

Environmental Services

Specialising in:

Acid Sulphate Soils Contaminated Site Assessment Air Quality Investigations Remediation Advice and Design Groundwater Management Facility Maintenance

ABN 36 835 856 256

NUTRIENT AND IRRIGATION MANAGEMENT PLAN

456 Rapids Road, Serpentine

PREPARED FOR:

Hope Valley Nursery Pty Ltd

Mobile Dewatering Environmental Services as trustee for Mobile Dewatering Environmental Services Unit Trust U1/22 Elmsfield Road, Midvale, Western Australia 6056 U1/69 Pinjarra Road, Mandurah, Western Australia 6210 P: +61 (0) 8 9250 6960 F: +61 (0) 8 92508269 W: www.environmentalservices.com.au

DOCUMENT DETAILS

Title:	Nutrient and Irrigation Management Plan (NIMP)
Project Address:	Nursery Development at 456 Rapids Road, Serpentine Western Australia
Job Number:	E2011-109
Project Manager:	Greg Watts
Email:	greg@environmentalservices.com.au
Date:	Final
Synopsis:	This document and subsequent investigation has been prepared in accordance with Water Quality Protection Note 33, June 2010 and Water Quality Information Sheet 04, August 2010, Department of Water, Western Australia.

DOCUMENT DISTRIBUTION

Version No	Written by Date	1 st Review Date	2 nd Review Distributed to Date Date		Copies
DRAFT	J Latchford 10/09/2013	G Watts 10/09/2013	N/A	email	
FINAL	R Burnell G Watts 10/10/2013 14/10/2013		N/A	Hope Valley Nursery P/L DER Rowe Group	2 (email/print) 1 (print) 2 (email/print)
Signed					

Disclaimer

This document has been prepared in accordance with a scope of works, set out in a proposal, or as otherwise agreed, between the client and MDW Environmental Services (MDWES). The scope of work may have been limited by time, budget, access and or other constraints and has been prepared in the absence of any knowledge of the study area other than that stated.

This document has been prepared on behalf of and for the exclusive use of the client, and is subject to and issued in accordance with the agreement between MDWES and the client. MDWES accepts no liability or responsibility whatsoever in respect to its use, or reliance upon, by any third party outside of its intended use. This document has commercial confidence status. Copying of this report or any part thereof is not permitted without the authorisation of the client, for the expressed purpose of regulatory assessment. Unless specifically agreed otherwise, MDWES retains intellectual property rights over the contents of this document.

Unless otherwise stated, MDWES regards the extent of investigations and assessments reasonable in the context of the scope of works and the purpose of the investigation. The information contained in this document is provided in good faith in the general belief that no information, opinions, conclusions or recommendations made are misleading, but are reasonable and appropriate at the time of issue of this document. This document must be read in its entirety. Users are cautioned that assumptions made in this document may change over time and it is the responsibility of the user to ensure that assumptions remain valid. Reported results, while accurate at the time of reporting cannot be considered absolute or conclusive without long term follow up studies. If future uses of the "Site" change there may be a need to appoint an auditor. The scope of works of this investigation is not necessarily sufficient to meet an auditor's needs.

Comments and opinions presented in this document are based on the extent of the scope of works and / or on information supplied by the client, their agents and / or third parties. In preparing this document MDWES has relied upon reports, data, surveys, analyses, designs, plans and / or other information provided by the client and other individuals and organisations outside its control. Except as stated otherwise in the document MDWES has not verified the accuracy or completeness of this information. To the extent that the statements, opinions, facts, information, conclusions and / or recommendations in the document are based in whole or part on this information, those are contingent upon the accuracy and completeness of the information. MDWES will not be liable in relation to incorrect conclusions should any information be incorrect or have been concealed, withheld, misrepresented or otherwise not fully disclosed.

Within the limitations imposed by the scope of work, the assessment of the study area and preparation of this document have been undertaken and performed in a professional manner, in accordance with generally accepted practices and using a degree of skill and care ordinarily exercised by reputable environmental consultants and occupational hygienists under similar circumstances. No other warranty, expressed or implied, is made. MDWES will not be liable to update or revise the document to take into account any events, circumstances or facts occurring or becoming apparent after the date of this document.

Specific warning is given that many factors, natural or artificial, may render conditions different from those that prevailed at the time of investigation and should they be revealed at any time, they should be brought to our attention so that its significance may be assessed and appropriate advice may be offered. MDWES, its agents and employees, expressly disclaim any and all liability for representations, expressed or implied, contained in, or omissions from, this report or any of the written or oral communications transmitted to the client or any third party.

Acceptance of this document denotes acceptance of these terms.

TABLE OF CONTENTS

ΕX	ECU	TIVE SUMMARY	5
1	SU	MMARY OF LAND USE PROPOSAL	7
2	PR	OJECT SETTING	9
	2.1 2.2	Existing and Historic Site Use Compatibility with Local and State Planning Authorities	9 11
3	LA	ND USE AND NUTRIENT APPLICATION DETAILS	12
	3.1 3.2	Planned Land Use Human Details	12 12
4	LO	CAL RAINFALL AND EVAPORATION	13
2	4.1 4.2	Rainfall and Evaporation	13 13
5	SO	ILS AND LANDFORM DESCRIPTION	14
Ę	5.1	General Description	14
6	WA	TER RESOURCES DESCRIPTION AND USE	17
	5.1 5.2 5.3 5.4 5.5	Natural Sensitive Water Resources Land Subject to Flooding Groundwater Description and Depth Water Quality Data Current Water Use	17 19 19 19 19 19
7	SIT	E MANAGEMENT	20
7	7.1 7.2	Irrigation Nutrient Application	20 23
8	DR	AINAGE AND CONTAMINANT LEACHING CONTROLS	26
9	SU	RFACE WATER PROTECTION	26
10	G	ROUNDWATER PROTECTION	26
11	V	EGETATION MANAGEMENT	26
12	Ρ	ESTICIDE STORAGE AND USE	30
13	S	ITE MONITORING AND REPORTING	33
1	3.1 13. 13.	Pre-development nutrient and irrigation management program 1.1 Groundwater Monitoring Sampling 1.2 Monitoring Well Construction	33 33 34
14	G	UALITY ASSURANCE/QUALITY CONTROL PROCEDURES	36
1	4.1	Quality Assurance	36

14.	.1.1 Groundwater Sampling Procedure	. 36
14. 17 2	.1.2 Decontamination of Sampling Equipment	. 37
14.2		57
15 A	ASSESSMENT CRITERIA	38
16 F	RESULTS	39
16.1	Groundwater Field Results	39
16.2	Groundwater Quality Parameters	39
16.3	Groundwater Levels	39
16.4	Groundwater Analytical Results	43
16.5	Groundwater Parameters	44
16.6	Major Anions and Cations	45
16.7	Metals	45
16.8	Nutrients	46
16.9	Historical Data	46
16.10	0 Summary	54
17 C	CONTINGENCY PLANS	57
18 F	REFERENCES	58

LIST OF TABLES

Table 1: Summary of Land Use Details	7
Table 2: Project Setting	9
Table 3: Typical analysis of the soil mixes which will be used, prior to ferti addition	liser 23
Table 4: The type of fertiliser and constituents used in potting soil	24
Table 5: Fertilisers used in the Fertigation System	25
Table 6: Commonly uses chemicals	30
Table 7: Groundwater Assessment Methodology	33
Table 8: Groundwater Levels	40
Table 9: Field Groundwater Parameters	41
Table 10: HVNMW1 Laboratory Results	48
Table 11: HVNMW2 Laboratory Results	49
Table 12: HVNMW3 Laboratory Results	50
Table 13: HVNMW4 Laboratory Results	51
Table 14: HVNMW5 Laboratory Results	52
Table 15: HVNMW6 Laboratory Results	53
Table 16: Acid Sulfate Soil Disturbance Indicators	55

LIST OF FIGURES

Figure 1: Site Location	8
Figure 2: Site Layout Map	10
Figure 3: Contour Map of the Proposed Site	15
Figure 4: Proposed Nursery Layout	16
Figure 5: Wetland Locations at Proposed Site	18
Figure 6: Irrigation System	21
Figure 7: Nutrient Retention Basin	22
Figure 8: Fauna Habitat Locations at Proposed Site	28
Figure 9: Revegetation Plan	29

APPENDICES

Appendix A – Hydrological modelling of land clearing on Rapids Road, Serpentine (CDM Smith 2013)

Appendix B – Groundwater Field Sheets (February, June and August)

- Appendix C February Laboratory Documentation
- Appendix D June Laboratory Documentation
- Appendix E August Laboratory Documentation
- Appendix F Contour and Feature Survey (Midland Survey Services)

EXECUTIVE SUMMARY

MDW Environmental Services (MDWES) was instructed by Hope Valley Nursery Pty Ltd to develop a Nutrient and Irrigation Management Plan (NIMP), for the wholesale nursery development at 456 Rapids Road, Serpentine, Western Australia (the Site). In order to develop the wholesale nursery, 5.462 ha of the 47 ha property will need to be cleared of existing vegetation. To offset this loss the property owners have committed to the rehabilitation of three areas on their property that have been degraded by over-grazing activity over many years. These three areas (16.35 ha in total) are adjacent to groves of mature jarrah and marri trees and currently have a limited understorey.

The property also has contains three wetlands, these are mapped as a damp land wetlands within the Bennett Brook wetland system. One of the wetlands (7402 a damp land with the Management Category of Multiple Use) is located in the north eastern corner of the property. This area is not part of the proposed wholesale nursery. The other two wetlands are within the area for development. These are wetland 15364 and 7590, both damp lands with the Management Category of Resource Enhancement.

The proposed wholesale nursery will have an office, buildings for potting plants, storing chemicals and equipment, tunnel houses, outdoor growing areas, water storage tanks and waste water treatment ponds. The site will be cleared and at least 50 cm of fill used to level and grade the production area ensuring that the slope of the land will allow water to runoff towards the water retention basin. All growing areas and tunnel houses will be covered with limestone roadbase, compacted and rolled until approximately a 100mm thickness is achieved. Contaminant leaching to the groundwater will be controlled by the impermeable roadbase and the subsequent collection of all surface runoff in a nutrient retention basin.

A chemical storage facility for the storage and handling of pesticides will be built on the nursery site. The facility will be constructed using best management practices guidelines for the storage and handling of horticultural chemicals. The facility will have a bunded concrete floor to ensure spills are contained within the facility. All chemicals will be stored in locked cages within the facility. It will be insulated and have roof top ventilation to maintain an even temperature. All drainage from the facility will be collected in a waste chemical evaporation pit, which will have sealed concrete liners and organic material to breakdown residual chemicals from the rinsate. A clear plastic roof, to increase solarisation and evaporation, will be installed on top of the pit.

The nursery will be used to grow a mixture of native and annual flowering plants which will be grown in pots of various sizes. Imported soils will be used in the pots along with slow release fertilisers, which will be blended from an accredited soil provider and stored in fully sealed bunds. In addition to the slow release fertilisers, a fertigation system will operate in conjunction with the irrigation system. The type and quantity of fertiliser used depends upon the species of plant and the time of the year. There will be no broad scale application of fertiliser by mechanical spreading. Through the production of all crops in pots, soil moisture levels can be easily monitored and the irrigation system matched to the water needs of the crops, thus reducing excessive watering and nutrient leaching. Leaching of fertilisers to the groundwater will be controlled by the cover of a compacted limestone roadbase covering the production areas, and the subsequent collection of all surface runoff in a nutrient retention basin.

Groundwater samples were collected from six bores adjacent to the proposed nursery in February, June and August 2013. The samples were analysed for physicochemical parameters to assist in understanding the groundwater in the superficial aquifer. As an application, for a new licence to take water from this aquifer, for an annual groundwater entitlement of 400,000 kL will be submitted for the nursery operations. The monitoring results indicate that groundwater is mildly acidic with a pH of between 4.6 and 6.5. This indicates that the groundwater may need to be treated prior to use. The groundwater may be affected by the oxidation of sulphides and may need monitoring to continue during the development and operation of the nursery. The elevated metal concentrations in the groundwater in conjunction with the potential acid sulphate soil risk, requires monitoring of the groundwater to keep a check of possible problems. As the nutrient concentrations are already elevated above guideline concentrations, it will be important to ensure that all waste water from the nursery is captured and treated in the nutrient retention basin.

1 SUMMARY OF LAND USE PROPOSAL

MDW Environmental Services (MDWES) was instructed by Hope Valley Nursery Pty Ltd to conduct a Nutrient and Irrigation Management Plan (NIMP), for the wholesale nursery development at 456 Rapids Road, Serpentine, Western Australia (the Site). The owners of 456 Rapids Road, Serpentine wish to develop a wholesale nursery on 19.4 ha of the project area (Figure 1). Anticipated start date is when approval has been granted. The duration of the intensive land use is indefinite. Table 1 provides a site summary.

Proponent's Name:	Hope Valley Nursery Pty Ltd
Postal Address:	37 Holmes Road, Oakford, Western Australia.
Telephone:	08 9397 1066
E-mail:	vaune@hopevalleynursery.com.au
Site Location:	Lot 838 on deposited plan 202654. The property street address is 456 Rapids Road, Serpentine, Western Australia.
Proposed Site Use:	Commercial – The proponents wish to develop a wholesale nursery on 19.4 ha of the 47 ha property they own.

Table 1: Summary	y of Land Use Details
------------------	-----------------------

Figure 1: Site Location

2 PROJECT SETTING

2.1 Existing and Historic Site Use

The property is approximately 3.6 km west of the town of Serpentine. It is relatively flat pasture land with several stands of remnant trees and 12 different vegetation associations. The majority of the property has been grazed by cattle for many years and is significantly degraded (Nuts about Natives 2012; Terrestrial Ecosystems, 2012b). A residential dwelling and two sheds currently exist on the property. Table 2 provides a summary of the site setting.

Site Name:	456 Rapids Road, Serpentine, Western Australia			
Site Location:	456 Rapids Road, Serpentine, Western Australia			
Size of the development footprint:	19.4 ha of the 47 ha are proposed for development.			
Current Site Use:	Agriculture – The property was previously use for grazing cattle.			
Neighbouring Properties and Land use	Figure 2 is the site layout map showing the site boundary of the property and the approximate location of the nursery. The nursery will be developed in stages, initially from the eastern boundary, then progressing towards the west.			
Current Ownership:	Graeme P Hall and Vaune P Hall			
Local Shire:	Shire of Serpentine - Jarrahdale			
Previous Known Environmental Investigations/Reports:	Nuts about Natives (2012) - <u>Flora and Vegetation Survey of 456 Rapids Rd, Serpentine.</u> Terrestrial Ecosystems (2012a) – <u>Black Cockatoo Assessment of 456 Rapids Road, Serpentine.</u> Terrestrial Ecosystems (2012b) – <u>Referral of proposed action, 456 Rapids Road Serpentine, Western Australia.</u> Mark Lund (2013) <u>Advice on Dampland at 456 Rapids Road, Serpentine.</u>			

Figure 2: Site Layout Map

2.2 Compatibility with Local and State Planning Authorities

The property is within the Shire of Serpentine – Jarrahdale and as such a proposal has been made to the Shire for planning approval. The property is zoned Rural under the Town Planning Scheme and the Metropolitan Regional Scheme. The area under application falls within the Serpentine Groundwater and Surface Water Areas. These are proclaimed areas under the Rights in Water and Irrigation Act 1914. The property already has a bore and groundwater licence. An application for additional water will be submitted to the Department of Water.

The application area is within the Environmental Protection (SCP Peel Harvey Inlet) Policy 1992 area, the purpose of which is to set out the environmental quality objectives for the Peel Inlet and Harvey Estuary. It also outlines how these objectives are to be achieved and maintained. One objective of the EPP is to limit the median load of total phosphorus flowing into the estuary. It is implemented in the Shire of Serpentine – Jarrahdale through their planning schemes (DEC, 2013).

The Commissioner of Soil and Land Conservation has advised that the area proposed for clearing may not be suitable for the purpose of a wholesale nursery development as the risk of eutrophication causing land degradation is high to extreme. It recommended that a nutrient management plan be developed to ensure that excess nutrients do not leach into the mapped wetland. Additional hydrological information is also required to determine the impact the proposed development will have on adjacent land, wetlands, rare flora and threatened ecological communities (DEC, 2013).

The proponent has referred this proposal to the Department of Sustainability, Environment, Water, Population and Communities who determined this action is not a controlled action. It therefore does not require further assessment and approval under the Environment Protection and Biodiversity Conservation Act 1999 (SEWPAC, 2012). There are no Aboriginal sites of significance mapped within the application area (DEC, 2013).

The Shire of Serpentine – Jarradale advise that the vegetation found on site is mapped as a Potentially Locally Significant Natural Area, identified under the South West Biodiversity Project and the Perth Region Biodiversity Project. It also has been identified as part of a regional vegetation link for the Perth Metropolitan region (DEC, 2013).

Negotiations have proceeded with the DER regarding the application for the Clearing Permit and the proponent is confident that and "in principle" agreement will be issued imminently.

3 LAND USE AND NUTRIENT APPLICATION DETAILS

3.1 Planned Land Use

The owners of the Site wish to develop a wholesale nursery on 19.4 ha of their 47 ha property. They currently own and operate a wholesale nursery (Hope Valley Nursery) on Lot 26 Holmes Road, Oakford. Operation of the new nursery will be similar to the current nursery, but where feasible improved management techniques will be used.

The wholesale nursery will be used to grow a mixture of native and annual flowering plants which will be grown in pots of various sizes. Imported soils will be used in the pots along with slow release fertilisers, which will be blended from an accredited soil provider and stored in fully sealed bunds. In addition to the slow release fertilisers, a fertigation system will operate in conjunction with the irrigation system. The type and quantity of fertiliser used depends upon the species of plant and the time of the year. There will be no broad scale application of fertiliser by mechanical spreading.

3.2 Human Details

There is an existing residential dwelling and two sheds on the property, adjacent to the proposed nursery. A caretaker lives in the house and domestic waste is treated by septic tanks. The proposed nursery will employ 10 people working in the office, potting shed and growing area. Domestic wastewater from the wholesale nursery will be treated by a septic system.

