.5<br>43 0.46 0.5                                      | m m                       | 0.8 0.50,30X<br>0.8 0.50,3.0X  | 38.9 59.3                  | 01                                                      |                                                                    |                |
|                     |                 | BF1 COMB0 SEP TWIN                     | 65490.55 2                             | 79367.73 30.65 30.6<br>7934.7.43 31.26 31.2                                                 | 55 30.65 11<br>56 31.26 11 | Direct                       |                           | 214.27 0.9                   | 0.1269 0.1142<br>0.089 0.0801    | 0.1142 68 0.11 0.08 0.11             | 42 0.1142 68                                    | 68<br>47.7          | 68<br>87.6         | 7.6 0.123                    |                                                                 | L70'0                     | 0.5                            | 68<br>87.6                 | 5 7                                                     |                                                                    |                |
|                     |                 | CI SEPTWIN                             | 65367.05 2<br>65367.05 2               | 8044253 36.4 36.<br>8014707 36.77 36                                                        | 4 36.4 1                   | Direct                       |                           | 214.27 0.9                   | 0.1055 0.094.9                   | 0.0919 56.5 0.05                     | 49 0.0949 56.5                                  | 56.5                | 56.5 56            | 75.7 0.071 2                 | 46 0.05 0.8                                                     | <i>n</i>                  | 0.8 1G,3.0X                    | 32.5 24 L                  | IST                                                     |                                                                    |                |
|                     |                 |                                        | 6534756                                | 280369.4 37.08 37.0                                                                         | 10 2020 10                 | Direct                       |                           | 214.27 0.9                   | 9E0:0 70:0                       | 0.036 21.4 0.0                       | *12 9E0.0 9E                                    | 21.4                | 21.4 2             | 38.5 0.027 3                 | 69 0.31 1.3                                                     | -                         | 0.8 1G,0.5X                    | 8.3 13.1 L                 | -<br>05T                                                |                                                                    |                |
|                     |                 | E1 SEP                                 | 65353.57 2                             | 80366.23 37.08 37.0<br>80341.26 36.39 36.3                                                  | 36.39 11<br>36.39 11       | Direct                       |                           | 214.27 0.9                   | 0.0723 0.065                     | 0.065 38.7 0.0                       | 55 0.065 38.7                                   | 38.7                | 38.7 3             | 30.5 0.062 2                 | 16 0.44 0.7                                                     | 8                         | 0.8 0.5G,3.0X                  | 23.5 15.2                  | 1 2                                                     |                                                                    |                |
|                     |                 | EX Ak3 MH                              | 65380.84 2                             | 80338.34 36.77 36.7<br>80335.58 36.78 36.7                                                  | 77 36.77<br>38 36.78 11    | Dirart                       |                           | 20 1C 71                     | 0.1301 0.1171                    | 10 101 101                           | 103 1011 10                                     | 7.03                | 50.7 20            | 75.7 0.07K 2                 | AC 0.05 0.0                                                     | 35                        | 0.8 16.2AV                     | 132 217                    | 1 5                                                     |                                                                    |                |
|                     |                 | EI CUMBUSEP                            | 00:61000                               | 80289.01 35.87 35.8                                                                         | 1 35.87 11                 | Direct                       |                           | 214.27 0.9                   | 0.125 0.1125                     | 0.1125 67 0.11                       | 25 0.1125 67                                    | 1.40                | 102.4 29           | 95.4 0.087 3                 | 50 L00 90                                                       | 35                        | 0.8 1G,3.0X                    | 34,8 67,6                  | 81                                                      |                                                                    |                |
|                     |                 | H1 SEP                                 | 65443.4 2                              | 80293.54 35.92 35.9<br>80192.46 34.88 34.3                                                  | 22 35.92 11<br>38 34.88 11 | Direct<br>Direct             |                           | 214.27 0.9                   | 0.0677 0.0609<br>0.1318 0.1186   | 0.0609 36.2 0.06<br>0.1186 70.6 0.11 | 09 0 06 09 36.2<br>86 0.1186 70.5               | 36.2<br>70.6        | 515 4              | 47.4 0.066 2<br>54.9 0.089 2 | 32 0.04 1                                                       | e e                       | 0.8 1G,1.5X<br>0.8 1G,3.0X     | 20.2 31.2<br>36.3 75.5     | 41                                                      |                                                                    |                |
