Clearing Permit Decision Report

1. Application detalls

1.1. Permit application details

Permit application No.:
Permit type:

1.2. Proponent details

Proponent's name:

1.3. Property details

Property:
Local Government Authority:
Colloquial name:

4712/1
Purpose Permit

Hamersley Iron Pty Ltd

Iron Ore (Hamersley Range) Agreement Act 1963, Mineral Lease 4SA (AML 70/4) Shire of Ashburton
Brockman 2

1.4. Application

Clearing Area (ha) -0

No. Trees
1.5. Decision on application

Decision on Permit Application:
Decision Date:
Grant
25 January 2012

2. Background

2.1 Existing environment and information

2.1.1 Description of the native vegetation under application

Vegetation Description
Beard vegetation associations have been mapped for the whole of Western Australia and are useful to look at vegetation in a regional context. Two Beard vegetation associations have been mapped within the application area (GIS Database).

82: Hummock grasslands, low tree steppe; snappy gum over Triodia wiseana.
175: Short bunch grassland - savanna/grass plain (Pilbara).
Six vegetation assemblages have been recorded in the application area from the Biota (2010a) and HGM (1999) surveys (Rio Tinto, 2011).

Stony Plains and Foothills

EIAbTeTw - Eucalyptus leucophloia subsp. leucophloia scattered trees over Acacia bivenosa scattered shrubs over Triodia epactia, T. wiseana hummock grassland.
EITeTw - Eucalyptus leucophloia subsp. leucophloia scattered low trees to open woodland over Triodia epactia, T. wiseana hummock grassland.

Hill/Stony Plain
A2 - Eucalyptus leucophloia over Triodia wiseana.
A3 - Eucalyptus leucophloia and mixed shrubs over Triodia wiseana / T. pungens. A5 - Open tall shrubs dominated by Acacia exilis over Triodia wiseana.

Drainage

B8 - Dense Acacia ancistrocarpa / A. atkinsania / A. exilis tall shrubland.
Clearing Description Hamersley Iron Pty Ltd (Hamersley Iron) has applied to clear up to 50 hectares of native vegetation within an application area of approximately 205 hectares for the purpose of mineral exploration. The clearing is for RC evaluation drilling at Brockman 2 Pits 8 to 13 and will be required for tracks, pads and sumps. The drill pads will comprise 30 hectares, the sumps 4.8 hectares and the tracks 14 hectares (approximately).

Vegetation will be cleared by mechanical means, using a raised blade clearing technique where possible.
Vegetation Condition Good: Structure significantly altered by multiple disturbance; retains basic structure/ability to regenerate (Keighery, 1994).

To:
Excellent: Vegetation structure intact; disturbance affecting individual species, weeds non-aggressive (Keighery, 1994).

The vegetation condition is derived from vegetation and flora surveys undertaken by Biota (2010a) and HGM (1999).

3 Assessment of application against Clearing Principles

(a) Native vegetation should not be cleared if it comprises a high level of biological diversity.

Comments Proposal may be at variance to this Principle
The application area occurs within the Hamersley (PIL3) Interim Biogeographic Regionalisation of Australia (IBRA) subregion (GIS Database). This subregion is generally described as Mulga low woodland over bunch grasses on fine textured soils in valley floors, and Eucalyptus leucophloia over Triodia brizoides on skeletal soils of the ranges (CALM, 2002).

The vegetation within the application area is broadly mapped as Beard vegetation associations 82 and 175, both of which have approximately 100% of their Pre-European vegetation extent remaining in the bioregion (Shepherd, 2009; GIS Database). Two surveys (Biota 2010a; HGM 1999) have provided vegetation mapping for the application area, which has produced six different vegetation types (Rio Tinto 2011; Biota 2010a; HGM 1999). None of the vegetation types were identified as being restricted to the application area, however one was considered to be of moderate conservation significance. This unit comprised of vegetation associated with gorge/breakaways (A3) (Rio Tinto, 2011). HGM 1999 rated this unit as significant due to the potential of the habitat to support two priority species, Brachychiton acuminatus and Triumfetta leptacantha, however no records of this species were identified in the study area. Additionally, the species has been found in several other locations in the Pilbara (HGM, 1999). The later study by Biota 2010a did not identify any habitat in the study area that supported these priority species and did not record the species in surveys. A search of DEC's 'FloraBase' database showed that these species were categorised as Priority 4 and Priority 3 respectively and had been recorded at numerous locations in the Pilbara region (DEC, 2011a).