4 LOCAL RAINFALL AND EVAPORATION

4.1 Rainfall and Evaporation

The property on Rapids Road has a temperate climate, with hot dry summers and cool wet winters. Most of the rainfall is delivered as winter cold fronts pushed up from the south-west. Intermittent summer rainfall can occur, often as a result of extropical cyclones tracking south. The closest weather station to the property is Serpentine (9039) at the foot of the Darling Scarp. Rainfall data from 1970 to 2010 analysed by the Department of Water calculates the average annual rainfall to be 919 mm. Pan evaporation exceeds rainfall in all years, averaging 1 675 mm. This results in a low ratio of rainfall to runoff, particularly in the warmer months (Department of Water, 2012).

4.2 Infiltration

CDM Smith Australia Pty (CDM Smith) was engaged to prepare a hydrologic study of the proposed development of a nursery at the Site. CDM Smith performed a study to understand existing water movement and how the construction of the nursery will cause hydrological changes to surface and groundwater. The report also addressed changes to the retained southern wetland.

Topographic analysis of ground elevations determined that the site contains three subcatchments, which primarily drain to the west and northwest. The proposed development will decrease the area of the subcatchment draining to the northern wetland by 16%, and the area draining to the southern wetland by 33%.

Hydrologic modelling was performed to estimate the impact on surface water flows. The magnitude of extreme flows to the northern wetland was determined with XP-RAFTS, a runoff- routing model. The change in total volume to the wetland was determined with AWBM, a daily water balance model.

The overall impact on the volume and discharge rate of surface water flows is relatively minor, due to the high rates of infiltration and low annual rainfall. This conclusion is reflected in both the design rainfall approach and the AWBM approach. The northern wetland will receive approximately 16% less volume of water and 10% lower peak discharge. The southern wetland will receive approximately 31% less volume of water and 28% lower peak discharge, but will retain all runoff in the post-development design.

Groundwater flow will not be significantly impacted at the site due to low recharge and lateral rates of flow. Development is likely to increase depth to water and is unlikely to result in water- logging. Nitrogen concentrations in groundwater and surface water are unlikely to change significantly due to the proposed development.

The hydrologic study points out that care is needed in the design of the nursery site to avoid waterlogging outside the nursery and provide for sufficient capture of high rainfall events. The full report is presented in Appendix A.

5 SOILS AND LANDFORM DESCRIPTION

5.1 General Description

The property is located on Bassendean association soils which are described as deep bleached grey siliceous sands of medium texture. Water leaches through this soil association and drains into the Serpentine River, approximately three kilometres away. A contour map for the site is displayed in Figure 3. Land surface elevations vary between 24 and 32 m AHD across the site.

There has been no sampling undertaken for the determination of the Phosphorus Retention Index as all production areas will be covered with limestone, compacted and rolled until approximately a 100mm thickness is achieved. This impermeable barrier will be utilised to prevent water and nutrient loss to groundwater and to increase ability for irrigation water to be recycled through the nursery.

Acid sulphate soil sampling was not undertaken for the site as it is not likely acid sulphate soils would be disturbed by the nursery development and operation. The site is classified as moderate to low risk in the Acid Sulphate Soil Risk Map, Swan Coastal Plain (DEC-001-25.01.2010 15:16:09).

The proposed wholesale nursery layout is displayed in Figure 4. The site will be cleared and at least 50 cm of fill used to level and grade the production area to ensuring that the slope of the land will allow water to runoff towards the water retention basin. All growing areas and tunnel houses will be covered with limestone, compacted and rolled until approximately a 100mm thickness is achieved.

Figure 3: Contour Map of the Proposed Site

Figure 4: Proposed Nursery Layout

6 WATER RESOURCES DESCRIPTION AND USE

6.1 Natural Sensitive Water Resources

According to the Geomorphic Wetlands Coastal Plain dataset maintained by the Department of Environment, Western Australia, 456 Rapids Road contains three wetlands (Figure 5). These are mapped as a dampland type of wetland within the Bennett Brook wetland system. One of the wetlands (7402 a dampland with the Management Category of Multiple Use) is located in the north eastern corner of the property (Figure 5). This category means wetlands with few remaining important attributes and functions (EPA, Guidance Statement 33). This area is not part of the proposed wholesale nursery.

The other two wetlands are within the area for development. These are wetland 15364 and 7590, both damplands with the Management Category of Resource Enhancement (Figure 5). These are wetlands which may have been partially modified but still support substantial ecological attributes and functions. The ultimate objective is to manage, restore and protect towards improving their conservation value (EPA, Guidance Statement 33).

Dampland 15364 is largely degraded as it has been grazed for many years. However, dampland 7590 was assessed by Nuts about Natives (2012) to have a vegetation condition of very good. Although there was a significant presence of weeds in part of the wetland, overall, the native vegetation cover was very high.

It is also important to consider the wetlands on adjacent properties as modifications to those in the wholesale nursery area may also impact these. A wetland to the north of this property, dampland 7401, supports rare flora and threatened ecological communities. It may be impacted if water flowing north, from 456 Rapids Road, was altered in quality and quantity.

CDM Smith Australia Pty Ltd were contracted to develop hydrological models on the site to understand the possible impacts of the nursery on the wetlands. Topographic analysis of ground elevations determined that the site contains three subcatchments, which primarily drain to the west and northwest (Figure 5). They predict that the proposed development will decrease the area of the subcatchment draining to the northern wetland by 10% (CDM Smith, July 2013).

Two models were used to estimate the impact on surface water flows. The magnitude of extreme flows to the northern wetland was determined with XP-RAFTS, a runoff-routing model. The change in total volume to the wetland was determined with AWBM, a daily water balance model. The overall impact on the volume and discharge rate of surface water flows is relatively minor, due to the high rates of infiltration and low annual rainfall. The northern wetland will receive approximately 9% less volume of water and 5% lower peak discharge (CDM Smith, July 2013).

Figure 5: Wetland Locations at Proposed Site

6.2 Land Subject to Flooding

No flooding issues have been recorded for the site.

6.3 Groundwater Description and Depth

The property falls within the proposed Serpentine groundwater plan area. This includes four main aquifers, which are: the superficial aquifer; the Leederville aquifer; the Cattamarra aquifer; and the Yarragadee.

Watertable contours from regional bores measured in May 2003 (DoW, 2013) show that the groundwater flow is in a North-Westerly direction. The seasonal variations in groundwater levels are 2-3 m, with the minimum occurring around May. Across much of the site, recharge to the superficial groundwater is through free draining sandy soils. In areas where the watertable reaches the surface there will be surface flow, which will be of a smaller portion to vertical recharge and evaporative losses (CDM Smith, 2013).

6.4 Water Quality Data

Groundwater monitoring was undertaken as a component of the Pre-development nutrient and irrigation management program. The data is presented in Section 13.

6.5 Current Water Use

The property owners have a Licence to Take Water from the Perth – Leederville Aquifer, issued by the Department of Water for the period 1 March 2012 to 1 March 2022. The authorised activities are: domestic use; irrigation of up to 0.3 ha of lawns and gardens; and irrigation of up to 2 ha of pasture. The annual groundwater entitlement is 17 250 kL.

7 SITE MANAGEMENT

7.1 Irrigation

The property owners currently have a Licence to take water from the Perth – Leederville Aquifer, issued by the Department of Water for the period 1 March 2012 to 1 March 2022. The authorised activities are: domestic use; irrigation of up to 0.3 ha of lawns and gardens; and irrigation of up to 2 ha of pasture. The annual groundwater entitlement is 17 250 kL.

A new licence to take water from the Superficial aquifer for an annual groundwater entitlement of 400,000 kL will be applied for, from the Department of Water. Two water storage tanks of 250 kL each will be used, and before the water is used in the groundwater will have the pH amended and the iron removed. Irrigation of the site, using the approved groundwater, will be determined by the differing needs of the individual crops and seasonal climatic changes.

The site will be irrigated in the outside growing area using highly efficient, uniform sprinklers to minimize evaporation and excessive overthrow and drift. The irrigation system will be designed to enable 'double watering' of all crops through the overlap of adjacent sprinklers. A detailed diagram of the irrigation system for the site can be seen in Figure 6. Within the tunnel houses individual drippers/sprays will be used to irrigate the plants.

A highly developed irrigation controller linked to a weather monitoring system will drive the irrigation system to minimise water usage. The weather station gives information on temperature, air pressure, wind speed and humidity. This information will be used to determine the amount of water required for each crop. Not only does using too much water impact environmentally but it also increases the rate of disease and insects. The water will be delivered to the sprinklers through high pressure PVC pipe by two Iowara pumps with a constant pressure Hydrovar attached operating at 3.75 bar. The Hydrovar constantly monitors the in line pressure to minimise water lost due to a pipe burst.

Surface runoff collected from the production areas will be collected within a nutrient retention basin (Figure 7). It will not be used for irrigation of crops due increased risk of water borne pathogens. Through the production of all crops in pots, soil moisture levels can be easily monitored and the irrigation system matched to the water needs of the crops, thus reducing excessive watering and nutrient leaching.

Figure 6: Irrigation System

Figure 7: Nutrient Retention Basin

7.2 Nutrient Application

The wholesale nursery will be used to grow annual, flowering plants. They will be grown in pots of varying sizes filled with imported soil mixes (Table 3). Slow release fertilisers will be added prior to planting (Table 4). All production areas will have the ability to be fertilised through a fertigation system in conjunction with the irrigation system. Typical nutrient analysis of the fertigation water is presented in Table 5. Fertigation will be completed on a crop needs basis. This will affect the quantity, duration and frequency of application, as it will be different for each crop. The method of application will be consistent for all crops. There will be no broad scale application of fertilisers by mechanical spreading as all potted plants have slow release fertiliser pre-applied at an optimum rate. This generally supplies all nutrients required during the growing period.

Leaching of fertilisers to the groundwater will be controlled by the covering of a compacted limestone roadbase over the production areas, and the subsequent collection of all surface runoff in a nutrient retention basin.

Soil Type	"Potted Colour Mix"	"New Generation Mix"		
рН	5.8	5.9		
Electrical Conductivity	0.52 dS/m	1.00 dS/m		
Phosphorus	20 ppm	<1 ppm		
Nitrogen (NH4)	33 ppm	26 ppm		
Nitrogen (NO3)	69 ppm	94 ppm		
Potassium	62 ppm	60 ppm		
Sulphur	11 ppm	48 ppm		
Calcium	55 ppm	130 ppm		
Sodium	24 ppm	36 ppm		
Iron	34 ppm	38 ppm		
Zinc	0.94 ppm	0.77 ppm		
Copper	0.75 ppm	2.5 ppm		
Manganese	4.2 ppm	6.8 ppm		
Boron	0.02 ppm	<0.01 ppm		
Chloride	14 ppm	70 ppm		

Table 3: Typical analysis of the soil mixes which will be used, prior to fertiliser addition

Fertiliser	Nutricote No. 4 Yellow	Nutricote No. 7 Orange	IBDU	Flow Trace	Nutricote Grey	Apex 17	Apex 23	Osmocote Iron
N-NO3	7	7.5	-	-	8.9	3.5	1	-
N-NH4	7	5.5	-	-	7.1	3.9	3.3	-
N-Urea		-	-	-	-	9.6	18.7	-
Total N	14	13	31	-	16	17	23	-
P-H2O Soluble	5.2	1.3	-	-	2.1	-	-	-
P-Citrate Soluble	6.1	5.7	-	-	3.1	-	-	-
Total P	6.1	5.7	-	-	4.4	17	6	-
Potassium	11.6	9.1	-	-	8.3	17	12	-
Calcium	0.5	2.8	-	-	0.45	-	1	-
Sulphur	0.5	-	-	-	1.4	1.4	1	17
Magnesium	-	-	-	-	-	-	0.5	-
Copper	-	-	-	0.75	-	-	0.05	-
Iron	-	-	-	24	-	-	1.5	28
Manganese	-	-	-	0.5	-	-	0.05	-
Molybdenum	-	-	-	0.04	-	-	0.0005	-
Zinc	-	-	-	0.2	-	-	0.05	-
Boron	-	-	-	0.033	-	-	-	-

Table 4: The type of fertiliser and constituents used in potting soil

Table 5: Fertilisers used in the Fertigation System

Fertiliser	Ammonium Nitrate	Epsom Salts
N-NO3	17	-
N-NH4	17	-
Total N	34	-
MgSO4		99.9
Cadmium		>0.000001
Mercury		>0.0000002
Lead		>0.00001

8 DRAINAGE AND CONTAMINANT LEACHING CONTROLS

The site will be graded to collect drainage from production areas and surface runoff from roads through the site. The collected water will channelled into a retention basin where it will then be collected in a pump-out station for reuse. Contaminant leaching to the groundwater will be controlled by the impermeable lining of the production areas and the subsequent collection of all surface runoff in a nutrient retention basin.

9 SURFACE WATER PROTECTION

The damplands on and adjacent to this site may be impacted if the quality and quantity of surface water runoff is altered. To minimise impact on these wetlands, surface water runoff from the production areas will be collected into a nutrient retention basin. The basin is designed so as to enable biological removal of excess nutrients that may be present in runoff waters through the use of vegetative scavenging and chemical fixation using soil amendments.

10 GROUNDWATER PROTECTION

In order to protect the groundwater, all production areas will be built on an impermeable limestone pad to prevent infiltration through the soil into the groundwater. This will have the effect of lowering the water table and groundwater evaporation will also be reduced via the filling of low-lying areas. The net effect on lateral flow is predicted to small. Filling of low lying areas will also mean that water-logging is unlikely to occur (CDM Smith, July 2013).

11 VEGETATION MANAGEMENT

In order to develop the wholesale nursery 5.462 ha of the property will need to be cleared of existing vegetation. In addition, an assessment of the property to provide foraging and breeding habitat for Black-Cockatoos' was undertaken by Terrestrial Ecosystems (2012). The assessment concluded that the project area contained five fauna habitat types: groves of Jarrah or Marri; Banksia woodland; Allocasaurina woodland; pasture; and wetlands (Figure 8).

To offset this loss the property owners have committed to the rehabilitation of three areas (Figure 9) that have been degraded by over-grazing activity over many years. These three areas (16.35 ha in total) are adjacent to groves of mature jarrah and marri trees and currently have a limited understorey. These areas will be revegetated as per the Rehabilitation and Revegetation Management Plan (Nuts about Natives, 2103) developed for the Site. In addition, as per the offset provided for in the SEWPAC approval, each of these areas will be fenced to exclude stock and sufficient young marri and jarrah will be planted in these areas to ensure that after five years there are an additional 50 marri and 50 jarrah trees growing. These areas will be fenced and the trees planted before the wholesale nursery becomes operational and the fence will remain in place (Terrestrial Ecosystems, 2012).

When clearing the vegetation, care will be taken to ensure that all machinery will be cleaned prior to entering the site. This will prevent *Phytophthora* sp and other plant diseases from infecting the remaining vegetation and the nursery site.

Figure 8: Fauna Habitat Locations at Proposed Site

	MDW Environmental Services
374 500 1.0ha 3 7.3ha 3	Client: Hope Valley Nursery Pty Ltd Project:
	456 Rapids Road, Serpentine Location: 456 Rapids Road, Serpentine
7.9na	Drawing Title: REVEGETATION PLAN
	LEGEND SUBJECT LAND
	Drawn by: RB Date: 4/10/2013 North
	Project No: Figure No: Rev: E2011 - 109 9 V2

Figure 9: Revegetation Plan

12 PESTICIDE STORAGE AND USE

As per AS2507.1998 – Storage and handling of pesticides, an emergency spill kit will be located in the chemical storage facility on the Site. The facility will be constructed using best management practices guidelines for the storage and handling of horticultural chemicals. The facility will have a bunded concrete floor to ensure spills are contained within the facility. All chemicals will be stored in locked cages within the facility. It will be insulated and have roof top ventilation to maintain an even temperature.

All drainage from the facility will be collected in a waste chemical evaporation pit, which will have sealed concrete liners and organic material to breakdown residual chemicals from the rinsate. A clear plastic roof, to increase solarisation and evaporation, will be installed on top of the pit.

The commonly used chemicals that will be stored in the chemical storage facility are listed in Table 6 below.

The MSDS for each product was reviewed and information relevant to aquatic biota listed for comparison between products. Ecotoxicity effects on rainbow trout (*Oncorhynchus mykiss*), water flea (*Daphnia magna*) and the algae *Desmodesmus subspicatus* and Pseudokirchneriella subcapitata are listed in the table. Where warning regarding the impact of the product on the aquatic environment were detailed this is also included in the table.

Product Manufacturer	Active Ingredient	Environmental Hazard
Axe Insecticide Crop Care	500 g/L Permethrin	Permethrin ecotoxicity effects: LC50 (96hr) for rainbow trout is 0.0025 mg/l. LC50 (48hr) for daphnia is 0.0006 mg/l. Prevent product or washings from entering drains, waterways or
Baycor 300 Fungicide spray Bayer	300 g/L Bitertanol	sewers. Baycor 300 ecotoxicity effects: LC50 (96hr) for rainbow trout is 8.31 mg/L. EC50 (72hr) for green alga <i>(D. subspicatus)</i> is 5.75 mg/L. Toxic to aquatic organisms and may cause long term adverse effects in the aquatic environment. It has a low toxicity to bees and earthworms. Do not contaminate streams, rivers or waterways with the product or used containers.
Belt 480 SC Insecticide Bayer	480 g/L Flubendiamide	 Flubendiamide Ecotoxicity effects: LC50 (96hr) Rainbow trout is > 250 mg/l. EC50 (48hr) Daphnia is 0.0065 mg/l. IC50 (72hr) (P. subcapitata) is > 0.07 mg/l. Do not allow to get into surface water, drains and ground water. If the product contaminates rivers and lakes or drains inform respective authorities.