|                     |                 | J1 CONBO SEP                           | 65436.92<br>654.30 R                   | 80169.22 34.77 34.                                                                          | 11 34.77 11                | Direct                       |                           | 214.27 0.9                   | 0.0455 0.041                     | 0.041 24.4 0.0                       | 41 0.041 24.1                                   | 24.4                | 88.4 27            | 97.2 0.075 3                 | 45 0.45 0.5                                                     | 22                        | 0.8 1G,1.5X                    | 316 56.8 L                 | 1                                                       |                                                                    |                |
|                     |                 | K1 SEP                                 | 65461.39                               | 80146.51 34.41 34.                                                                          | 11 34,41 11                | Direct                       |                           | 214.27 0.9                   | 0.0514 0.0462                    | 0.0462 27.5 0.04                     | 62 0.0462 27.5                                  | 27.5                | 103 16             | 72.8 0.086 3                 | 01 0.07 1                                                       |                           | 0.8 1G,3.0X                    | 34.9 68.1                  | 5                                                       |                                                                    |                |
|                     |                 | K3 CONBO SEP                           | 65440.01                               | 80138.03 34.71 34.<br>80138.03 34.39 34.                                                    | 34.39 11                   | Direct                       |                           | 214.27 0.9                   | 0.0731 0.0658                    | 0.0658 39.2 0.06                     | 58 0.0658 39.2                                  | 39.2                | 39.2 2             | 285 0.035 3                  | 74 0.02 1.5                                                     | 0.9                       | 0.8 2G,0.5X                    | 12.6 26.6                  | 12                                                      |                                                                    |                |
|                     |                 | L1 CULLY MH                            | 654,38,19 2                            | 80137.28 34.53 34.7<br>280128 34.44 34.4                                                    | 53 34.53<br>44 11          | Direct                       |                           | 214.27 0.9                   | 0.029 0.0261                     | 0.0261 15.5 0.03                     | 61 0.0261 15.5                                  | 15.5                | 15.5               | 14 0.035 1                   | 88 0.42 1:1                                                     | 2                         | 0.8 1G,1.5X                    | 9.1 6.5 L                  |                                                         |                                                                    |                |
|                     |                 | M1 COMBC SEP TWIN<br>M2 COMBC SEP TWIN | 654584.27 2                            | 80088.05 33.91 33.<br>80080.13 33.71 33.                                                    | 91 33.91 11                | Direct                       |                           | 214.27 0.9                   | 0.1212 0.1091                    | 0.1091 64.9 0.10                     | 6.1091 64.9                                     | 6.43                | 88.5 15            | 5.3 0.071<br>40.7 0.118 5    | 14 0.64 0.                                                      | 3 0.071                   | 0.5 0.5G,3.0X                  | 35.3 97.7 L<br>68.5 20 L   | DST DST                                                 |                                                                    |                |
|                     |                 | HM HM HM                               | 65454.96 2                             | 80079.02 33.71 33.<br>79075.98 31 31.5                                                      | 71 33.97                   |                              |                           |                              |                                  |                                      |                                                 |                     | 0                  |                              |                                                                 |                           |                                | 0                          | 1 1                                                     |                                                                    |                |
|                     |                 | NZ Hhv outlet<br>01 SEP                | 65522.52 2                             | 79088.07 30.93 31.7<br>80051.33 34.22 34.2                                                  | 9 31.79<br>22 34.22 11     | Direct                       |                           | 214.27 0.9                   | 0.0849 0.0764                    | 0.0754 45.5 0.07                     | 64 0.0764 45.5                                  | 45.5                | 45.5 7             | 23.6 0.053 2                 | 08 0.64 2                                                       | 2.6                       | 0.8 26,15X                     | 16.5 28.6 L                | - 35T                                                   |                                                                    |                |