The condition ranking of vegetation types was deemed to be good to excellent, with some disturbance noted on the stony plains habitat. The vegetation present within the application area is widely represented in the Hamersley sub-region and it is unlikely that the proposed clearing would impact biodiversity values within these vegetation types on a broader scale (Rio Tinto, 2011).

The largest flora and vegetation survey in the Nammuldi-Silvergrass area (in which the application is located) was undertaken by HGM in July, August and September 1998 over an area of approximately 9,628 hectares that overlaps approximately half the current application area (HGM, 1999). A total of 358 species of vascular flora, belonging to 161 genera from 56 families, were recorded from the survey area (HGM, 1999).

The total number of vascular flora species recorded from the two studies (Biota, 2010a; HGM, 1999) was within the expected range for the areas of their size, while the dominant families and genera of species recorded were also considered typical of the local area and widely represented in the Pilbara region (Rio Tinto, 2011).

No Declared Rare Flora have been recorded in the application area and no Priority Flora species have been recorded in the application area (Rio Tinto 2011; GIS Database).

HGM 1999 recorded five weed species in the broad study area and Biota (2010a) recorded four species in the eastern broad study area. The weed species that have been recorded are Bipinnate Beggartick (Bidens bipinnata), Buffel Grass (Cenchrus ciliaris), Purslane (Portulaca oleracea), Spiked Malvastrum (Malvastrum americanum), Whorled Pigeon Grass (Setaria verticillata), Indian weed (Sigesbeckia orientalis) and Ruby Dock (Rumex vesicarius) (HGM, 1999; Biota, 2010a). Care must be taken to ensure that the proposed clearing activities do not spread or introduce weed species to non-infested areas. Potential impacts to biodiversity as a result of the proposed clearing may be minimised by the implementation of a weed management condition.

There are no Threatened Ecological Communities (TECs) or Priority Ecological Communities (PECs) occurring within the application area and the habitats recorded within the application area are not suitable for any of the listed TECs or PECs occurring in the locality (Rio Tinto, 2011; GIS Database). However the study area occurs within the large management buffer zone that surrounds the stands of the Themeda grasslands on Hamersley Station. The closest mapped stands of the actual TEC (rather than the buffer) lie just under 13 kilometres north-east of the application area. No vegetation types recorded within the application area are associated with the TEC and it is unlikely that the proposed clearing will impact on this community (Rio Tinto, 2011).

A vertebrate fauna survey was conducted by Hamersley Iron in November 1998 and May 1999 over the vast majority of the application area and an adjacent area to the north (Hamersley Iron, 1999). Trapping resulted in 66 reptiles, 21 mammals and 76 bird species being recorded (Hamersley Iron, 1999). This high species richness is consistent with other Pilbara surveys (Hamersley Iron, 1999). The high diversity of reptile species in particular is typical of the Australian arid zone (Hamersley Iron, 1999).

The Biota (2010b) study covered two areas, one to the west of the application area (the western polygon) and one adjacent to the application area (the eastern polygon). Biota (2010b) recorded a total of 75 vertebrate fauna species, comprising 37 bird species, 11 native mammals, 1 introduced mammal, 1 frog and 25 reptiles;
however the desktop review indicated the potential for 220 species to occur within the study area. It was concluded that the fauna habitat types of the study area are of a type that is well represented within both the study area and the Pilbara bioregion (Biota, 2010b).

The broad study areas described in Biota (2010a), Biota (2010b), Hamersley Iron (1999) and HGM (1999) do comprise a relatively high level of biological diversity. However, the application area is much smaller than these study areas (205 hectares). The only vegetation unit of moderate conservation significance, (Gorge/breakaways - A3), may be impacted by the proposed clearing, at a local scale. However, this vegetation unit is not restricted to the application area and it is not expected that this will impact flora diversity at a sub-regional or regional scale (Rio Tinto, 2011).

Based on the above, the proposed clearing may be at variance to this Principle.

Methodology	Biota (2010a)
	Biota (2010b)
	CALM (2002)
	DEC (2011a)
	Hamersley Iron (1999)
	HGM (1999)
	Rio Tinto (2011)
	Shepherd (2009)
	GIS Database:
	- Declared Rare and Priority Flora List
	- IBRA WA (Regions - Sub Regions)
	- Pre-European Vegetation
	- Threatened Ecological Sites Buffered

(b) Native vegetation should not be cleared if it comprises the whole or a part of, or is necessary for the maintenance of, a significant habitat for fauna indigenous to Western Australia.