Table 6: Commonly uses chemicals

Product Manufacturer	Active Ingredient	Environmental Hazard
Confidor 200 SC Insecticide Bayer	200 g/L Imidacloprid	Imidacloprid Ecotoxicity effects: LC50 (96hr) Rainbow trout is 211 mg/L. EC50 (48hr) Daphnia is 85 mg/l. IC50 (72hr) (P. subcapitata) is 100 mg/l. Imidacloprid is toxic to certain aquatic species. Do not contaminate streams, rivers or waterways with the product or used containers.
Dimethoate Systemic Insecticide Nufarm	400 g/L Dimethoate	Dimethoate Ecotoxicity effects: LC50 (96hr) for rainbow trout is 6.2 mg/l. EC50 (48hr) for Daphnia is 3.3 mg/l. Do not contaminate streams, rivers or waterways with the product or used containers.
Folicur 430 SC Fungicide Bayer	430 g/L Tebuconazole	Tebuconazole Ecotoxicity effects: LC50 (96hr) Rainbow trout is 19.9 mg/L. EC50 (48hr) Daphnia is 31.9 mg/l. IC50 (72hr) (P. subcapitata) is 15.2 mg/l. Do not allow to get into surface water, drains and ground water. If the product contaminates rivers and lakes or drains inform respective authorities.
Kocide BlueXtra Fungicide Multicrop	350g/kg Copper	Ecotoxicity effects of Copper: LC50 (96hr) Rainbow trout is 4.79 mg/l. ErC50 (72hr) <i>P. subcapitata</i> is 18.03mg/l. EC50 (48hr) is Daphnia is 1.61mg/l. Very toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment. Do not contaminate ponds, waterways, or ditches with chemical or used container.
Mancozeb 750 DF Fungicide Titian Ag	750 g/kg Mancozeb	Mancozeb ecotoxicity effects : LC50 (96hr) Rainbow trout is 2.2 mg/l. Moderately to highly toxic to fish and aquatic organisms.
Payback Plant growth regulator Crop Care	250 g/L Paclobutrazol	Paclobutrazol ecotoxicity effects: LC50 (96hr) for rainbow trout is 27.8 mg/l. LC50 (48hr) for daphnia is 33.2 mg/l. Prevent product or washings from entering drains, waterways or sewers. Use earthen bunds or absorbent bunding to prevent spreading of spillage.
Redye Marker dye Crop Care	150 g/L Rhodamine B	Rhodamine B ecotoxicity effects: LC50 (96hr) for fish of 10 – 100 mg/L. Prevent product or washings from entering drains, waterways or sewers. Use earthen bunds or absorbent bunding to prevent spreading of spillage.

Product Manufacturer	Active Ingredient	Environmental Hazard
Roundup Power MAX	540 g/L Glyphosate	Glyphosate Ecotoxicity effects:
		LC50 (96hr) for rainbow trout is 3.13 mg/L.
Herbicide		EC50 (48hr) for Daphnia is 8.0 mg/L.
Nufarm		EC50 (120hr) for S. capricornutum is 0.124 mg/L.
		Do not contaminate dams, waterways or sewers with this product. Harmful to fish and other aquatic life, mainly due to the surfactant.
Rovral	250g/L Iprodione	Iprodione Ecotoxicity effects:
Liquid Seed		LC50 (96hr) for rainbow trout is 4.1 mg/L.
Dressing Fungicide		EC50 (48hr) for Daphnia is 0.25 mg/L.
Baver		EC50 (120hr) for S. capricornutum is 15.3 mg/L.
		This product is very toxic to aquatic organisms, and may cause long-term adverse effects in the aquatic environment. Do not contaminate streams, rivers or waterways with Rovral Liquid Seed Dressing or the used containers.
Banrot 400wp	150 g/kg Etridiazole	Etridiazole Ecotoxicity effects:
Soil Fungicide	and	LC50 (96hr) for rainbow trout is 2.4 mg/L.
Scotts	250 g/kg Thiophanate-methyl	EC50 (48hr) for Daphnia is 3.1 mg/L.
		EC50 (120hr) for algae is 0.072 mg/L.
		Banrot 400wp is toxic to fish and aquatic invertebrates. Keep out of lakes, streams and ponds. Do not contaminate water sources by cleaning of equipment or disposal of wastes.
Sierraron G	67.5 g/kg	Dichlobenil Ecotoxicity effects:
Herbicide	Dichlobenil	LC50 (96hr) for rainbow trout is 8.3 mg/L.
Scotts		EC50 (48hr) for <i>Daphnia magna</i> is 6.2 mg/L.
		Dichlobenil is moderately toxic to fish and aquatic invertebrates. Do not allow the product to empty container to enter drains, streams or other waterways.
Success	10 g/L Spinosad	Spinosad Ecotoxicity effects:
Insecticide		EC50 (48hr) Daphnia is 14 ppm.
Yates		LC50 (96hr) rainbow trout is 30 mg/L.
		Harmful to aquatic organisms. Avoid contaminating waterways and fishponds. Do not allow spray to drift onto aquatic environments.

As the table demonstrates, these chemicals that may be used in the nursery have the potential to impact negatively on the aquatic environment. Consequently the proponents are serious about the storage and handling of these chemicals to ensure that risks are negated to the aquatic environment.

13 SITE MONITORING AND REPORTING

13.1 Pre-development nutrient and irrigation management program

13.1.1 Groundwater Monitoring Sampling

The locations of all groundwater monitoring wells (on site) are shown on Figure 10. Groundwater assessment activities conducted at the site are summarised in Table 7 below.

Activity	Details	
Date of Field Activity	21 February, 25 June and 20 August 2013.	
Investigation	A total of six (6) groundwater monitoring wells were sampled (MW1, MW2, MW3, MW4, MW5 and MW6). MDWES installed all six wells.	
Rationale for Monitoring Well Locations	The six wells were positioned to provide good coverage across the proposed nursery site.	
Dimensions	The six wells extend to approximately 5.0mbgl.	
Sampling Method	A Geotech low flow bladder pump, coupled via dedicated tubing to an Insitu Troll 9500 [™] low flow sampler was used to collect samples; thereby enabling continuous measurement of field parameters.	
Samples	Six groundwater samples were taken within each of the groundwater wells.	
Well Gauging	Monitoring wells were gauged using an electronic water level probe prior to purging in succession. The probe was decontaminated between each measurement. Well field gauging data is contained in Table 8.	
Well Purging	Stabilisation period consisted of at least three consecutive measurements, one to two minutes apart, with the relative difference in values less than pre-determined values. Once stabilisation of the field parameters was reached, samples were collected for laboratory analysis.	
Calibration	A YSI (used to measure water quality) was calibrated and certified.	
Decontamination Procedure	Water monitoring equipment such as the electronic water level probe, were decontaminated with laboratory grade detergent and rinsed with deionised water between wells. Dedicated disposable nitrile gloves were used for each sample.	

Table 7: Groundwater Assessment Methodology
Activity	Details
Analysis	 pH, Conductivity, Total Dissolved Solids, Suspended Solids, Turbidity Acidity, Dissolved Metals, Total Recoverable Metals Total Mercury, Hexavalent Chromium, Ferrous Iron, Sulfide Biological Oxygen Demand, Major Anions, Nutrients
Laboratory	Primary samples sent to ALS Environmental (Perth) NATA Accredited.
Sample Preservation	Samples were placed in laboratory supplied bottles containing appropriate preservatives. Samples were stored on ice (<4°C) in an esky while on site and in transit to the laboratory.

13.1.2 Monitoring Well Construction

All monitoring wells were installed using a Geoprobe with 8" hollow flight auger drilled to a depth of approximately 4 to 5 metres below ground level (mbgl). Prior to removal of the auger casing 50 mm PVC casing (screwed together) was placed centrally in the void to the surface or with a stick up (where practicable). As the auger casing was removed the void was packed with annular gravel to approximately 1.5 mbgl (groundwater), a bentonite seal was placed above the gravel pack up to the surface, with a concrete seal at the surface. A steel, locked, monument cover was inserted in the concrete seal and the above ground stick of casing within the cover sealed with a locked cap (enviro-cap). Monitoring wells were developed immediately after construction until visually clean water was discharged. Soil auger spoil was spread next to the monitoring wells and purged groundwater was released on to the ground.

Figure 10: Monitoring well locations at proposed site

14 QUALITY ASSURANCE/QUALITY CONTROL PROCEDURES

The following Quality Assurance/Quality Control (QA/QC) program was implemented throughout the investigation to ensure the accuracy and precision of the data obtained. QC measures the effectiveness of the procedures of the QA program.

14.1 Quality Assurance

All procedures including staff selection, sampling methodologies, equipment, analysis methods and data transfer were based on:

- Australian Standards AS-4482.1-2005 and AS-4482.2-1999: Guides to the Sampling and Investigation of Potentially Contaminated Soil; and
- Australian/New Zealand Standard AS/NZS 5667.1:1998. Water Quality-Sampling.

Particularly, the following actions applied:

- Samples were collected by a trained, experienced field technician.
- Samples were collected by the same person, ensuring that techniques used were consistent across the sampling program.

14.1.1 Groundwater Sampling Procedure

Groundwater sample collection was undertaken using "low-flow" or "micro-purge" sampling techniques. For low-flow sampling, the pump was fitted with a disposable low-density polyethylene bladder and tubing for each bore. The tubing was connected to a 400 mL-capacity flow cell with a field water quality meter attached to measure parameters as water passes through the flow cell. Field water quality meter measurements pH (⁺/-0.1 unit), redox potential (⁺/-10 mV), electrical conductivity (EC) (⁺/-3%), temperature (⁺/-0.2°C) and dissolved oxygen (DO) (⁺/-10%) were taken until the measurements (with groundwater not being drawn down) were stabilised between successive readings.

Successive groundwater chemistry measurements were taken at intervals determined by the pumping rate and the time taken for complete refilling of the flow cell. After parameter stabilisation it was considered that groundwater entering the bore was representative of water from the aquifer.

The standing water level within the bore was constantly monitored during purging to ensure minimal drawdown (<10 cm). The purpose of this was to check that purged groundwater had not solely been removed from the water column within the bore, but from the aquifer itself; in order to facilitate this, a pump rate of less than 100 mL/minute was maintained in order to minimise the potential for drawdown. If drawdown exceeded 10 cm, the purge rate was reduced until drawdown stabilised, and the time between successive parameter readings increased appropriately. The inlet for the low flow groundwater pump was placed as close as practical to the groundwater surface.

All groundwater samples were subject to the following procedures:

- Samples were collected using clean disposable nitrile gloves replaced between each sample location.
- Dedicated tubing was used for each well and the pump and low flow cell were decontaminated between wells.
- Samples were collected within an eight hour period into new, laboratory supplied sample bottles. Preservatives (if required) were provided by the laboratory in the appropriate sample bottle.
- Samples were filled to the top to ensure no headspace remained.
- All samples were marked in the field using permanent marker with a label showing sample location, date and job number.
- Samples were immediately placed on ice within an esky for transport to the laboratory.

14.1.2 Decontamination of Sampling Equipment

All sampling and drilling equipment were decontaminated prior to use and between each sample location. Decontamination was done using the following procedure:

- Equipment washed in water.
- Equipment thoroughly scrubbed in water with Decon 90.
- Equipment rinsed in tap water.
- Equipment rinsed in DI water.

14.2 Quality Control

To ensure the quality of the sampling method and laboratory analysis several quality control (QC) samples were collected. The laboratory used for analysis of the groundwater samples was ALS Environmental, a laboratory with NATA accreditation for all analyses undertaken.

The laboratory conducts internal quality control analysis as part of their QA/QC Procedures. These are:

- At least 10% of samples are split into internal laboratory duplicate samples. These samples are homogenised prior to splitting into sub samples;
- At least 5% of samples are run with Matrix Spikes of known additions.
- Laboratory Control Samples (LCS) are run at the required rate (minimum 1 LCS per batch of samples). The LCS results are reported in the laboratory certificates named 'Interpretive Quality Control Report' and the 'Quality Control Report'.

Chain of Custody forms (CoC), laboratory sample receipt notification (SRN), laboratory certificates of analysis (COA), quality control report (QC) and interpretive quality control report (QCI) are provided in Appendix C (February), D (June) and E (August).

MDW Environmental Services Job # E2011-109 Nutrient and Irrigation Management Plan

15 ASSESSMENT CRITERIA

Laboratory analyses of groundwater samples undertaken onsite are presented in Table 8 through to Table 13. To assess the groundwater quality at the Site, water quality results were compared against the criteria outlined within the DER's *Contaminated Site Management Series - Assessment Levels for Soil, Sediment and Water* (DEC, 2010). Laboratory results were compared against the following criteria:

- Australian and New Zealand Guidelines for Fresh and Marine Water Quality prepared by the Australian and New Zealand Environment and Conservation Council (ANZECC 2000) as reproduced in the DER's Contaminated Site Management Series - Assessment Levels for Soil, Sediment and Water (DEC 2010):
 - Freshwater Ecosystems
 - o Long-term Irrigation Water
- Department of Health Contaminated Sites Reporting Guideline for Chemicals in Groundwater, (DoH 2006):
 - o Domestic Non-Potable groundwater use
- DER Trigger Values

16 RESULTS

16.1 Groundwater Field Results

During the course of the investigation, a total of six groundwater monitoring wells were monitored on the 21 February, 18 June, and 20 August 2013. The wells were gauged, purged and sampled using low flow sampling methodology.

Current groundwater gauging data collected during field activities is presented in Table 8 with interpreted groundwater elevation contours and groundwater flow direction presented on Figure 11. Field groundwater quality parameters are presented in Table 9. Field data sheets of water quality measurements from February, June and August are presented in Appendix B.

16.2 Groundwater Quality Parameters

Groundwater quality parameters presented in Table 9 and summarised below.

- pH measurements ranged between 4.30 (MW6) and 5.89 (MW4) indicating mildly acidic conditions.
- Electrical conductivity (EC) measurements range between 133.4µS/cm (MW5) and 369.4µS/cm (MW2).
- Dissolved oxygen (DO) concentrations ranged between 0mg/L (MW3) and 5.90mg/L (MW4), with a mean of 3.21mg/L indicating aerobic conditions.
- Temperature measurements ranged between 15.5°C (MW5) and 19.1°C (MW2).
- Reduction/oxidation (redox) potential (Eh) ranged between 71.9mV (MW3) and 236.7mV (MW2) indicating oxidising conditions.

Groundwater quality parameters were used to determine the likelihood of the occurrence of natural attenuation processes (i.e. indicators of biodegradation) within groundwater beneath the site, of which is discussed in detail in Section 12.

16.3 Groundwater Levels

The depth to groundwater was measured monthly from February to September. Table 8 summarises a compilation of depth to groundwater from the top of casing. The water table depth value (RL AHD) for each monitoring well is estimated, based on the contour and feature survey conducted in August 2012 (Appendix F).

Table 8: Groundwater Levels

			MW1 MW2				M	W 3					
SAMPLE L	OCATION	Standpipe (m):	0.66	Ground (RL mAHD):	26.70	Standpipe (m):	0.63	Ground (RL mAHD):	31.00	Standpipe (m):	0.62	Ground (RL mAHD):	26.60
Date	Day	Water Level (mm TOC)	Water Level Change (mm)	Water Level (mbgl)	Water Level (RL mAHD)	Water Level (mm TOC)	Water Level Change (mm)	Water Level (mbgl)	Water Level (RL mAHD)	Water Level (mm TOC)	Water Level Change (mm)	Water Level (mbgl)	Water Level (RL mAHD)
Trigger Leve	əl												
20/2/13	Wed	-2065	-2065	-1.41	25.30	-4510	-4510	-3.88	27.12	-1750	-1750	-1.13	25.47
21/3/13	Thu	-2173	-108	-1.51	25.19	-4685	-175	-4.06	26.95	-1812	-62	-1.19	25.41
23/4/13	Tue	-2170	3	-1.51	25.19	-4810	-125	-4.18	26.82	-1915	-103	-1.30	25.31
21/5/13	Tue	-1680	490	-1.02	25.68	-4710	100	-4.08	26.92	-1480	435	-0.86	25.74
18/6/13	Tue	-1370	310	-0.71	25.99	-4631	79	-4.00	27.00	-1473	7	-0.85	25.75
20/8/13	Wed	-830	540	-0.17	26.53	-3790	841	-3.16	27.84	-820	653	-0.20	26.40
27/9/13	Fri	-521	309	0.14	26.84	-3336	454	-2.71	28.29	-672	148	-0.05	26.55
			M	W4			M	W5			M	N6	
SAMPLE L	OCATION	Standpipe	0.60	Ground	25.75	Standpipe	0.62	Ground	25.00	Standpipe	0.69	Ground	26.25

			M	W4			M	W5			M	W6	
SAMPLE L	OCATION	Standpipe (m):	0.60	Ground (RL mAHD):	25.75	Standpipe (m):	0.62	Ground (RL mAHD):	25.00	Standpipe (m):	0.69	Ground (RL mAHD):	26.25
Date	Day	Water Level (mm TOC)	Water Level Change (mm)	Water Level (mbgl)	Water Level (RL mAHD)	Water Level (mm TOC)	Water Level Change (mm)	Water Level (mbgl)	Water Level (RL mAHD)	Water Level (mm TOC)	Water Level Change (mm)	Water Level (mbgl)	Water Level (RL mAHD)
Trigger Leve	əl												
20/2/13	Wed	-2000	-2000	-1.34	24.41	-1690	-1690	-1.06	23.94	-1880	-1880	-1.26	24.99
21/3/13	Thu	-2076	-76	-1.42	24.33	-1686	4	-1.06	23.94	-1933	-53	-1.31	24.94
23/4/13	Tue	-2176	-100	-1.52	24.23	-1810	-124	-1.18	23.82	-2045	-112	-1.43	24.83
21/5/13	Tue	-1738	438	-1.08	24.67	-1255	555	-0.63	24.38	-1643	402	-1.02	25.23
18/6/13	Tue	-1731	7	-1.07	24.68	-1293	-38	-0.66	24.34	-1652	-9	-1.03	25.22
20/8/13	Wed	-1140	591	-0.48	25.27	-730	563	-0.10	24.90	-1031	621	-0.41	25.84
27/9/13	Fri	-993	147	-0.33	25.42	-650	80	-0.02	24.98	-963	68	-0.34	25.91