|                     |                 | Ex A03 CULLY R1 SEP                    | 6547383 2<br>65515.67 2                | 80042.04 34.04 34.0<br>79984.54 35.96 35.9                                                  | 11 34.04 11                | Direct                       |                           | 214.27 0.9                   | 0.0514 0.0462                    | 0.0462 27.5 0.04                     | 62 0.04.62 27.5                                 | 27.5                | 97                 | 18.1 0.047 2                 | 43 0.04 2                                                       | 2                         | 0.8 2G,15X                     | 17 29 L                    |                                                         |                                                                    |                |
|                     |                 | R2 SEP                                 | 62494.91 2                             | 79997.78 35.24 35.7                                                                         | 24 35.24 11<br>m 35.77 1   | Direct                       |                           | 214.27 0.9                   | 0.1085 0.0976                    | 0.0976 58.1 0.05                     | 76 0.0976 581                                   | 581                 | 90.9 10            | 79.4 0.068 2                 | 47 0.07 21                                                      | <i>m</i> •                | 0.8 26,3.0X                    | 28.9 62<br>24.2 18.5       | 12                                                      |                                                                    |                |
|                     |                 | 02 SEP                                 | 65516.35 2                             | 1/9E E7/9E 7/7/8E66L                                                                        | 1 270.02                   | Direct                       |                           | 214.27 0.9                   | 0.0995 0.0896                    | 0.0896 53.3 0.08                     | 96 0.0896 53.3                                  | 53.3                | 53.3               | 10.9 U.053 2                 | 29 0.65 1.2                                                     | 0.00                      | 0.8 16,1.5X                    | 20.5 32.8                  | 12                                                      |                                                                    |                |
|                     |                 | C3 MH SEP                              | 65554.08                               | 19996.69 35.25 35.46 36.4<br>1.05 36.48 36.4                                                | 23 35.4 11<br>-8 36.48 11  | Direct                       |                           | 214.27 0.9                   | 0.0942 0.0848                    | 0.0848 50.5 0.05                     | 48 0.0848 50.5                                  | 50.5                | 50.5               | 43 0.05                      | 1 0.05 1.6                                                      |                           | 0.3 2G,3.0X                    | 21.7 28.8                  | CAUTION                                                 |                                                                    |                |
|                     |                 | S2 SEP<br>S3 SEP                       | 65539.12 2                             | 79798.78 36.2 36.<br>79716.16 34.2 34.                                                      | 2 36.2 11                  | Direct<br>Direct             |                           | 214.27 0.9                   | 0.14.29 0.1286<br>0.1223 0.11    | 0.1286 76.6 0.12<br>0.11 65.5 0.     | 86 0.1286 76.5<br>1 0.11 65.5                   | 76.6<br>65.5        | 76.6 8<br>120.7 12 | 36.4 0.069 2<br>44.6 0.072 : | 48 0.06 1.5<br>6 0.09 3.2                                       | m m                       | 0.8 2G,15X<br>0.8 4.G,3.0X     | 21.3 55.2 28.4 92.3        | SERVICES SHOWN ARE TO I                                 | E USED AS A GUIDE DNLY.                                            | ng TO          |
|                     |                 | S4 CONBO SEP                           | 65532.83 2                             | 79669.34 32.88 32.8<br>796.99.52 32.88 32.8                                                 | 38 32.88 11<br>38 32.38 11 | Direct                       |                           | 214.27 0.9                   | 0.0739 0.0665                    | 0.0655 39.6 0.06                     | 65 0 0 6 6 5 3 9 3<br>40 0 0 6 6 5 3 3 3 3      | 39.6                | 131.9 5            | 42.7 0.082 2<br>36.8 0.091 3 | 31 0.17 0.7                                                     | ~ ~                       | 0.8 26,3.0X                    | 55.6 76.3<br>712 64        | MECHANICAL EXCAVATION<br>CC DBTAINED PRIOR TO SITE V    | RELEVANT PERMITS SHALL E<br>DRKS AND A DRYD FNQUIRY                | 36             |
|                     |                 | SS SEP<br>51                           | 65527.38 2<br>65527.38                 | 79589.62 32.08 32.0<br>70550.71 31.86 315                                                   | 08 32.08 11<br>6 31.06 11  | Direct                       |                           | 214.27 0.9                   | 0.0583 0.0524                    | 0.0524 312 0.05                      | 24 0.0524 312<br>29 0.01.29 25.5                | 31.2                | 100.2 5            | 36.8 0.088 3                 | 19 0.05 0                                                       | . m n                     | 0.29 0.56.30X                  | 14.2 86                    | CONSTRUCTION. A FULL SE                                 | EARLIER THAN 30 DAYS BEF<br>OF THE DBYD DOCUMENTS /                | FORE<br>ARE TO |