Comments Proposal is not likely to be at variance to this Principle

Several fauna surveys have been undertaken over the application area and its surrounds between 1998 and 2010 as part of the Nammuldi-Silvergrass Project. These surveys have included a vertebrate fauna trapping survey over the large Nammuldi-Silvergrass tenements in 1998 and 1999 (Hamersley Iron, 1999) and targeted fauna surveys for conservation significant species (Biota, 2010b).

The dominant fauna habitats within the Nammuldi-Silvergrass leases are alluvial plains and outwash areas; areas associated with cracking and non-cracking clay soils; hill tops and slopes of the Marra Mamba ridges; and sites dominated by Spinifex that are often associated with minor creeklines (Hamersley Iron, 1999). Other fauna habitats within the leases are riverine sites, Mulga woodlands and a deep alluvial soil site. These other fauna habitat sites are generally small in their extent and are poorly represented on a local scale (Hamersley Iron, 1999). However, the habitats present within the application area are widespread and well represented in the locality and within the Pilbara bioregion (Rio Tinto, 2011)

A vertebrate fauna survey was conducted by Hamersley Iron in November 1998 and May 1999 over the vast majority of the application area and an adjacent area to the north (Hamersley Iron, 1999). Trapping resulted in 66 reptiles, 21 mammals and 76 bird species being recorded (Hamersley Iron, 1999). High fauna richness is not unusual for the Pilbara region as it is a transitional zone between bioclimatic regions and a major centre for biodiversity (Biota, 2010a; Department of Sustainability, Environment, Water, Population and Communities, 2011).

Thirteen vertebrate fauna species listed as Threatened Species under the Environment Protection and Biodiversity Act 1999 or specially protected under Western Australian legislation have the potential to occur within the application area (Rio Tinto, 2011; Hamersley Iron, 1999; Biota, 2010b).

The conservation significant species that have the potential to occur within the application area are listed below, along with their conservation status:

- Northern Quoll (Dasyurus hallucatus) Schedule 1;
- Pilbara Orange Leaf-nosed Bat (Rhinonicteris aurantius) Schedule 1;
- Pilbara Olive Python (Liasis olivaceus barroni) Schedule 1;
- Rainbow Bee-eater (Merops omatus) Migratory;
- Peregrine Falcon (Falco peregrinus) Schedule 4;
- Spectacled Hare-wallaby (Lagorchestes conspicillatus leichardti) Priority 3;
- Australian Bustard (Ardeotis australis) Priority 4;
- Bush Stone-curlew (Burhinus grallarius) Priority 4;
- Ghost Bat (Macroderma gigas) Priority 4;
- Long-tailed Dunnart (Sminthopsis longicaudata) Priority 4;
- Skink (Notoscincus butlen) Priority 4;
- Short-tailed Mouse (Leggadina lakedownensis) Priority 4; and
- Western Pebble-mound Mouse (Pseudomys chapmani) Priority 4 (Rio Tinto, 2011; Hamersley Iron, 1999; Biota, 2010b).

Of these species, the following have been recorded in the vicinity of the application area during the two studies (Hamersley Iron, 1999; Biota 2010b; Rio Tinto, 2011):

- Rainbow Bee-eater;
- Ghost Bat;
- Short-tailed Mouse;
- Long-tailed Dunnart;
- Western Pebble-mound Mouse; and
- Notoscincus butleri.

The three Schedule 1 species listed above, including the Northern Quoll were not recorded in the fauna survey by Biota 2010b, but suitable habitat for these three species was thought to occur in the western polygon of the study area (Biota 2010b). However, the application area for the proposed clearing occurs adjacent to the eastern polygon of the Biota (2010b) study, so it is unlikely that suitable habitat for these species occurs in the application area.

The Peregrine Falcon is widespread and inhabits mainly cliffs along coasts, rivers and ranges, and wooded watercourses and lakes (Johnstone and Storr, 1998), therefore its conservation status is unlikely to be affected by this clearing proposal.

It is not expected that any of the other species listed above would be impacted by the proposed clearing, given that none of the species are restricted to core habitat located within the study area (Rio Tinto, 2011).

The impact on subterranean fauna was considered to be one of the key environmental factors by the Environmental Protection Authority (EPA) in its assessment report on the original Nammuldi-Silvergrass Project (EPA, 2000). However, the impacts on subterranean fauna are from the mine dewatering and not from the clearing of native vegetation (EPA, 2000). The clearing of 50 hectares of native vegetation within the application area is unlikely to impact on the subterranean habitat of the stygofauna.

The application area provides habitat to many native fauna species, including conservation significant species, however the habitat types are common both locally and regionally.