Figure 11: Groundwater contours and groundwater flow

Table 9: Field Groundwater Parameters

SAMPLE LOCATION MW1						MW2							MW3									
Date	Day	pH (pH units)	EC (µS/cm)	DO (mg/L O2)	Temp (°C)	Redox (mV)	TTA (mg/L CaCO3)	TALK (mg/L CaCO3)	pH (pH units)	(hS/cm)	DO (mg/L O2)	Temp (°C)	Redox (mV)	TTA (mg/L CaCO3)	TALK (mg/L CaCO3)	pH (pH units)	EC (µS/cm)	DO (mg/L O2)	Temp (°C)	Redox (mV)	TTA (mg/L CaCO3)	TALK (mg/L CaCO3)
Freshwater	Ecosystems	6.5-8.5	1500						6.5-8.5	1500						6.5-8.5	1500					
DEC Trigger	Values	<6					40	<30	<6					40	<30	<6					40	<30
20/2/13	Wed	5.70	416.0	5.75	21.1	150.7	25	15	5.40	177.1	3.80	21.6	127.2	14	15	5.38	463.5	4.01	24.4	-18.0	81	15
18/6/13	Tue	5.77	407.0	1.13	20.9	171.7	15	30	5.48	158.1	2.92	21.7	220.6	17	30	5.11	505.0	0.37	18.9	-21.1	34	30
20/8/13	Tues	5.44	349.9	5.10	18.6	187.2	30	30	5.64	146.5	2.50	19.1	236.7	10	24	4.45	327.9	0.00	15.8	71.9	40	30

SAMPLE LOCATION MW4						MW5							MW6									
Date	Day	pH (pH units)	EC (µS/cm)	DO (mg/L O2)	Temp (°C)	Redox (mV)	TTA (mg/L CaCO3)	TALK (mg/L CaCO3)	pH (pH units)	EC (µS/cm)	DO (mg/L O2)	Temp (°C)	Redox (mV)	TTA (mg/L CaCO3)	TALK (mg/L CaCO3)	pH (pH units)	EC (µS/cm)	DO (mg/L O2)	Temp (°C)	Redox (mV)	TTA (mg/L CaCO3)	TALK (mg/L CaCO3)
Freshwater	Ecosystems	6.5-8.5	1500						6.5-8.5	1500						6.5-8.5	1500					
DEC Trigger	Values	<6					40	<30	<6					40	<30	<6					40	<30
20/2/13	Wed	6.34	806.0	5.50	25.8	-33.5	28	45	6.63	748.0	5.93	27.1	-61.2	38	24	5.57	8.5	0.07	24.8	0.8	32	27
18/6/13	Tue	6.38	404.0	5.02	18.3	-23.4	35	63	6.45	396.1	1.97	18.6	-44.2	60	30	5.61	948.0	0.06	19.3	-37.5	31	30
20/8/13	Tues	5.89	243.4	5.90	15.7	82.6	30	45	5.52	133.4	4.70	15.5	107.3	30	15	4.30	396.4	1.10	16.3	92.8	30	36

16.4 Groundwater Analytical Results

Sampling has been undertaken on three occasions; February, June and August 2013. Samples were collected from the six groundwater bores and labelled as MW1, MW2, MW3, MW4, MW5 and MW6.

The groundwater samples collected from the wells were transported to the laboratory where they were analysed for the following parameters:

- pH
- Electrical conductivity
- Total dissolved solids
- Suspended solids
- Turbidity
- Total alkalinity
- Acidity
- SO4²⁻
- Cl⁻
- Dissolved metals: Al, As, Cd, Cr, Mn, Ni, Se, Zn, Fe.
- Total metals: Al, As, Cd, Cr, Cu, Pb, Mn, Mo, Ni, Se, Ag, Zn, Fe.
- Total recoverable mercury
- Dissolved Hexavalent Chromium
- Ferrous Iron
- Nutrients: Ammonia, Nitrite, Nitrate, Nitrite + Nitrate, Total Kjeldahl Nitrogen, Total nitrogen, total phosphorus, Reactive Phosphorus and Sulfide
- Biological Oxygen Demand.

16.5 Groundwater Parameters

February Results

In February, the pH of the groundwater samples at the six sites ranged from 5.63 to 6.94, with two sites MW2 and MW3, exceeding the freshwater investigation levels. The electrical conductivity in the samples ranged from 184 to 812 uS/cm, the lowest value from site MW2, exceeding the freshwater investigation levels. Total dissolved solids, suspended solids and turbidity varied between the groundwater monitoring sites, with no obvious patterns. The turbidity exceeded the freshwater ecosystem investigation level in five of the six samples; MW2 was with the guideline range.

Total alkalinity ranged from 5 to 98 mg/l and acidity from 9 to 58 mg/l. The groundwater sample from MW6 contained 552 mg/l of sulphate, while the others ranged from 10 to 85 mg/l. The chloride concentration in the groundwater samples ranged from 24 to 229 mg/l. The Biological Oxygen Demand from the samples was <2 mg/L at four sites and 5 mg/L at MW4 and MW5.

June Results

The pH of the groundwater samples in June at the six sites ranged from 5.19 to 6.48, and all were more acidic than the freshwater ecosystem investigation levels. The groundwater from MW2, MW3 and MW6 were also more acidic than the Long-term Irrigation water levels of 6.0-8.5. The electrical conductivity in the samples ranged from 162 to 1040 uS/cm, the lowest value from was from site MW2, which again exceeded the freshwater investigation levels. The turbidity exceeded the freshwater ecosystem investigation level in all of the six samples.

Total alkalinity ranged from 3 to 58 mg/l and acidity from 14 to 43 mg/l. The groundwater results for sulphate were within the range of 5 to 74 mg/l. The chloride concentration in the groundwater samples ranged from 24 to 229 mg/l. The Biological Oxygen Demand results were <2 mg/L to 8 mg/L.

August Results

In August, the pH of the groundwater samples at the six monitoring locations ranged from 4.51 to 6.46 with three locations (MW3, MW5 and MW6) below the DER trigger level. pH levels for MW1, MW2 and MW4 were outside of the Freshwater Ecosystems trigger levels. The electrical conductivity in the samples ranged from 152 to 500µs/cm all samples being within guideline levels. No exceedances occurred at any monitoring locations for total dissolved solids, suspended solids and turbidity.

Total alkalinity ranged from <1 (below LOR) to 27 mg/L with MW1, MW2, MW4 and MW5 below the DER trigger value. Total acidity ranged from 6 to 47 mg/L. Sulfate levels within groundwater samples ranged from 11 to 36 mg/L and chloride levels ranged between 17 to 119 mg/L. The Biological Oxygen Demand results were <2 to 11 mg/L.

16.6 Major Anions and Cations

In all monitoring wells the Alkalinity : Sulfate ratio exceeded the DER trigger values for generally all sampling dates except in MW1 during the February monitoring. The Sulfate : Chloride ratio has generally remained the increased or remained relatively stable in all wells over the sampling period.

16.7 Metals

The following dissolved metals exceedances were detected:

- Dissolved aluminium exceeded the following assessment criteria at the associated locations:
 - MW1, MW2, MW5 and MW6 exceeded the Freshwater Ecosystems assessment criteria;
 - $\circ~$ MW4 exceeded the Freshwater Ecosystems and DER trigger levels; and
 - MW3 exceeded the Freshwater Ecosystems, DER and Domestic Nonpotable trigger levels.
- Dissolved manganese exceeded the Long-term Irrigation trigger level in MW5.
- Dissolved nickel exceeded the Freshwater Ecosystems trigger level in MW3 and MW4.
- Dissolved zinc exceeded the Freshwater Ecosystems trigger level in MW1, MW2, MW3, MW5 and MW6.
- Dissolved iron exceeded the following assessment criteria at the associated locations:
 - MW1 exceeded the Long-term Irrigation trigger level;
 - MW3, MW4 and MW6 exceeded the Long-term Irrigation and Freshwater Ecosystems trigger levels;
 - MW4 exceeded the Long-term Irrigation, Freshwater Ecosystems and Domestic Non-potable trigger levels.

The following total metals exceedances were detected:

- Total aluminium exceeded the following assessment criteria at the associated locations:
 - MW2 and MW5 exceeded the Freshwater Ecosystems trigger level;
 - MW6 exceeded the Freshwater Ecosystems and Domestic Nonpotable trigger levels;
 - MW1, MW3 and MW4 exceeded all assessment criteria.
- Total copper exceeded the Freshwater Ecosystems assessment criteria in MW1, MW3, MW4, MW5 and MW6.
- Total lead copper exceeded the Freshwater Ecosystems assessment criteria in MW1, MW3, MW4 and MW6.
- Total manganese exceeded the Long-term irrigation trigger level in MW4 and MW5.
- Total zinc exceeded the Freshwater Ecosystems trigger level in MW1, MW3, MW4, MW5 and MW6.

- Total iron exceeded the following assessment criteria at the associated locations:
 - $\circ\,$ MW2, MW3, and MW6 exceeded the Freshwater Ecosystems trigger level;
 - MW1, MW4 and MW5 exceeded the Freshwater Ecosystems and Domestic Non-potable assessment criteria
- Total mercury exceeded the Freshwater Ecosystems trigger level in MW4.

16.8 Nutrients

Total Nitrogen exceeded the Freshwater Ecosystems assessment criteria at MW3 and MW5. Total Nitrogen levels exceeded the Freshwater Ecosystems and Long-term Irrigation trigger levels in MW2, MW4 and MW6.

Total Phosphorus exceeded the Freshwater Ecosystems assessment criteria in MW1 and MW6.

16.9 Historical Data

Laboratory analyses of samples collected for the three sampling periods are tabulated for each monitoring well to identify changes in groundwater quality (Table 8 to Table 13). The following points are comparisons of current results (August 2013) previous historical data (February and June 2013).

- Laboratory results of MW1 indicate an increase in dissolved ferrous iron, total aluminium, total copper, total lead, total manganese total iron and total phosphorus. Decreases in levels were observed in total dissolved solids, turbidity, total acidity, chloride, dissolved aluminium, dissolved manganese, dissolved nickel, dissolved zinc, dissolved iron, total chromium, and ammonia.
- MW2 laboratory results indicate that pH total alkalinity, biological oxygen demand, chloride, total aluminium and total iron have increased from previous monitoring periods. Total dissolved solids, suspended solids, acidity, dissolved aluminium, dissolved iron, nitrate and total nitrogen have decreased from previous monitoring events.
- Results for MW3 indicate that suspended solids, sulphide, dissolved aluminium, dissolved arsenic, dissolved cadmium, dissolved chromium, dissolved nickel, dissolved zinc, dissolved iron, dissolved ferrous iron, total aluminium, total copper, total iron, kjeldhal nitrogen and total nitrogen have increased from historical levels. pH, electrical conductivity turbidity, BOD, sulfate, chloride, total arsenic, total lead, ammonia, and total phosphorus have decreased.
- Laboratory results for MW4 indicate that an increase in total dissolved solids, turbidity, dissolved aluminium, dissolved chromium, dissolved nickel, dissolved zinc, total aluminium, total chromium, total iron and total mercury were observed when compared to previous sampling events. Decreases in analytes were observed for pH, electrical conductivity, suspended solids, total alkalinity, acidity, sulfate, chloride, dissolved manganese, dissolved iron,

dissolved ferrous iron, total arsenic, total manganese, ammonia, and total phosphorus.

- Results for MW5 indicate that dissolved aluminium, dissolved zinc, nitrate and reactive phosphorus have increased when compared to previous reporting periods. Analytes that have decreased when compared to previous reporting periods are pH, electrical conductivity, total dissolved solids, suspended solids, turbidity, total alkalinity, acidity, BOD, sulfate, chloride, dissolved manganese, dissolved iron, dissolved ferrous iron, total aluminium, total arsenic, total chromium, total copper, total manganese, total molybdenum, total zinc, total iron, ammonia, kjeldhal nitrogen, total nitrogen, and total phosphorus.
- Laboratory results for MW6 indicate that there has been an increase in suspended solids, turbidity, dissolved aluminium, dissolved arsenic, dissolved chromium, dissolved zinc, total aluminium, total arsenic, total chromium, total copper, total manganese, total zinc, nitrate, kjeldhal nitrogen, total nitrogen, total phosphorus and reactive phosphorus in comparison to previous sampling periods. Electrical conductivity, total dissolved solids, total alkalinity, sulfate, chloride, dissolved manganese, dissolved nickel, dissolved iron, ferrous iron, total iron and ammonia have decreased.

Table 10: HVNMW1 Laboratory Results

Analyte grouping/Analyte	Units	Freshwater Ecosystems	Domestic Non-potable	Long Term Irrigation	DEC Trigger Values	21/02/2013	18/06/2013	20/08/2013
		0.5.0.5			5 3 / 6 4	HVNMW1-01	HVN MW1 02	HVNMW1 03
pH Value	pH Unit	6.5-8.5		6.0-8.5	<5° / <67	6.49	6.13	6.13
Electrical Conductivity	µS/cm	1500				432	434	440
Total Dissolved Solids	mg/L					1340	3260	685
Suspended Solids	mg/L					3750	2570	2530
Turbidity	NTU					8810	3100	1690
Total Alkalinity CaCO ₃	mg/L				<30 ⁴	12	12	12
Acidity as CaCO ₃	mg/L				40 ⁴	20	17	10
BOD	mg/L					<2	4	<2
Sulfate as SO ₄ ²⁻	mg/L		5000			<20	34	36
Sulfide	mg/L	0.001				<0.1	<0.1	<0.1
Alkalinity : Sulfate	ratio				<5 ³	0.00	0.35	0.33
Chloride	mg/L					24	102	97
Sulfate : Chloride	ratio				0.5 ³	0.00	0.33	0.37
Dissolved Metals								
Aluminium	mg/L	0.055	2	5	1.0 ³	3.37	0.53	0.14
Arsenic	mg/L	0.013	0.07	0.1		0.002	0.001	0.002
Cadmium	mg/L	0.0002	0.02	0.01		<0.0001	<0.0001	<0.0001
Chromium	mg/L			0.1		0.005	0.002	<0.001
Manganese	mg/L	1.9	5	0.2		0.01	0.026	0.012
Nickel	mg/L	0.011	0.2	0.2		0.003	0.006	0.001
Selenium	mg/L	0.005	0.1	0.02		<0.01	<0.01	<0.01
Zinc	mg/L	0.008	30	2		0.021	0.032	0.017
Iron	mg/L	0.3	3	0.2		0.84	0.37	0.3
Ferrous Iron	mg/L					0.46	0.27	0.32
Chromium VI	mg/L	0.001	0.5			<0.01	<0.01	<0.01
Total Metals								
Aluminium	mg/L	0.055	2	5		46.9	12.8	15
Arsenic	mg/L	0.013	0.07	0.1		0.012	0.006	0.006
Cadmium	mg/L	0.0002	0.02	0.01		<0.0001	<0.0001	<0.0001
Chromium	mg/L			0.1		0.199	0.05	0.038
Copper	ma/L	0.0014	20	0.2		0.065	0.017	0.02
Lead	ma/L	0.0034	0.1	2		0.117	0.032	0.035
Manganese	ma/L	1.9	5	0.2		0.021	0.022	0.044
Molvbdenum	ma/l		0.5	0.01		0.004	0.002	0.002
Nickel	ma/l	0.011	0.2	0.2		0.01	0.002	0.002
Selenium	ma/l	0.005	0.1	0.02		<0.01	<0.01	<0.002
Silver	ma/l	0.00005	1	0.01		<0.001	<0.001	<0.001
Zinc	ma/l	0.008	30	2		0.083	0.021	0.028
Iron	mg/L	0.000	3	0.2		6.43	3.62	4.93
Mercury	mg/L	0.00	0.01	0.2		<0.0001	0.0003	0.0002
Nutrients	mg/L	0.00000	0.01			<0.0001	0.0000	0.0002
Ammonia as N	ma/l	0.9	5			0.04	0.04	0.02
Nitrite as N	ma/l	0.0	30			<0.04	<0.04	<0.02
Nitrate as N	ma/l		500			1.55	0.01	<0.01
Kieldhal Nitrogen	ma/l		000			1.00	0.01	0.01
	ma/L	1 0 ¹		5		26	0.2	0.2
Total Phosphorus	ma/L	0.1 1		0.05		0.61	0.2	0.2
Popotivo Phophorus	mg/L	0.1		0.05		0.01	-0.01	0.10
Reactive Flusphorus	ng/L					0.15	<0.01	<0.01

NOTES: 1. SRT Healthy Rivers Action Plan Long Term Targets 2. pH > 6 / pH < 6 3. ASS disturbance indicators