|                     |                 | SI COMBOSEP TWIN                       | 65523.01 2<br>65523.01 2<br>65516.49 2 | 102 57 CE 57 USCCCC                                                                         | 11 1916 1                  | Direct                       |                           | 214.27 0.9                   | 0.0842 0.0757                    | 0.0757 45.1 0.07                     | 57 0.0757 45.1                                  | 45.1                | 115.2 1            | 115 0.134                    | 11.0 70                                                         | 0.15                      | VARTACIA 510                   | 115.2                      | T D BE REPT ON SITE AT ALL T<br>T D BE RELOCATED/PROTEC | MES. CONFLICTING SERVICES<br>TED TO THE SATISFACTION D<br>TO WORKS | DF THE         |
|                     |                 | ALITHORISAT                            | NOI                                    | APPROVE                                                                                     |                            | SCALE                        | -                         | _                            | (A1)                             |                                      |                                                 | - HO                |                    |                              | _                                                               | /                         |                                |                            |                                                         | DEVINO                                                             |                |
|                     |                 |                                        |                                        |                                                                                             |                            | DATUN                        | AHD                       |                              | HE                               |                                      |                                                 | - SIAG              | S<br>L             |                              |                                                                 |                           |                                |                            | D771_170                                                |                                                                    |                |
| DMEN                |                 | FROJECT MANAG                          | ER DATE                                | DESIGN CO-01                                                                                | RDINATOR DA                | E                            |                           |                              | MESSA                            |                                      | AKK STREET                                      |                     | <u>-</u>           | ROFO                         | RMCIV                                                           | //<br>=                   | X                              | ,                          | 71 <u>- 1</u> / / VI                                    | >                                                                  |                |
| VBMA                |                 | DESIGNED D.WE                          | ERTS CHECKED                           | DATE                                                                                        | DRAWN                      | CCAYATTE                     |                           |                              | DUAL                             | CARRIAGE                             | VAT                                             |                     | ш                  | N G I N E E F                | ING GRO                                                         |                           | A city                         | / Of swan                  |                                                         |                                                                    |                |
| 0 04.23 DW ISSUED 1 | OR CONSTRUCTION | C COPTRIGHT<br>THIS DOCUMENT IS N      | ND SHALL REMAIN THE PROF               | ERTY OF THE CITY OF SWAN. T                                                                 | HE DOCUMENT MAY BE USE     | DEOR THE PURPOSE FOR MH      | CHIT WAS COMMISSIONED AND | LACCORDANCE WITH THE TE      | BOF DRAI                         | AGE HYDR                             | DLOGY Q100                                      | 0                   |                    |                              |                                                                 | グ                         | Ŧ                              |                            | NT<br>L<br>L<br>L<br>L<br>L                             | <b>VIIOINO</b>                                                     |                |
| REV. DATE BY DESCRI | NOILC           | CRUCKOCONETAN 1 AN 111                 | E COMMISSION NO MONITO                 | WITH THE CIT OF ONLY ON THE                                                                 | THORSED USE OF TIRK VV     | UMENT IN MIT WAT IS FINAN    | 100                       |                              |                                  |                                      |                                                 |                     | _                  |                              |                                                                 |                           |                                |                            |                                                         |                                                                    |                |