Based on the above, the proposed clearing is not likely to be at variance to this Principle.
Methodology Biota (2010b)
Department of Sustainability, Environment, Water, Population and Communities (2011)
EPA (2000)
Hamersley Iron (1999)
Johnstone and Storr (1998)
Rio Tinto (2011)
(c) Native vegetation should not be cleared if it includes, or is necessary for the continued existence of, rare flora.
Comments Proposal is not likely to be at variance to this Principle
According to available databases there are no known records of Declared Rare Flora (DRF) within the application area (GIS Database). Additionally, no DRF have been recorded in surveys of the application area (Rio Tinto, 2011). There is, however, DRF that has the potential to occur within 20 kilometres of the application area (Lepidium catapycnon) (DEC, 2011b). Suitable habitat for this species is present in the application area, however no populations have been recorded form the Brockman-Nammuldi area to date.

Based on the above, the proposed clearing is not likely to be at variance to this Principle.
Methodology Rio Tinto (2011)
DEC (2011b)
GIS Database:

- Declared Rare and Priority Flora List
(d) Native vegetation should not be cleared if it comprises the whole or a part of, or is necessary for the maintenance of a threatened ecological community.

Comments Proposal is not likely to be at variance to this Principle

According to available databases there are several occurrences of the Threatened Ecological Community (TEC) 'Themeda grasslands on cracking clays' in the vicinity of the application area (GIS Database).

Vegetation mapping has been conducted over the application area and no vegetation types occurring within the application area resemble this TEC (Rio Tinto, 2011).

The application area is within a large management buffer zone of this TEC, however, the nearest stands of the actual TEC are approximately 13 kilometres north-east of the application area. Given that no vegetation types recorded in the application area are associated with the TEC, it is unlikely that the proposed clearing will impact on this community (Rio Tinto, 2011).

Based on the above, the proposed clearing is not likely to be at variance to this Principle.
Methodology Rio Tinto (2011)
GIS Database:

- Threatened Ecological Sites Buffered
(e) Native vegetation should not be cleared if it is significant as a remnant of native vegetation in an area that has been extensively cleared.

Comments
Proposal is not at variance to this Principle
The clearing application area falls within the Pilbara Interim Biogeographic Regionalisation for Australia (IBRA) bioregion in which approximately 99.9% of the pre-European vegetation remains (see table) (Shepherd, 2009; GIS Database). This gives it a conservation status of "Least Concern" according to the Bioregional Conservation Status of Ecological Vegetation Classes (Department of Natural Resources and Environment, 2002).

The vegetation of the clearing application area has been mapped as Beard vegetation associations:
82: Hummock grasslands, low tree steppe; snappy gum over Triodia wiseana; and
175: Short bunch grassland - savannah/grass plain (Pilbara) (Shepherd, 2009; GIS Database).
According to Shepherd (2009), over 99\% of each of these vegetation associations remain at a state level and 100% of vegetation remains at a bioregional level (see table). These vegetation associations would be given a conservation status of "Least Concern" at both a state and bioregional level (Department of Natural Resources and Environment, 2002).

The vegetation under application is not a remnant of vegetation in an area that has been extensively cleared.

	Pre-European Area (ha)*	Current Extent (ha)	Remaining $\%^{*}$	Conservation Status	Pre-European \% in IUCN Class I-IV Reserves	
IBRA Bioregion - Pilbara	$17,804,193$	$17,785,001$	~ 99.9	Least Concern	6.3	
Beard Veg Assoc. - State						
82	$2,565,901$	$2,565,901$	~ 100	Least Concern	10.2	
175	526,206	524,861	~ 99.7	Least Concern	4.2	
Beard Veg Assoc. - Bioregion						
82	$2,563,583$	$2,563,583$	~ 100	Least Concern	10.2	
175	507,036	507,006	~ 100	Least Concern	4.4	

* Shepherd (2009)
** Department of Natural Resources and Environment (2002)

Based on the above, the proposed clearing is not at variance to this Principle.
Methodology Department of Natural Resources and Environment (2002)
Shepherd (2009)
GIS Database

- IBRA WA (Regions - Sub Regions)
- Pre-European Vegetation
(f) Native vegetation should not be cleared if it is growing in, or in association with, an environment associated with a watercourse or wetland.

Comments Proposal may be at variance to this Principle

There are no swamps, local wetlands, major watercourses, 'Wetlands of Regional Significance' or 'Wetlands of National Significance' within the application area. There are some minor, ephemeral drainage lines located in
the application area, which are only likely to flow after significant rainfall (Rio Tinto, 2011).
The minor non-perennial watercourses, and their associated vegetation, are widespread in the Pilbara region (GIS Database).