Table 11: HVNMW2 Laboratory Results

Analyte grouping/Analyte	Units	Freshwater Ecosystems	Domestic Non-potable	Long Term	DEC Trigger Values	21/02/2013	18/06/2013	20/08/2013
g. eapg					1 41400	HV NM W2-01	HVN MW2 02	HV NM W2 03
pH Value	pH Unit	6.5-8.5		6.0-8.5	<5 ³ / <6 ⁴	6.26	5.83	6.46
Electrical Conductivity	µS/cm	1500				184	162	159
Total Dissolved Solids	mg/L					1540	129	116
Suspended Solids	mg/L					31	574	72
Turbidity	NTU					36.1	197	56.8
Total Alkalinity CaCO ₃	mg/L				<30 ⁴	5	2	10
Acidity as CaCO ₃	mg/L				40 ⁴	9	14	6
BOD	mg/L					<2	<2	6
Sulfate as SO ₄ ²⁻	mg/L		5000			10	5	11
Sulfide	mg/L	0.001				<0.1	<0.1	<0.1
Alkalinity : Sulfate	ratio				<5 ³	0.50	0.40	0.91
Chloride	mg/L					28	16	17
Sulfate : Chloride	ratio				0.5 ³	0.36	0.31	0.65
Dissolved Metals								
Aluminium	mg/L	0.055	2	5	1.0 ³	0.04	0.46	0.33
Arsenic	ma/L	0.013	0.07	0.1		<0.001	<0.001	<0.001
Cadmium	ma/L	0.0002	0.02	0.01		< 0.0001	<0.0001	<0.0001
Chromium	ma/L			0.1		< 0.001	< 0.001	< 0.001
Manganese	ma/l	1.9	5	0.2		0.007	0.008	0.007
Nickel	ma/l	0.011	0.2	0.2		<0.001	<0.001	0.001
Selenium	ma/l	0.005	0.1	0.02		<0.001	<0.001	<0.001
Zinc	mg/L	0.008	30	2		0.006	0.008	0.009
Iron	mg/L	0.000	3	0.2		<0.000	0.000	0.000
Ferrous Iron	mg/L	0.0	0	0.2		<0.00	0.06	<0.07
Chromium VI	mg/L	0.001	0.5			<0.00	<0.00	<0.00
Total Metals		0.001	0.0			10101	10101	
Aluminium	ma/L	0.055	2	5		1.83	1.19	1.35
Arsenic	ma/L	0.013	0.07	0.1		< 0.001	< 0.001	<0.001
Cadmium	ma/L	0.0002	0.02	0.01		< 0.0001	< 0.0001	< 0.0001
Chromium	ma/L			0.1		< 0.001	< 0.001	< 0.001
Copper	ma/l	0.0014	20	0.2		< 0.001	< 0.001	0.001
Lead	ma/l	0.0034	0.1	2		<0.001	<0.001	<0.001
Manganese	ma/l	1.9	5	0.2		0.007	0.005	0.006
Molybdenum	ma/l	1.0	0.5	0.01		<0.001	<0.000	0.000
Nickel	mg/L	0.011	0.0	0.01		<0.001	<0.001	<0.001
Selenium	mg/L	0.005	0.2	0.02		<0.001	<0.001	<0.001
Silver	mg/L	0.0005	1	0.02		<0.01	<0.01	<0.01
Zinc	mg/L	0.008	30	2		<0.001	<0.001	<0.001
Iron	mg/L	0.000	30	0.2		0.27	0.18	0.36
Mercury	mg/L	0.0	0.01	0.2		<0.0001	<0.001	<0.001
Nutrients	mg/L	0.00000	0.01			<0.0001	<0.0001	<0.0001
Ammonia as N	ma/l	0.9	5			0.04	0.04	0.02
Nitrite as N	ma/l	0.0	30			0.03	<0.04	<0.02
Nitrate as N	ma/l		500			8 10	8.82	7.81
Kieldhal Nitrogen	ma/l		000			<0.10	1 4	<0.5
Total Nitrogen	ma/l	1 0 ¹		5		8.2	10.2	7.8
Total Phosphorus	ma/l	0.1 1		0.05		<0.05	<0.05	<0.05
Reactive Phosphorus	ma/l	0.1		0.00		<0.00	<0.00	<0.00
r todotivo i nospriorus						-0.01	-0.01	-0.01

NOTES: 1. SRT Healthy Rivers Action Plan Long Term Targets 2. pH > 6 / pH < 6

ASS disturbance indicators
 Effluent treatment triggers

Table 12: HVNMW3 Laboratory Results

HVNMW3-01 HVN MW3 02 HV	1VNMW3 03
pH Value pH Unit 6.5-8.5 6.0-8.5 <5 ³ / <6 ⁴ 5.63 5.19	4.58
Electrical Conductivity µS/cm 1500 449 532	435
Total Dissolved Solids mg/L 1950 818	820
Suspended Solids mg/L 3300 310	620
Turbidity NTU 2870	1860
Total Alkalinity CaCO ₃ mg/L scalescolution.com scalescolution.com scalescolution.com scalescolution.com scalescolution.com"/>scalescolution.com scalescolution.com scalescolution.com scalescolution.com"/>scalescolution.com scalescolution.com"/>scalescolution.com scalescolution.com"/>scalescolution.com scalescolution.com scalescolution.com"/>scalescolution.com scalescolution.com scalescolution.com scalescolution.com scalescolution.com"/>scalescolution.com scalescolution.co	<1
Acidity as CaCO ₃ mg/L mg/L 40 ⁴ 49 43	47
BOD mg/L 2 2	<2
Sulfate as SO ₄ ²⁻ mg/L 5000 33 40	18
Sulfide mg/L 0.001 <0.1 <0.1	0.2
Alkalinity : Sulfate ratio <5 ³ 0.27 0.08	0.06
Chloride mg/L 122 145	107
Sulfate : Chloride ratio 0.27 0.28	0.17
Dissolved Metals	
Aluminium mg/L 0.055 2 5 1.0 ³ 0.89 1.62	2.84
Arsenic mg/L 0.013 0.07 0.1 0.005 0.002	0.005
Cadmium mg/L 0.0002 0.02 0.01 <0.0001 <0.0001	0.0002
Chromium mg/L 0.1 0.002 0.002	0.009
Manganese mg/L 1.9 5 0.2 0.007 0.025	0.026
Nickel mg/L 0.011 0.2 0.2 <0.001 0.002	0.019
Selenium mg/L 0.005 0.1 0.02 <0.01 <0.01	<0.01
Zinc ma/L 0.008 30 2 <0.005 0.015	0.079
ron ma/L 0.3 3 0.2 0.38 0.46	1.02
Ferrous Iron ma/L 0.32 0.61	0.88
Chromium VI ma/L 0.001 0.5 <0.01 <0.01	<0.01
Total Metals	
Aluminium mg/L 0.055 2 5 89.8 11.7	12.9
Arsenic mg/L 0.013 0.07 0.1 0.016 0.009	0.006
Cadmium mg/L 0.0002 0.02 0.01 <0.0001 0.0003	<0.0001
Chromium mg/L 0.1 0.057 0.01	0.01
Copper mg/L 0.0014 20 0.2 0.006 0.004	0.007
Lead mg/L 0.0034 0.1 2 0.176 0.048	0.02
Manganese mg/L 1.9 5 0.2 0.012 0.014	0.015
Molybdenum ma/L 0.5 0.01 <0.001 <0.001	< 0.001
Nickel ma/L 0.011 0.2 0.2 0.031 0.005	0.004
Selenium mg/L 0.005 0.1 0.02 <0.01 <0.01	<0.01
Silver $mq/1 = 0.0005 = 1$ $< 0.001 < 0.001$	<0.001
Zinc mg/ 0.008 30 2 0.008 0.01	0.016
$r_{max} = \frac{m_{g_{12}}}{m_{g_{12}}} = \frac{m_{g_{12}}}{m_{g$	1 29
Mercury mg/L 0.0006 0.01 0.001 0.0001 0.0001	<0.0001
Nutrients	40.0001
Ammonia as N mg/L 0.9 5 0.52 0.38	0.12
Nitrite as N mg/L 30 <0.01 <0.01	<0.01
Nitrate as N mg/L 500 <0.01 <0.01	<0.05
Kjeldhal Nitrogen mg/L 4.4 1.7	3.2
Total Nitrogen mg/L 1.0 ¹ 5 4.4 1.7	3.2
Total Phosphorus mg/L 0.1 ¹ 0.05 0.48 0.14	0.1
Reactive Phosphorus mg/L com	0.03

NOTES: 1. SRT Healthy Rivers Action Plan Long Term Targets 2. pH > 6 / pH < 6 3. ASS disturbance indicators

Table 13: HVNMW4 Laboratory Results

Analyte grouping/Analyte	Units	Freshwater Ecosystems	Domestic Non-potable	Long Term Irrigation	DEC Trigger Values	21/02/2013	18/06/2013	20/08/2013
					-2 4	HVNMW4-01	HVN MW4 02	HVNMW4 03
pH Value	pH Unit	6.5-8.5		6.0-8.5	<5° / <6⁴	6.74	6.37	6.19
Electrical Conductivity	µS/cm	1500				704	550	300
Total Dissolved Solids	mg/L					1690	676	1200
Suspended Solids	mg/L					7500	300	152
Turbidity	NTU					2090	656	1390
Total Alkalinity CaCO ₃	mg/L				<30 ⁴	98	58	27
Acidity as CaCO ₃	mg/L				40 ⁴	58	37	21
BOD	mg/L					5	2	3
Sulfate as SO ₄ ²⁻	mg/L		5000			59	37	29
Sulfide	mg/L	0.001				<0.1	<0.1	<0.1
Alkalinity : Sulfate	ratio				<5 ³	1.66	1.57	0.93
Chloride	mg/L					136	118	50
Sulfate : Chloride	ratio				0.5 ³	0.43	0.31	0.58
Dissolved Metals								
Aluminium	mg/L	0.055	2	5	1.0 ³	0.05	0.31	1.12
Arsenic	mg/L	0.013	0.07	0.1		0.004	0.003	0.002
Cadmium	mg/L	0.0002	0.02	0.01		<0.0001	<0.0001	0.0001
Chromium	mg/L			0.1		<0.001	<0.001	0.023
Manganese	mg/L	1.9	5	0.2		0.505	0.51	0.154
Nickel	mg/L	0.011	0.2	0.2		<0.001	0.003	0.044
Selenium	ma/L	0.005	0.1	0.02		<0.01	<0.01	<0.01
Zinc	ma/L	0.008	30	2		0.01	0.034	0.05
Iron	ma/l	0.3	3	0.2		0.82	7.37	2
Ferrous Iron	ma/l	0.0		0.2		0.09	5	1.36
Chromium VI	ma/l	0.001	0.5			<0.01	<0.01	<0.01
Total Metals	ing/E	0.001	0.0			40.01	40.01	40.01
Aluminium	ma/L	0.055	2	5		59.2	4.06	8,99
Arsenic	ma/L	0.013	0.07	0.1		0.026	0.009	0.005
Cadmium	ma/l	0.0002	0.02	0.01		0.001	< 0.0001	< 0.0001
Chromium	ma/l	0.0001	0.02	0.1		0.08	0.005	0.008
Copper	ma/l	0.0014	20	0.1		0.053	0.004	0.004
Lead	ma/L	0.0034	0.1	2		0.061	0.004	0.004
Manganese	mg/L	1.9	5	0.2		3 34	0.649	0.317
Molybdenum	mg/L	1.5	0.5	0.2		0.001	<0.043	<0.001
Nickel	mg/L	0.011	0.0	0.01		0.001	0.001	0.001
Solonium	mg/L	0.005	0.2	0.2		-0.01	-0.01	-0.01
Selenium	mg/L	0.000	0.1	0.02		<0.01	<0.01	<0.01
Zino	mg/L	0.00005	20	2		<0.001	<0.001	<0.001
	mg/L	0.006	30	2		0.315	0.024	0.023
ITON Management	mg/L	0.3	3	0.2		510	30	39.9
Wercury	mg/L	0.00006	0.01			0.0003	<0.0001	0.0001
	ma /!		E			4.40	0.40	0.40
Animonia as N	mg/L	0.9	5			1.49	0.42	0.19
	mg/L		30			<0.01	<0.01	<0.01
INITIATE AS IN	mg/L		500			<0.01	3.11	3.12
Kjelanal Nitrogen	mg/L	1.0.1		_		15.2	2.3	2.3
Total Nitrogen	mg/L	1.0 '		5		15.2	5.4	5.4
Total Phosphorus	mg/L	0.1 '		0.05		1.05	0.09	0.05
Reactive Phosphorus	mg/L					<0.01	<0.01	<0.01

NOTES: 1. SRT Healthy Rivers Action Plan Long Term Targets 2. pH > 6 / pH < 6 3. ASS disturbance indicators

Table 14: HVNMW5 Laboratory Results

Analyte grouping/Analyte	Units	Freshwater Ecosystems	Domestic Non-potable	Long Term Irrigation	DEC Trigger Values	21/02/2013	18/06/2013	20/08/2013
		0.5.0.5		0.0.0.5	5 3 / 6 4	HV NW W5-01	HVN MW5 02	HV NIVI VV5 U3
pH value	pH Unit	6.5-8.5		6.0-8.5	<5° / <6	6.94	6.48	5.99
Electrical Conductivity	µS/cm	1500				592	451	157
Total Dissolved Solids	mg/L					350	336	139
Suspended Solids	mg/L					500	1160	38
Turbidity	NTU				4	1810	1920	46.8
Total Alkalinity CaCO ₃	mg/L				<30⁺	58	50	10
Acidity as CaCO ₃	mg/L				404	29	42	20
BOD	mg/L					3	5	2
Sulfate as SO ₄ ²⁻	mg/L		5000			86	74	22
Sulfide	mg/L	0.001			-	<0.1	<0.1	<0.1
Alkalinity : Sulfate	ratio				<5 ³	0.67	0.68	0.45
Chloride	mg/L					85	60	28
Sulfate : Chloride	ratio				0.53	1.01	1.23	0.79
Dissolved Metals								
Aluminium	mg/L	0.055	2	5	1.03	0.01	0.02	0.26
Arsenic	mg/L	0.013	0.07	0.1		<0.001	<0.001	0.001
Cadmium	mg/L	0.0002	0.02	0.01		<0.0001	<0.0001	<0.0001
Chromium	mg/L			0.1		<0.001	<0.001	0.001
Manganese	mg/L	1.9	5	0.2		1.68	1.85	0.296
Nickel	mg/L	0.011	0.2	0.2		<0.001	0.001	0.002
Selenium	mg/L	0.005	0.1	0.02		<0.01	<0.01	<0.01
Zinc	mg/L	0.008	30	2		0.006	0.006	0.014
Iron	ma/L	0.3	3	0.2		3.34	12.3	3.52
Ferrous Iron	ma/L					3.03	13.1	2.4
Chromium VI	ma/L	0.001	0.5			<0.01	<0.01	<0.01
Total Metals								
Aluminium	mg/L	0.055	2	5		1.14	5.71	0.4
Arsenic	ma/L	0.013	0.07	0.1		0.008	0.011	0.002
Cadmium	ma/L	0.0002	0.02	0.01		< 0.0001	<0.0001	<0.0001
Chromium	ma/L			0.1		0.014	0.191	0.002
Copper	ma/l	0.0014	20	0.2		0.006	0.06	0.004
Lead	ma/l	0.0034	0.1	2		0.001	0.009	<0.001
Manganese	ma/l	1.9	5	0.2		1 72	1.9	0.308
Molybdenum	ma/l	1.0	0.5	0.01		0.007	0.016	0.002
Nickel	mg/L	0.011	0.0	0.01		<0.001	0.013	0.002
Selenium	mg/L	0.005	0.2	0.2		<0.001	<0.003	0:002 ∠0.01
Silver	mg/L	0.0005	1	0.02		<0.01	<0.01	<0.01
Zinc	mg/L	0.00000	30	2		0.006	0.042	0.013
Iron	mg/L	0.000	30	0.2		34.5	68.6	4.42
Moroury	mg/L	0.0	0.01	0.2		-0.0001	40.0001	4.42
Nutrionto	mg/L	0.00006	0.01			<0.0001	<0.0001	<0.0001
	mc/l	0.0	E			1.02	0.72	0.09
Nitrito as N	mg/L	0.9	30			0.01	-0.01	0.00
Nitrato as N	mg/L		50			0.01	<u> <u> </u> <u></u></u>	4
Violdhol Nitrogoo	mg/L		500			0.01	0.3	1 4
Total Nitragen	mg/L	1.01		F		1.0	2	1.4
Total Nillogen	mg/L	1.0		0.05		1.8	2.3	2.4
Total Phosphorus	mg/L	0.1		0.05		0.02	0.07	0.04
Reactive Phosphorus	mg/L					<0.01	<0.01	0.02

NOTES: 1. SRT Healthy Rivers Action Plan Long Term Targets 2. pH > 6 / pH < 6 3. ASS disturbance indicators

Table 15: HVNMW6 Laboratory Results

Analyte grouping/Analyte	Units	Freshwater Ecosystems	Domestic Non-potable	Long Term Irrigation	DEC Trigger Values	21/02/2013	18/06/2013	20/08/2013
		0505		0005	F ³ / O ⁴			
pH value	pH Unit	0.5-8.5		6.0-8.5	<0> / <0	0.23	5.7	4.51
Electrical Conductivity	µ5/cm	1500				812	1040	500
Total Dissolved Solids	mg/L					402	840	518
Suspended Solids	mg/L					1600	36	136
	NIU				1	5270	441	505
Total Alkalinity CaCO ₃	mg/L				<30*	21	12	<1
Acidity as CaCO ₃	mg/L				404	23	38	36
BOD	mg/L					<2	8	<2
Sulfate as SO ₄ ²⁻	mg/L		5000			552	55	17
Sulfide	mg/L	0.001				<0.1	<0.1	<0.1
Alkalinity : Sulfate	ratio				<53	0.04	0.22	0.06
Chloride	mg/L					229	307	119
Sulfate : Chloride	ratio				0.5 ³	2.41	0.18	0.14
Dissolved Metals	-							
Aluminium	mg/L	0.055	2	5	1.0 ³	0.37	0.35	0.68
Arsenic	mg/L	0.013	0.07	0.1		0.005	0.003	0.008
Cadmium	mg/L	0.0002	0.02	0.01		<0.0001	<0.0001	<0.0001
Chromium	mg/L			0.1		<0.001	<0.001	0.004
Manganese	mg/L	1.9	5	0.2		0.003	0.057	0.012
Nickel	mg/L	0.011	0.2	0.2		<0.001	0.002	<0.001
Selenium	mg/L	0.005	0.1	0.02		<0.01	<0.01	<0.01
Zinc	mg/L	0.008	30	2		<0.005	0.021	0.034
Iron	mg/L	0.3	3	0.2		0.92	1.84	0.62
Ferrous Iron	mg/L					0.86	1.97	0.66
Chromium VI	mg/L	0.001	0.5			<0.01	<0.01	<0.01
Total Metals					<u>.</u>			
Aluminium	mg/L	0.055	2	5		17.5	3.51	4.41
Arsenic	mg/L	0.013	0.07	0.1		0.006	0.004	0.008
Cadmium	mg/L	0.0002	0.02	0.01		<0.0001	0.0001	<0.0001
Chromium	mg/L			0.1		0.006	0.002	0.007
Copper	ma/L	0.0014	20	0.2		0.009	0.005	0.033
Lead	ma/L	0.0034	0.1	2		0.052	0.007	0.007
Manganese	ma/L	1.9	5	0.2		0.004	0.01	0.014
Molvbdenum	ma/l		0.5	0.01		< 0.001	< 0.001	<0.001
Nickel	ma/l	0.011	0.2	0.2		0.006	0.002	0.002
Selenium	ma/l	0.005	0.1	0.02		<0.01	<0.01	<0.002
Silver	mg/L	0.00005	1	0.02		<0.01	<0.01	<0.01
Zinc	mg/L	0.008	30	2		0.049	0.018	0.023
Iron	mg/L	0.000	3	0.2		1 51	1.69	0.020
Mercury	mg/L	0.0	0.01	0.2		0.0002	<0.0001	<0.001
Nutrients	mg/L	0.00000	0.01			0.0002	<0.0001	<0.0001
Ammonia as N	ma/l	0.9	5			0.21	03	0.16
Nitrite as N	mg/L	0.0	30			<0.21	<0.0	<0.10 <0.01
Nitrato as N	mg/L		500			0.01	1 01	5 08
Kieldhal Nitrogen	mg/L		500			1.21	21	2.30
	mg/L	1 0 ¹		5		1.0	Z. 1 A	2.0
	mg/L	0.1 1		0.05			0.20	0.0
Popotivo Phophorus	mg/L	0.1		0.05		0.33	0.29	0.52
Reactive Phosphorus	ng/L					0.22	0.27	0.57

NOTES: 1. SRT Healthy Rivers Action Plan Long Term Targets 2. pH > 6 / pH < 6 3. ASS disturbance indicators

16.10 Summary

The pH of the ground water samples at the six sites ranged from 4.51 to 6.46 with, exceedances outside the Freshwater Ecosystems trigger levels, Long-term irrigation levels and below the DER trigger level. Electrical conductivity in the samples ranged from 157 to 500 uS/cm, the lowest value from all sampling occasions was from site MW2 yet within all assessment criteria. Total dissolved solids, suspended solids and turbidity varied between the groundwater monitoring sites, with no obvious patterns.

As the site is classified as moderate to low risk in the Acid Sulphate Soil Risk Map, Swan Coastal Plain (DEC-001) (25.01.2010 15:16:09) an analysis of possible issues was undertaken with the water quality data. In a report produced by the Department of Environment (2004) several criteria were identified to assist in determining if they may be acid sulfate soil issues. The report states that:

"Chemical indicators that <u>may</u> indicate that groundwater at the water table is be affected by the oxidation of sulfides include:

- A sulphate/chloride mg L-1 ratio greater than 0.5 (Mulvey, 1993);
- An alkalinity/sulphate mg L-1 ratio of less 5 (Swedish EPA, 2002);
- A pH of less than 5;
- A soluble aluminium concentration greater than 1 mg L-1."

In Table 14 the sulfate : choride ratios were calculated for the monitoring well locations and compared. Groundwater samples from Sites MW2, MW4 and MW5 exceeded the indicator ratio. The alkalinity : sulfate ratios at Sites MW1 to MW6 were all <5 indicating that oxidation may be occurring. The pH of the groundwater samples from MW3 and MW6 were the only ones below 5 while the soluble aluminium concentration in the groundwater was >1 mg/L within MW1 in February, MW3 for June and August and MW4 in August.

Analyte	Acidity Indicators	Location	21.2.2013 Ratio	18.6.2013 Ratio	20.08.2013 Ratio
		MW1	0	0.3	0.37
		MW2	0.4	0.3	0.65
Sulfate/Chloride	> 0.5	MW3	0.3	0.2	0.17
Ratio	> 0.5	MW4	0.4	0.3	0.58
		MW5	1.0	1.2	0.79
		MW6	2.4	0.1	0.14
		MW1	0	0.3	0.33
		MW2	0.5	0.4	0.91
Alkalinity/Sulfate	- 5 0	MW3	0.3	0.1	0.06
Ratio	< 5.0	MW4	1.7	1.5	0.93
		MW5	0.7	0.6	0.45
		MW6	0.0	0.2	0.06

 Table 16: Acid Sulfate Soil Disturbance Indicators

The issues concerning the concentration of chloride in irrigation waters relate to the risk of foliar injury to crops (ANZECC, 2000). The concentration of chloride recommended to prevent foliar injury depends upon the sensitivity of the plant and can range from <175 mg/l for sensitive plants to >700 mg/l for tolerant plants. The water samples from the groundwater ranged from the sensitive to moderately sensitive, which would be of suitable use for a wholesale nursery.

Metalloid results could be considered higher than expected for background waters within this locality, however, elevated levels of suspended solids within majority of the samples could have contributed to artificially increasing the results. Dissolved metals analysed are significantly lower than the total metals results and are more indicative of the quality of water that would be abstracted for use on site.

Although nutrient levels in all monitoring wells were slightly elevated above ANZECC criteria, surface waters are not located in the immediate vicinity of the site and downstream receptors are likely to be more significantly impacted upon by land uses.

The main points to be aware of from the results are:

- 1. pH results indicate that the groundwater may need to by adjusted prior to use.
- 2. The groundwater may be affected by the oxidation of sulphides and needs to be monitored further.

- 3. The elevated metal concentrations in the groundwater in conjunction with the potential acid sulphate soil risk, requires monitoring of the groundwater to keep a check of possible problems.
- 4. As nutrient concentrations are already elevated above guideline concentrations, it will be important to make sure that all runoff water from the nursery is captured and treated to reduce nutrient concentrations prior to infiltration into the ground.

17 CONTINGENCY PLANS

The contingency plans for the site include the chemical storage facility and chemical rinsing's breakdown facility. This system has been designed to effectively contain and treat all chemical spill and clean-up operations.

The establishment of vehicle tracks and the design of the production areas will minimise the impact of erosion and other such storm damage. To prevent disruptions from electricity failure, a backup diesel-powered generator and uninterruptible power supply units will be installed on all water treatment and chemical injection controllers.

Through the use of the nutrient retention basin and responsible fertiliser management practices all nutrients will be contained on site. In the event that nutrient leaching to the groundwater is highlighted through the water-monitoring program, a nutrient minimisation and captivation program will be initiated. The design of this program will ensure that the nutrient source is located and the problem remedied.

18 REFERENCES

ANZECC 2000. Australian and New Zealand Environment and Conservation Council, Australian Water Quality Guidelines.

CDM Smith 2013. Hydrological modelling of land clearing on Rapids Road, Serpentine.

Department of Environment and Conservation 2013. Preliminary Assessment Report – Application to clear native vegetation under the *Environmental Protection Act 1986*.

Department of Environment and Conservation 2010. Contaminated Sites Management Series - Assessment Levels for Soil, Sediment, and Water, Feb 2010.

Department of Environment 2004. Acid Sulfate Soils Guideline Series – Guidance for groundwater management in urban areas on acid sulphate soils.

Department of Health 2006 Contaminated Sites Reporting Guideline for Chemicals in Groundwater

Department of Water 2010. Water quality protection note 33 – Nutrient and irrigation management plans.

Department of Water 2012. Water Technical Series Lower Serpentine hydrological studies – conceptual model Report no. 45.

Department of Water 2013. Rights in Water and Irrigation Act 1914 advice for clearing permit application CPS 5441/1. Department of Water, Western Australia.

Environmental Protection Authority (2008). Guidance Statement 33 – Environmental Guidance of Planning and Development.

Mark Lund (2013) Advice on Damp land at 456 Rapids Road, Serpentine.

Nuts about Natives (2012) - Flora and Vegetation Survey of 456 Rapids Road, Serpentine

Terrestrial Ecosystems (2012a) - Black Cockatoo Assessment of 456 Rapids Road, Serpentine

Terrestrial Ecosystems (2012b) – Referral of proposed action, 456 Rapids Road, Serpentine Western Australia.

Standards Australia. 2005. AS 4482.1-2005. Guide to the Sampling and Investigation of Potentially Contaminated Soil. Part I: Non-volatile and semi-volatile compounds. Standards Australia, NSW.

Standards Australia/Standards New Zealand. 1998. AS/NZS 5667.1:1998. Water Quality – Sampling. Part 1: Guidance on the design of sampling programs, sampling techniques and the preservation and handling of sample. Standards Australia and Standards New Zealand, Homebush NSW and Wellington NZ.

SEWPAC, 2012. Decision on referral. Wholesale Nursery, 456 Rapids Road, Serpentine, WA

Vaune and Graeme Hall (2012) Nutrient and Irrigation Management Plan: Northern Portion Lot 25 (Lot 607) Holmes Rd Oakford.

MDW Environmental Services

Job # E2011-109 Nutrient and Irrigation Management Plan

Appendix A – Hydrological modelling of land clearing on Rapids Road, Serpentine (CDM Smith 2013)

MDW Environmental Services Hydrological modelling of land clearing on Rapids Road, Serpentine: REVISED

MDW Environmental Services Hydrological modelling of land clearing on Rapids Road, Serpentine: REVISED

23 July 2013

CDM Smith Australia Pty Ltd ABN 88 152 082 936 11/300 Rokeby Road Subiaco, Perth WA 6008 Tel: +61 8 9381 8855 Fax: +61 8 9381 8822

Section 1 Intr	oduction and Purpose	
Section 2 Data	a Analysis	2-1
2.1	Proposed development	2-1
2.2	Topography	2-1
2.3	Geology and soils	2-1
2.4	Wetlands	2-3
2.5	Rainfall data	2-3
2.6	Pre- and post-development subcatchments	2-4
Section 3 Surf	face Water	
3.1	Runoff Routing	
3.	1.1 XP-RAFTS model	
3.	1.2 Rational Method model	
3.	1.3 XPRAFTS Post-development results	
3.2	AWBM model	3-3
Section 4 Gro	undwater	
4.1	Conceptual hydrogeological model	
4.2	Groundwater impacts	4-2
Section 5 Con	clusions and Recommendations	

List of Figures

Figure 2-1 Cross section near study site (from Marillier et al. 2012).	2-2
Figure 2-2 Soil types at site: Bassendean Soil (yellow), Pinjarra Soil (green) (from SLIP NRM, 2013)	2-2
Figure 2-3 Monthly average rainfall and pan evaporation (from Marillier et al., 2012)	2-3
Figure 2-4 : Pre-development subcatchments	2-5
Figure 2-5 : Post-development subcatchments	2-6
Figure 3-1: AWBM conceptualisation	3-4
Figure 3-2: AWBM results: Post-development runoff to wetlands	3-5
Figure 4-1: Groundwater contours at May 2003 (from DoW 2013b)	4-1

List of Tables

Table 3-1 Initial and Continuous Loss parameter for hydrological modelling	3-1
Table 3-2: XP-RAFTS Peak Runoff: Pre-development case	3-2
Table 3-3: Comparison of XP-RAFTS and Rational Method	3-2
Table 3-4 XP-RAFTS Peak Runoff: Post-development Case	3-2
Table 3-5 Comparison of XP-RAFTS Peak Runoff for Pre-development and Post-development	3-3
Table 3-6 Adopted AWBM Parameters	3-4
Table 3-7: AWBM results: Comparison of surface runoff to wetlands	3-5

Appendices

Appendix A - Disclaimer and Limitations

Document History and Status

Revision	Date Issued	Reviewed By	Approved By	Date Approved	Revision Type
REVA	03 July 2013	Andrew Brooker			Draft
REVB	04 July 2013	Lynn Reid	Lynn Reid	04 July 2013	Draft
REV0	12 July 2013		Lynn Reid	12 July 2013	Final
REV1	23 July 2013	Lynn Reid	Lynn Reid	23 July 2013	Revision 1

Distribution of Copies

Version	Date Issued	Quantity	Electronic	Issued To
REVB DRAFT	04 July 2013	1	1	Greg Watts
REV0 FINAL	12 July 2013	1	1	Greg Watts
REV1 REVISION	23 July 2013	1	1	Greg Watts

Printed:	23 July 2013
Last Saved:	23 July 2013 02:48 PM
File Name:	PGW130026_RapidsRoadHydrology_Rev1_20130723.docx
Author:	Isabelle Dionne, Lynn Reid, Evan O'Brien, Andrew Brooker
Project Manager:	Lynn Reid
Client:	MDW Environmental Services
Document Title:	Hydrological modelling of land clearing on Rapids Road, Serpentine: REVISED
Document Version:	Final
Project Number:	PGW130026.01

Executive Summary

CDM Smith Australia Pty (CDM Smith) has been commissioned by MDW Environmental Services (MDW) to prepare a hydrologic study of the proposed development of a nursery at 456 Rapids Road in Serpentine, Western Australia. The nursery would sit on an impermeable pad which would cover less than a third of the site. This revised report considers that an area of native vegetation and a wetland on the southern portion of the site will not be cleared. All water used in the nursery operations would be captured and treated.

The WA Department of Environment and Conservation (DEC) has expressed concerns about the impact of the proposed nursery to flora, fauna, and the hydrological regime. In the context of hydrology, the DEC was particularly concerned about decreased surface water discharge to a wetland on the adjacent northern property. CDM Smith has performed a study to understand existing water movement and how the construction of the nursery will cause hydrological changes to surface and groundwater. This revised report also addresses changes to the retained southern wetland.

The study site has surface soils of Bassendean Sand and Guildford Clay. Recharge to groundwater occurs through freely draining sandy soils in the Surficial Aquifer. Much of the site is classified as a geomorphic Dampland wetland of Resource Enhancement status.

Rainfall in Serpentine exceeds evapotranspiration. The ratio of rainfall to runoff would be quite low, with most rainfall events generating little or no runoff, particularly in the warmer months.

Topographic analysis of ground elevations determined that the site contains three subcatchments, which primarily drain to the west and northwest. The proposed development will decrease the area of the subcatchment draining to the northern wetland by 16%, and the area draining to the southern wetland by 33%.

Hydrologic modelling was performed to estimate the impact on surface water flows. The magnitude of extreme flows to the northern wetland was determined with XP-RAFTS, a runoff-routing model. The change in total volume to the wetland was determined with AWBM, a daily water balance model.

The overall impact on the volume and discharge rate of surface water flows is relatively minor, due to the high rates of infiltration and low annual rainfall. This conclusion is reflected in both the design rainfall approach and the AWBM approach. The northern wetland will receive approximately 16% less volume of water and 10% lower peak discharge. The southern wetland will receive approximately 31% less volume of water and 28% lower peak discharge, but will retain all runoff in the post-development design.

Groundwater flow will not be significantly impacted at the site due to low recharge and lateral rates of flow. Development is likely to increase depth to water and is unlikely to result in water-logging. Nitrogen concentrations in groundwater and surface water are unlikely to change significantly due to the proposed development.

The hydrologic study points out that care is needed in the design of the nursery site to avoid waterlogging outside the nursery and provide for sufficient capture of high rainfall events.

Section 1 Introduction and Purpose

Mr Graeme Hall and Mrs Vaune Hall have applied to the Western Australia Department of Environment and Conservation (DEC) for permission to develop a wholesale nursery within Lot 838 on Rapids Road, Serpentine, Western Australia. This development proposes to clear approximately 17 hectares of native vegetation and adjust land surface levels. The owners have engaged MDW Environmental Services (MDW) to assist with the application process. The DEC has identified several potential environmental impacts, including vegetation, wildlife, land use, hydrologic, and hydrogeological concerns. An initial response by MDW, including hydrologic modeling, was provided to DEC in July 2013. This revised report includes an alternative development proposal which retains a native wetland on the southern section of the lot.

CDM Smith Australia Pty (CDM Smith) has been commissioned by MDW to develop hydrological and hydrogeological models to assist with the regulatory requirements at the site. The modelling has been developed to meet the following objectives:

- Understand existing hydrological conditions on the lot to quantify the water supply to adjacent wetland and lots.
- Predict hydrological changes from the construction of a wholesale nursery on the nearby wetland and lots.
- Estimate and predict water discharge and nitrogen loading to groundwater from operational activities.

This report provides information about the potential impacts to surface water and groundwater as a result of the construction of the nursery using the revised development layout.

2.1 Proposed development

The proposed commercial development will extend across approximately 17 hectares of land at the site, and be located on a nearly flat graded impermeable pad at 27.3 m AHD. Excluded from the cleared area is a native wetland plus a buffer zone in the central southern portion of the site. Clean fill will be added to the pad, and pot plants grown on top. The plants will be watered and fed with a nitrate-free but phosphorus-containing fertiliser. After development, all rainfall onto the pad and water used within the facility will be retained onsite, treated, and reused. Figure 2-5 shows the development layout, with a shaded area illustrating the development zone. This development will excise the southern wetland as indicated on the map.

2.2 Topography

Detailed contours derived from a topographic survey have been supplied by MDW. Land surface elevations vary between 24 and 32 m AHD across the site (see Figure 2-5). The lot is generally flat with a slight grading toward the west, although sandy rises create higher areas on the lot. A few elevation contours outside of the lot boundary were provided by MDW but are not extensive. For the area outside lot boundaries, digital elevation data (DEM 1 second/30 m derived from SRTM; Geoscience Australia, 2011) was also available. When this smoothed data was compared to the detailed survey, the elevation and profile were considerably different and this DEM data source was discounted. No other detailed topography is available outside of the property boundaries.

2.3 Geology and soils

DEC commissioned a flora and vegetation survey by Nuts about Natives (DEC, 2013a) and a site assessment by the office of the Commissioner of Soil and Land Conservation. The survey identified soil types within the study area which may support ecological communities.

The surface geology in the study area is primarily associated with the Bassendean Sand. As indicated in Marillier et al. (2012) the sand sequence in likely to be relatively thin at this location. Bassendean Sands (Qb) will be underlain by the Guildford formation (Qg). A quaternary sand sequence (Qn) is the lowermost superficial aquifer unit. Figure 2-1 shows a stratigraphic cross-section (from Marillier, 2012). In this cross-section, Rapids Rd would lay between bore T460 and T470. Surface soils mapping shows that in some areas in the north of the study area are Pinjarra soils associated with the Guildford clay. Underlying the Superficial Aquifer is the Wanneroo Member (Kwlw) of the Leederville formation, which forms part of the Leederville Aquifer.