Rio Tinto (2011) derived 6 broad vegetation types based on previous vegetation mapping of the application area and one of these is associated with drainage areas - B8: Dense Acacia ancistrocarpa / A. atkinsania / A. exilis tall shrubland.

Based on the above, the proposed clearing may be at variance to this Principle. However, vegetation associated with minor drainage lines is widespread in the region and due to the minor nature of the proposed clearing for mineral exploration there is unlikely to be significant impacts on any watercourse or wetland.

Methodology Rio Tinto (2011)
GIS Database:

- Hydrography, Linear
- Rivers
(g) Native vegetation should not be cleared if the clearing of the vegetation is likely to cause appreciable land degradation.

Comments Proposal is not likely to be at variance to this Principle
According to available datasets the application area intersects the Boolgeeda and Newman Land Systems (GIS Database).

The Boolgeeda Land System is characterised by stony lower slopes and plains below hill systems supporting hard and soft spinifex grasslands and mulga shrublands (Van Vreeswyk et al., 2004). The vegetation is generally not prone to degradation and the system is not susceptible to erosion (Van Vreeswyk et al, 2004).

The Newman Land System is characterised by rugged jaspilite plateaux, ridges and mountains supporting hard spinifex grasslands (Van Vreeswyk et al, 2004). Each of the landforms in the land system have a mantle of abundant pebbles of ironstone and other rocks, which translates to a low soil erosion risk (Van Vreeswyk et al., 2004).

The proposed clearing of 50 hectares over a total application area of approximately 205 hectares is unlikely to result in appreciable land degredation.

Based on the above, the proposed clearing is not likely to be at variance to this Principle.
Methodology Van Vreeswyk et al. (2004)
GIS Database:

- Rangeland Land System Mapping
(h) Native vegetation should not be cleared if the clearing of the vegetation is likely to have an impact on the environmental values of any adjacent or nearby conservation area.

Comments Proposal is not likely to be at variance to this Principle
The proposed clearing is not located within a conservation reserve (GIS Database). The nearest conservation area is Karijini National Park, which is located approximately 57 kilometres east of the application area (GIS Database). A large proportion of the vegetation in the Pilbara bioregion remains uncleared, approximately 99.9% (Shepherd, 2009), so it is unlikely the application area provides an important buffer or ecological linkage to Karijini National Park.

Based on the above, the proposed clearing is not likely to be at variance to this Principle.
Methodology Shepherd (2009)
GIS Database:

- DEC Tenure
(i) Native vegetation should not be cleared if the clearing of the vegetation is likely to cause deterioration in the quality of surface or underground water.

Comments Proposal is not likely to be at variance to this Principle

According to available databases the application area is not located within a Public Drinking Water Source Area (PDWSA) (GIS Database). The nearest PDWSA is Millstream Water Reserve, which is approximately 16 kilometres north-east of the application area (GIS Database). At this distance the proposed clearing is unlikely to deteriorate the quality of surface or underground water within the reserve.

The groundwater salinity within the application area is approximately $500-1,000$ milligrams/Litre Total
Dissolved Solids (TDS) (GIS Database). Given the size of the area to the cleared (50 hectares) compared to

 :əseqerea SIO

 sұиәшш๐๐

> әр!мәәеІS 'Ки!и!!еS дәјемриполэ səouinold дәјемриnoro :əseqeied SIO (เLOZ) 아u! \perp 임

 pue әןqeı!

-Кииеэџ!ииб!

 иo！̣и иo！！enәsuoう

 ләңем ıо јиәшиедә口 е！！ецй

9ヨ1
L．＇s
Ə७ヲ IMİ
NOกI
\forall ¢al
ey
SIO
łフV フ®dヨ
$\mathfrak{1} \downarrow \mathrm{d}$ d
MOC
$\forall 700$
प्वlod
$\exists{ }^{\circ} \mathrm{C}$
dWC
170
VIG
dヨa
Hヨa
）ヨa
$\forall M=1$ a
W7VO
Wog

：suikuo．job

 －티인ㅅ

 ：чэ！чм sә！эәds әл！！еu \forall ：рәəәбиериヨ
‘еиә！！

＇سıо
 ло ：əбue」

＇spueן uo！ןenasuoo uo pəəuәsəıdə」

ε әррәуэ्ऽ

乙 әпрәуэ्ड
l әпрәуэ्ड