The Bassendean Sand is a pale grey to white and occasionally brown, moderately sorted, fine- to medium-grained quartz sand with traces of heavy minerals. The Guildford Clay is described as pale grey, blue, but mostly brown silty and slightly sandy clay. The Quaternary sand is described as consisting of pale grey to grey-brown, fine- to very-coarse-grained, very poorly sorted, subrounded to rounded quartz and abundant feldspar.

Figure 2-1 Cross section near study site (from Marillier et al. 2012).

Figure 2-2 Soil types at site: Bassendean Soil (yellow), Pinjarra Soil (green) (from SLIP NRM, 2013).

2.4 Wetlands

The study area contains geomorphic wetlands designated Resource Enhancement (DEC, 2013b) and is considered a Dampland. This assessment was confirmed by site visits commissioned by MDW (Lund, 2013). A wetland situated in the next property north of the lot is also a source of concern from the DEC as it may support important ecological communities.

The survey by Lund (2013) indicated that the wetlands on 456 Rapids Road are disconnected from wetlands to the north of the property by surface drains. However, as the on-site wetlands are in relatively good condition, the proposed nursery development will maintain the wetlands and a 10 m buffer around the dampland area containing native vegetation in relatively good condition (see Figure 2-5).

2.5 Rainfall data

The climate in Serpentine is characterised by hot dry summers and cool wet winters. The Bureau of Meteorology data for the region (Site 9039) indicates that 84% of the rainfall falls during the winter months of May to October. Average annual rainfall is 919 mm, with pan evaporation exceeding rainfall with an average of 1675 mm. As such, the ratio of rainfall to runoff would be quite low, with most rainfall events generating little or no runoff, particularly in the warmer months.

Figure 2-3 illustrates rainfall and pan evaporation distribution over the year (Marillier et al., 2012).

Figure 2-3 Monthly average rainfall and pan evaporation (from Marillier et al., 2012).

To analyse the changes in total volume reporting to the wetlands within the lot and north of the lot, a daily water balance is required. The water balance is informed by the most recent 14 months of recorded daily rainfall and daily evaporation data from the Serpentine station and nearby Karnet station, respectively. The total rainfall over this period was 870 mm. These data are implemented in the Australian Water Balance Model (AWBM), and the results discussed in detail in Section 3.

To predict the changes in the magnitude of extreme flows to the wetland, the Design Rainfall procedure is adopted. Using this method, an estimate of rainfall is obtained which has a specified
probability of occurring in any given year. In this case, the assessment focuses on the 50 year and 100 year Average Recurrence Interval (ARI) events; that is, probabilistic estimates of rainfall that has a one-in-fifty and one-in-one hundred chance of occurring in any given year.

An Intensity-Frequency-Duration (IFD) table of design rainfall was created for the Serpentine area by using the online tool at the Bureau of Meteorology website (BOM, 2013). The temporal characteristics of design rainfall were taken from the Engineers Australia publication "Australian Rainfall and Runoff" (Pilgrim, 2001). The IFD data and the temporal patterns are used in the RAFTS runoff routing model, which is discussed in detail in Section 3.

2.6 Pre- and post-development subcatchments

This area of Serpentine is mostly agricultural and contains a system of drains. One of these drains crosses Rapids Road and Lot 858 to discharge in a wetland situated north of the property. A drain situated on the lot north of the proposed development lot also discharges into this wetland. Two surface water WIN sites (Atlas, DoW) are situated on each of these drains but do not have continuous recorded flow data.

Subcatchments on the lot have been delineated from the topography and are presented on Figure 2-4. As mentioned in Section 2.2, no elevation data was available outside of the lot boundary except from a few contour lines. The lot boundary was therefore assumed primarily to form the boundary for the subcatchments. In the largest subcatchment it was possible to confidently include a portion of the adjacent southern lot into the contributing area, as the SRTM data and visual inspection of aerial photographs provided supporting evidence.

- Subcatchment 1 is located on the southern part of the lot and drains towards the northwest. A portion of the drainage area comes from the adjacent southern lot. This subcatchment contains the southern wetland.
- Subcatchment 2 is situated on the eastern portion of the lot. Runoff drains in a northwesterly direction via a drain towards the northern wetland.
- Subcatchment 3 is the smallest catchment and also discharges in a northwesterly direction with eventual drainage north across the property boundary.

Figure 2-5 presents the post-development layout and subcatchments.

- Subcatchment 1 will be divided in two. Part A will still drain towards the west; however Part B becomes isolated by the nursery fill pad. It is proposed that Part B will be principally self-contained with runoff collecting in the southern wetland. When water levels within the southern wetland reach approximately 0.25m in depth, additional runoff will be directed to Subcatchment 2 by an engineered controlled level drain. This occasional connection between the two subcatchments is not modelled in this report; Subcatchment 1B will be modelled as a water sink.
- Subcatchment 2 will lose 3.27 ha to the nursery. This catchment drains into the northern wetland via a drain. Grading will be performed in this subcatchment to prevent ponding in the lower area close to the nursery and also in the higher areas to prevent runoff from entering the nursery.
- Subcatchment 3 will be 1.02 ha bigger after the development. Grading will be performed on this subcatchment to prevent ponding in the lower areas close to the nursery.

Figure 2-4 : Pre-development subcatchments.

Figure 2-5 : Post-development subcatchments.

Section 3 Surface Water

The objective of this hydrologic analysis is to quantify the likely change in runoff to the wetlands as a result of the proposed development. It is important to understand that the total area offsite draining into the northern wetland is large, and the contribution of Subcatchment 2 on Lot 838 represents a small fraction of the overall drainage to this wetland. The southern wetland receives runoff from approximately two-thirds of the original catchment.

Hydrologic modelling was performed with two methodologies. The magnitude of extreme flows to the wetlands was determined with a runoff-routing model. The change in total volume to the wetlands was determined with a daily water balance model.

3.1 Runoff Routing

3.1.1 XP-RAFTS model

Surface runoff can be estimated for rainfall events using topographic data, vegetation, soil type, land use and the existing channel network. For this project, the hydrologic model XP-RAFTS (XP solutions, 2013) was used to evaluate the likely magnitude of surface runoff. The model utilises Laurenson's non-linear routing method to derive an estimate of the runoff hydrograph from a given rainfall event. This runoff-routing model has been shown to provide good replication of observed catchment response and for this reason is in widespread use across Australia.

Runoff is determined by the difference between rainfall and losses. Losses come generally from infiltration into the soil. The remaining precipitation, referred to as 'rainfall excess,' is available to the surface water system as runoff.

Several different conceptualisations exist to represent rainfall losses. For this model we have adopted the Initial-Continuing model. It is comprised of an Initial Loss parameter (specified in millimetres), which represents the depth of rainfall that infiltrates before runoff occurs, and a Continuing Loss parameter (specified in millimetres per hour), which is representative of the ongoing infiltration rate that occurs after the Initial Loss. Although conceptually quite simple, it is an effective way to account for rainfall losses, and is appropriate for our case where the absence of site-specific data precludes the use of a physically based model, such as the Green-Ampt equation.

The infiltration rate is not specific to a particular soil and will depend on other parameters such as the surface condition, surface roughness and site management (Moore, 2001). In Section 2.3, the soil on the lot is described as sandy soil with sparse vegetation; however no data are available to against which to calibrate the model. Based on the sandy soil properties and the cleared lot, loss rates representative of the region have been assumed and are presented in Table 3-1.

Table 3-1 Initial and Continuous Loss parameter for hydrological modelling.

Land type	Initial Loss (mm)	Continuous Loss (mm/hr)
Sandy soil with sparse vegetation	20	5

The RAFTS model consists of one 'node' for each of the sub-catchments under consideration. Subcatchment areas and slopes were measured in GIS, with slopes (on an equal area basis) found to be generally quite flat, in the range of 0.4% to 0.8%. A Manning's roughness of 0.04 was adopted, based on the advice of Chow (1959), whereby it is listed as a representative value for grassed areas with scattered small brush.

Multi-storm analysis was conducted to determine storm duration that produced the largest peak discharge (the critical duration) for each of the subcatchments. Results are shown below in Table 3-2 for the pre-development case.

Cubectchmont	Area	Peak Runoff Rate (m ³ /s)		
Subcatchment	(ha)	50 year ARI	100 year ARI	
1	24.98	0.46	0.57	
2	20.60	0.41	0.52	
3	7.12	0.17	0.20	

Table 3-2: XP-RAFTS Peak Runoff: Pre-development case.

3.1.2 Rational Method model

In the absence of any gauged data, we can gain some degree of confidence in the pre-development results by comparing peak runoff rates from XP-RAFTS to those calculated using the Rational Method (Dooge, 1959). A Rational Method analysis was carried out for the Pre-development Case subcatchments, following the regional method for Western Australia (Pilgrim, 2001). Results for the 100 year ARI design rainfall event are shown in Table 3-3 below:

	Area	100 year ARI Peak Runoff Rate (m ³ /s)				
Subcatchment	(ha)	XP-RAFTS (1)	Rational Method (2)	% Change (1) :		
1	24.98	0.57	0.52	8.8%		
2	20.60	0.52	0.45	13.5%		
3	7.12	0.20	0.17	15%		

Table 3-3: Comparison of XP-RAFTS and Rational Method.

The comparison shows that the peak runoff rates estimated by the two different methods differ by between 9 and 15 percent. This can be considered a good agreement on ungauged catchments, and gives confidence that the model results are of the correct magnitude.

3.1.3 XPRAFTS Post-development results

The XP-RAFTS model described above was then run for the post-development case. Results are shown in Table 3-4 for the 50 year and 100 year ARI design rainfall events.

Cubastabusant	Area	Peak Runoff Rate (m ³ /s)		
Subcatchment	(ha)	50 year ARI	100 year ARI	
1A	1.53	0.07	0.10	
1B	10.37	0.32	0.41	
2	17.33	0.36	0.47	
3	8.14	0.18	0.22	

Of most interest is the comparison of the pre- and post-development cases for Subcatchment 2, where the northern wetland is situated. Table 3-5 presents this comparison for the peak discharge of the 100 year ARI. Results show that the decrease in area of approximately 16% for Subcatchment 2 results in a peak discharge decrease of less than 10%, likely due to the non-linear nature of catchment response to rainfall. From this we can conclude that the change in peak runoff to the northern wetland as a result of extreme rainfall events is unlikely to be greatly altered by the proposed development.

 Table 3-5: Comparison of XP-RAFTS Peak Runoff for pre-development and post-development.

 Asterisk indicates subcatchments with considerably altered drainage pattern.

Subcatchmont	100 year ARI Peak Runoff Rate (m³/s)			
Subcatchment	Pre-development (1)	Post-development (2)	% Change (1) : (2)	
1→1B*	0.57	0.41	28%	
2	0.52	0.47	9.6%	

The southern wetland is contained in the middle of the in the pre-development Subcatchment 1, whereas all of post-development Subcatchment 1B drains into this sink. Hence results shown in Table 3-5 for Subcatchment $1 \rightarrow 1B$ represent different drainage patterns across the pre- and post-development subcatchments. The pre- to post-development peak runoff for the southern wetland has decreased by 28% due to a decrease in drainage area contributing to the wetland of approximately 33%.

3.2 AWBM model

For typical smaller magnitude, more common rainfall events in the Serpentine region, the bulk of precipitation is lost in to the soil with little or no overland flow produced as a result. In this case, the Design Rainfall method is not a particularly appropriate method for estimating flows, as it is likely to show zero runoff from, say, the 1 year ARI rainfall event due to the fixed nature of the assumed rainfall loss model. In reality, rainfall losses are a function of antecedent soil moisture – a fact that is of greater importance for the smaller ARI events – and several small rainfall events in succession may produce observable runoff.

To account for this, an Australian Water Balance Model (AWBM, see Boughton, 2010) was created, through which recent historic rainfall could be routed to gain an idea of the volume of water reporting to the wetland. The AWBM uses three conceptual surface stores to simulate partial areas of runoff. At each timestep, rainfall is added to and evaporation subtracted from each store. If the value of moisture in the store exceeds the capacity of the store, excess moisture becomes runoff which is then split into a surface runoff component and a baseflow component. Figure 3-1 illustrates the conceptualisation.

An AWBM model requires the following parameters:

Average Surface Storage Capacity (S) – The key parameter determining the amount of runoff. It is disaggregated into a set of capacities and partial areas using a fixed pattern, as per the work of Boughton (2004).

Base Flow Index (BFI) – The proportion of the rainfall excess that reports to the baseflow store. **Base Flow Recession Constant (Kb)** – One minus the proportion of the baseflow store that is discharged per day.

Figure 3-1: AWBM conceptualisation

For this study, in the absence of calibration data an average set of parameter values is adopted based on studies conducted in ten Western Australian catchments (Boughton, 2010), as shown in Table 3-6.

	Table	3-6:	Adopted	AWBM	parameters.
--	-------	------	---------	------	-------------

Parameter	Value
Surface Storage Capacity	410 mm
Base Flow Index	0.56
Baseflow Recession Constant	0.956

The model simulated the likely runoff that would arise from 14 months of observed rainfall data, from May 2012 to July 2013, for both Subcatchments 1B and 2. Figure 3-2 presents the simulated runoff for this period to the northern wetland in blue and the southern wetland in red. Most of the runoff occurs during the winter months when the rainfall is higher and the evaporation rate is lower. Over this simulation period, monthly average winter rainfalls are lower than long term trends at site 9039 (see Figure 2-3). During the summer months, a higher evaporation rate produces almost no runoff towards the wetland. This model does not take into account recharge to groundwater.

To evaluate the change in volume of water to the northern wetland, runoff was integrated over the simulation period of 14 months. Volumes of water to Subcatchment 1/1B and Subcatchment 2 in both the current state and the future post-development state are presented in Table 3-7 below.

 Table 3-7: AWBM results: Comparison of surface runoff to wetlands. Asterisk indicates

 subcatchments with considerably altered drainage pattern.

Subcatchmont	Surface Runoff (m³)				
Subcatchment	Pre-development (1)	Post-development (2)	% Change (1) : (2)		
1→1B*	5032	3479	31%		
2	6910	5813	16%		

As expected, the change in surface runoff to the northern wetland from Subcatchment 2 was found to be approximately equal to the change in contributing catchment area, with decreases both by 16%. However, in both cases the total surface runoff represented only around 3% of the incident rainfall to the catchment (total observed rainfall of 870 mm), suggesting the majority of precipitation is either lost as evaporation or contributes to groundwater recharge. Alteration to the surface runoff regime by the proposed development is neither particularly large, nor is it likely the dominant factor with respect to inflows on a water balance of the wetland.

Likewise, the decrease in surface runoff to the post-development Subcatchment 1B and the southern wetland is similar to the change in contributing catchment area. The portion of Subcatchment 1 'upstream' of the southern wetland will be decreased by approximately 33% by the nursery development, while surface runoff decreases 31% over the 14 months of simulation. Despite this decrease, the self-contained nature of the post-development southern wetland will ensure that maximum runoff is retained in this dampland.

4.1 Conceptual hydrogeological model

Watertable contours from regional bores measured in May 2003 (DoW, 2013b) show that the groundwater flow is in a North-Westerly direction , on lot 838, approximately 24 m. Season variations in Groundwater levels of 2-3 m are indicted from nearby bores with the seasonal minimum occurring around May.

Six monitoring bores have been installed into the Superficial Aquifer at the site by MDW. Although the bores are not yet surveyed, depth to water shortly after installation ranges from 0.5 to 5.5 m below ground. The shallowest water table is measured in the northwestern corner of the proposed development, and the deepest in the northeastern corner.

As described in Marillier (2012) the low hydraulic gradient and shallow watertable indicate that the water balance will have high vertical fluxes (e.g. recharge from rainfall and evapotranspiration) and small lateral fluxes (e.g. horizontal groundwater flow). Across most of the study area, recharge to the superficial groundwater is through free draining sandy soils. In areas where the watertable reaches the surface there will be a component of rejected recharge; that is, water that would have recharged the aquifer but instead runs off as surface flow. Most of the water flux in the Superficial Aquifer is expected to be vertical via recharge and evaporative losses, with lateral movement consisting of a much smaller portion.

Discharge to underlying aquifers occurs where a negative (downward) head gradient exists and no confining layer is present. Marillier (2012) indicates that the vertical head gradient in the study area is low. This, and the presence of semi-confining Guildford clay underlying the area, means that it is unlikely that significant downward discharge to the Leederville aquifer occurs.

Figure 4-1: Groundwater contours at May 2003 (from DoW 2013b).

4.2 Groundwater impacts

The nursery site will be lined with impermeable materials, thereby reducing the rainfall recharge under the nursery pad to near zero. This will have the effect of lowering the water table. Groundwater evaporation also will be reduced via the filling of low-lying areas. Given the current dynamic regime of interacting groundwater with the landsurface, the net effect on lateral flow is likely to be small. Filling of low lying areas will mean that water-logging is unlikely as a result.

Groundwater sampling of the six wells installed by MDW (ALS Group, 2013) indicates groundwater is acidic (pH between 5.18 and 6.94), moderate in total dissolved solids (TDS between 350 and 1950 mg/L), with total nitrate as N between below detection of 0.01 to 8.19 mg/L, and total phosphorus as P between below detection of 0.05 to 1.05 mg/L. Values of nitrate as NO₃ ion would be measured up to 36 mg/L, with an average value from the six wells of 7.3 mg/L. This average value is in line with that reported by Yerstener (2010) and below the drinking water limit of 50 mg/L.

Removal of vegetation in the nursery development, and hence removal of the uptake of nitrogen by vegetation, will have the effect of increasing nitrogen levels in groundwater. Some sources estimate that nitrogen uptake from plants can contribute 1 to 34% of total nitrate loss in the nutrient cycle (Kadlec & Wallace, 2009). The internal drainage to the southern wetlands, and retention of the native vegetation, will help mitigate the changes caused under the nursery development pad. However, as the groundwater recharge will be nil under the pads, no significant increase of nitrate concentrations in groundwater is expected.

Note that no direct input of nutrients to the groundwater or surface water directly from the horticultural operation is expected. Hence groundwater or surface water eutrophication from the development is unlikely.

Section 5 Conclusions and Recommendations

Review of data and hydrologic modelling lead to conclusions on the impact of the proposed nursery on surface and groundwater at the Rapids Road site.

- Most subcatchments at the site drain to the west and do not impact wetlands to the north of the property. One wetland exists in the southern portion of the development. The proposed development will decrease the area contributing to the northern wetland (Subcatchment 2) by approximately 16%. The area contributing to the southern wetland (Subcatchment 1B) will decrease by approximately 33%.
- The overall impact on the volume and discharge rate of surface water flows is relatively minor, due to the high rates of infiltration and low annual rainfall. This conclusion is reflected in both the design rainfall approach and the AWBM approach. The northern wetland will receive approximately 16% less volume of water and 10% lower peak discharge. The southern wetland will receive approximately 31% less volume of water and 28% lower peak discharge, but will retain all normal runoff post-development.
- Groundwater flow will not be significantly impacted at the site due to low recharge and lateral rates of flow. Development is likely to increase depth to water and unlikely to result in waterlogging.
- Nitrogen loading to groundwater would increase slightly due to clearing but the impermeable nature of site operations means that nitrogen concentrations are unlikely to change significantly.

This study has highlighted a few issues which should be addressed in the nursery design.

- Consideration should be given to the grading of the site, the localised areas of fill, and the perimeter table drains to ensure that they are adequately sized to allow for free drainage away from the pads. Detailed analysis here was beyond the scope of this report.
- Runoff originating from the nursery fill pad area is proposed to be captured and treated as appropriate to the relevant standards. This report makes no comment as to the exact nature by which these goals will be achieved. Capture and storage of extreme rainfall events should be included in the treatment design.

References

ALS Group (2013). Certificate of Analysis Work Order EP1301307 for Hope Valley Nusery [sic] Serpentine. 28 February 2013.

BOM (2013). Intensity Frequency Duration IFS data system, Bureau of Meteorology, Australian Government, http://www.bom.gov.au/water/designRainfalls/ifd/index.shtml.

Boughton, W (2004). The Australian water balance model, *Environmental Modelling & Software*, **19**(10), pp. 943—946.

Boughton, W (2010). Rainfall-runoff modelling with the AWBM, EA Books, Crows Nest, NSW.

Chow, VT (1959), Open-Channel Hydraulics, Part 1. Basic Principles, McGraw Hill Books, New York.

DEC (2013a) Letter to Mr Gregory Watts, MDW Environmental Services re *Application to clear native vegetation under the Environmental Protection Act 1986, reference CPS 5441/1,* Department of Environment and Conservation, 2 May 2013.

DEC (2013b). Geomorphic Wetlands Swan Coastal Plain dataset, Department of Environment and Conservation Western Australia, <u>http://www.dec.wa.gov.au/management-and-protection/wetlands/wetlands-mapping/geomorphic-wetlands-swan-coastal-plain-dataset.html</u>, sighted 12 June 2013.

Dooge, JCI (1959). A general theory of the unit hydrograph, *Journal of Geophysical Research*, **64**(2), pp. 241—256.

DoW (2013a) Geographic Data Atlas,

http://www.water.wa.gov.au/Tools/Maps+and+atlases/Geographic+data+atlas/default.aspx#1, Department of Water, Government of Western Australia, sighted 12 June 2013.

DoW (2013b). Perth Groundwater Atlas, Department of Water, Government of Western Australia, http://www.water.wa.gov.au/idelve/gwa/, sighted 12 June 2013.

Geoscience Australia (2013). National Elevation Data Framework Portal, http://nedf.ga.gov.au/geoportal/catalog/main/home.page.

Kadlec, R and Wallace, S (2009). Treatment wetlands (2nd ed.), Taylor and Francis Group, Boca Raton, Florida.

Lund (2013). Advice on Dampland at 456 Rapids Rd, Serpentine. Letter from Associate Professor Mark Lund to Mobile Dewatering Environmental Services, 18 June 2013.

Marillier, B, P Kretschmer, J Hall & B Quinton, (2012), *Lower Serpentine hydrological studies – conceptual model report*, Water Science Technical Series, report no. 45, Department of Water, Western Australia.

Moore, G, (2001). Soilguide, A handbook for understanding and managing agricultural soils. Agriculture Western Australia Bulletin No. 4343.

Pilgrim, D (2001). Australian Rainfall and Runoff: Volume One: A Guide to Flood Estimation, Institution of Engineers, Barton, ACT.

SLIP NRM (2013). Information products for Natural Resource Management, Soil-Landscape mapping, http://spatial.agric.wa.gov.au/slip/products_viewNRM.asp, sighted 18 June 2013.

XP Solutions (2013). XP rafts, Urban & rural runoff routing application, Belconnen ACT, http://www.xpsolutions.com/wp-content/uploads/docs/xprafts-tech-desc.pdf

Yerstener, C (2010). Hydrogeochemical assessment of the Superficial aquifer, Department of Water Hydrogeological record series Report no. HG37, August 2010.

Appendix A - Disclaimer and Limitations

This report has been prepared by CDM Smith Australia Pty Ltd (CDM Smith) for the sole benefit of the MDW Environmental Services for the sole purpose of determining developmental impacts on hydrology and hydrogeology at Rapids Road in Serpentine Western Australia.

This report should not be used or relied upon for any other purpose without CDM Smith's prior written consent. CDM Smith, nor any officer or employee of CDM Smith, accepts no responsibility or liability in any way whatsoever for the use or reliance of this report for any purpose other than that for which it has been prepared.

Except with CDM Smith's prior written consent, this report may not be:

(a) released to any other party, whether in whole or in part (other than to Department of Natural Resources and Mines officers, employees and advisers);

(b) used or relied upon by any other party; or

(c) filed with any Governmental agency or other person or quoted or referred to in any public document.

CDM Smith, nor any officer or employee of CDM Smith, accepts no liability or responsibility whatsoever for or in respect of any use or reliance upon this report by any third party.

The information on which this report is based has been provided by MDW Environmental Services and third parties. CDM Smith (including its officer and employee):

(a) has relied upon and presumed the accuracy of this information;

(b) has not verified the accuracy or reliability of this information (other than as expressly stated in this report);

(c) has not made any independent investigations or enquiries in respect of those matters of which it has no actual knowledge at the time of giving this report to the Department of Natural Resources and Mines; and

(d) makes no warranty or guarantee, expressed or implied, as to the accuracy or reliability of this information.

In recognition of the limited use to be made MDW Environmental Services of this report, the Department of Natural Resources and Mines agrees that, to the maximum extent permitted by law, CDM Smith (including its officer and employee) shall not be liable for any losses, claims, costs, expenses, damages (whether in statute, in contract or tort for negligence or otherwise) suffered or incurred by MDW Environmental Services or any third party as a result of or in connection with the information, findings, opinions, estimates, recommendations and conclusions provided in the course of this report.

If further information becomes available, or additional assumptions need to be made, CDM Smith reserves its right to amend this report.

Appendix B – Groundwater Field Sheets (February, June, August 2013)

Monitoring	Well	Field	Record
------------	------	-------	--------

Job #: EZOI	1-109 0	lient: /	tun	Location:_	SERPE	NTINE	
Well ID:	1w1	Date: 2	1/2/13	Sampler	Ja	n	
Monitoring Well	Informatio	n					
Depth to Water:	20	065 (mm TOC)	Depth to Bo	ottom:	0.66	(m)
Standpipe:		1765 (m)	Monument	Cover I	7765	()
Lock: 🗆 None		D Padlock	(YL)	🗆 Envir	o Cap	□ Gatio	1
Equipment IDs							2
Water Quality Me	eter:	451		TTA Kit:		4	
Pump:		TWISTE	R	TALK Kit:		Y	
Dipper:		DB					
Sampling							
Sample ID: HVA							
Time		<u>. </u>		COC No:	E 2011-	109-0	/
Time	рН	EC	DO	Temp	Redox	TTA	TALK
7.10	6.63	419.7	0 B	22-5	48.2		
9.15	2.16	4.14	2.48	21.3	147.7		
9.20	2.70	416	5.75	21.1	150.7	0.25	0.05
Bottles		ASSE	SSMENT S	UITE 1			a. a
1 x 1000mL plastic	GREEN	⊿ 1 x 60m	L plastic BLI	JE Ø	**BRING F	BACK & FIL	
1 x 125mL plastic Y	'ELLOW	z 1 x 60m	L plastic REE	D/GREEN	1 x 60mL	plastic MAR	
1 x 125mL plastic F	URPLE C	1 x 500n	nL plastic Gl	REEN**	1 x 60mL j	plastic RED/	GREEN 1
Comments							
STRUGGED	TO R	EP LONI	SIT	WELL			

Ren with

Monitoring	Well	Field	Record
------------	------	-------	--------

Job #: EZOI	- 109 c	lient:	WN .	_Location:_	SERP	アノアノンと			
Well ID: M	W2 1	Date: 20)	Sampler <u>:</u>	J,	n			
Monitoring Well	Informatio	n							
Depth to Water:	4	4 <u>510</u> (n	nm TOC)	Depth to Bo	ottom:	7170	(m)		
Standpipe:	- 6	52 (m	ו)	Monument	Cover [
Lock: 🗆 None	Lock: 🗆 None 🔹 🗇 Padlock (YL) 🔹 🗆 Enviro Cap 🔹 🗔 Gatic								
Equipment IDs									
Water Quality Me	Water Quality Meter: <u>151</u> TTA Kite								
Pump:		TWISTED	<u>қ</u> т	ALK Kit:		7			
Dipper:		D3							
Sampling									
Sample ID: HVN	MW2-C)		COC No:_	E2011-	109-01			
Time	рН	EC	DO	Temp	Redox	TTA	TALK		
9.35	5.69	177.1	1.68	22.3	166.Z				
9.40	5.51	185.1	3.81	21.6	112.3				
9.45	5.40	177.1	3.80	21.6	1272	0.14	0.05		
		2							
Bottles	63/	ASSE	SSMENT S	UITE 1	1				
1 x 1000mL plastic	GREEN ·	🗹 1 x 60m	L plastic BLU	JE 🗆	**BRING	BACK & FILT	ER INTO:		
1 x 125mL plastic `	YELLOW	1 x 60m	L plastic RE	D/GREEN	1 x 60mL	plastic MAR	OON I		
1 x 125mL plastic I	PURPLE	🖞 1 x 500n	nL plastic Gl	REEN** 📮	1 x 60mL	plastic RED/	GREEN D		
Comments									
					e.				

	Monitoring Well Field Record									
Job #: E201	(-109 _{Clie}	ent: <u>Hv</u>	N	Location:	SERPENT	TINE				
Well ID: Mr	V 3 Da	ate: <u> </u>	1/2	_Sampler <u>:</u>	In	ז				
Monitoring Well I	nformation									
Depth to Water:	1	750 (m	m TOC) I	Depth to Bot	tom:	3.97	(m)			
Standpipe:	(<u>)-59 (m)</u>)	Monument (
Lock: 🗆 None		l Padlock (Y	Ľ)	🗆 Enviro						
Equipment IDs										
Water Quality Met	er:	451	T	TA Kit:		1				
Pump:	-	TWISTE	<u>к </u>	ALK Kit:		4				
Dipper:		D3		H						
Sampling										
Sample ID:HVr	JMW3-01			COC No:_	E2011-	109-01				
Time	рН	EC	DO	Temp	Redox	TTA	TALK			
9.55	5.26	582	0.19	24.9	-27.1		2.00			
10.00	5.38	463.5	4.01	24.4	-18.0	0.81	0.02			
10.05										
Bottles		ASSE	SSMENT S	UITE 1						
1 x 1000mL plastic	GREEN .	1 x 60m	L plastic BL	UE D	**BRING	BACK & FIL	TER INTO:			
1 x 125mL plastic	YELLOW	□ 1 x 60m	IL plastic RE	D/GREEN Z	1 1 x 60mL	plastic MAI	ROON Z			
1 x 125mL plastic	PURPLE	🖄 1 x 500i	mL plastic G	GREEN**	1 1 x 60mL	plastic REL	GREEN Z			
Comments					1	-				
					X					
					3					

Job #: <u>E201</u>	1-109 CI	ient: Ho	/N	Location:	SERPE	NTINE		
Well ID:	WY C	ate:2	21/2	_ Sampler:_	Jr	7		
Monitoring Well	Informatior	1						
Depth to Water:	2	<u>000</u> (n	nm TOC)	Depth to Bo	ttom:	484	(m)	
Standpipe:		0.60 (n	n)	Monument	Cover D	4.54		
Lock: I None I Padlock (YL) I Enviro Cap Gatic								
Equipment IDs								
Water Quality Me	ter:	751	T	TA Kit:		4		
Pump:		TWIST	е <u>е</u> т.	ALK Kit:		4		
Dipper:		D3						
Sampling								
Sample ID: HVNMW4-01 COC No: E2011-109-01								
Time	рН	EC	DO	Temp	Redox	TTA	TALK	
10.15	6.31	681	O.R	25.9	-79.1			
10.20	6.43	766	2-84	25.9	- 66.1	7		
10.25	6-34	806	5.50	25.8	- 33:5	0.28	0.15	
Pottlaa		ACCE						
1 x 1000ml plastic	GREEN .	A33E	l plastic BL		**BRING	BACK & FILT	FR INTO [.]	
1 x 125mL plastic	YELLOW	□ 1 x 60m	L plastic RE	D/GREEN	1 x 60mL	plastic MAR		
1 x 125mL plastic	PURPLE	☑ 1 x 500	mL plastic G	REEN**	1 x 60mL	plastic RED/	GREEN	
Comments					2			
STRUGGE	GT a	REP	EMISH	WE	E			
					6			
					3			

Job #: E2011	-109 Clie	ent:H	VN	Location:	SERPEN	UTINE	
Well ID: M	WS Da	ate: 21/	12	_Sampler:_	Jm		
vvon 12							
Monitoring Well In	nformation					7 06	
Depth to Water:	/	<u>690</u> (m	m TOC) 🛛 [Depth to Bot	tom:	3.00	(m)
Standpipe:	C	<u>2-6/ (</u> m)	Monument (Cover 🛛		
Lock: 🗆 None		Padlock (Y	′L)	□ Enviro	о Сар	□ Gatic	
Equipment IDs							
Water Quality Mete	er:	451	T	ΓΑ Kit:	~		
Pump:		TWISTER	СТ	ALK Kit:	1		
Dipper:		D3					
Sampling							
Sample ID:HV	MW5-0	21		COC No:_	E2011-10	19-01	
Time	рН	EC	DO	Temp	Redox	TTA	TALK
10-40	6-73	706	0.69	27.9	-78-1		
10-45	6.63	148	5.93	27.1	-61.2	0.38	0.08
10.50							
Bottles	8	ASSE	ESSMENT S	UITE 1	1.		
1 x 1000mL plastic	GREEN ·	🛛 1 x 60m	nL plastic_BL	UE E	**BRING	BACK & FIL	TER INTO:
1 x 125mL plastic	YELLOW	1 x 60m	nL plastic RE	D/GREEN E	1 x 60mL	plastic MAF	200N 🖾
1 x 125mL plastic	PURPLE	☑ 1 x 500	mL plastic 🤆	REEN**	1 x 60mL	plastic RED	/GREEN D
Comments							
WELL	DRA	ins ve	ery Q	HICRET	1		

Job #: <u>É2011</u>	<u>- 109</u> Clie	ent:	VN.	Location:	SERPEN	ITINE	
Well ID:	1 <u>W6</u> Da	ate: <u>21</u>	1/2/13	_ Sampler <u>:</u> _	Jun		
Monitoring Well I	nformation					/	
Depth to Water:		<u>880</u> (m	m TOC) I	Depth to Bot	tom:	4.26	(m)
Standpipe:	0) <u> 69 (</u> m))	Monument C	Cover 🛛		
Lock: 🗆 None		Padlock (Y	ĽL)		Сар	□ Gatic	
Equipment IDs							
Water Quality Met	er:	451	T	TA Kit:		9	
Pump:		TWISTE	₹ T.	ALK Kit:	7	/	
Dipper:		D3					
Sampling							
Sample ID: HV	VMWG-C	71		COC No:	E2011-10	09-01	
Time	pН	EC	DO	Temp	Redox	TTA	TALK
11:00	5-62	720	0.22	255	61.7		
11.05	5.62	816	0.07	24.9	10:0		
11.10	5.57	8'48	0.07	24.8	08	0.32	0.09
Bottles	2	ASSE	SSMENT S	SUITE 1	5		
1 x 1000mL plastic	GREEN .	☑ 1 x 60m	L plastic BL	UE P	**BRING	BACK & FIL	TER INTO:
1 x 125mL plastic	YELLOW	1 x 60m	L plastic RE	D/GREEN 🛛	1 x 60mL	plastic MAF	ROON E
1 x 125mL plastic	PURPLE	🗹 1 x 500ı	mL plastic C	BREEN**	1 x 60mL	plastic RED	/GREEN 🗹
Comments							2
					E.		

Job #: <u>120</u>	Job #: 12011-109 Client: Hope Valley Location: Serpertine								
Well ID: <u>mwi</u> Date: <u>18613</u> Sampler: <u>J</u>									
Monitoring Well Information									
Depth to Water:	1 -	370 (r	nm TOC)	Depth to Bo	ottom:	7.80	(m)		
Standpipe:	Ô	· 70 (n	n)	Monument Cover					
Lock: 🖾 None	I	□ Padlock (YL)	🗆 Enviro Cap 🛛 🗆 Ga					
Equipment IDs	Equipment IDs								
Water Quality Me	ter:	151 3	Т	TA Kit:		3			
Pump:		1	Т	ALK Kit:		4			
Dipper:		2			3 				
Sampling									
Sampling									
Sample ID: \	Sample ID: HVN MW1 02 COC No: 22011-109-02								
Time	рН	EC	DO	Temp	Redox	TTA	TALK		
824	5.90	4087	2.09	20.9	162.3				
629	5.77	407.0	7.13	20.9	171.7	0.15	0.1		
			53						
Bottles	ODEEN	MW S			1				
1 x 1000mL plastic		\square 1 x 60m	L plastic BL		1 x 60ml	plastic MAE			
1 x 125mL plastic I	PURPLE	**BRING	BACK & FI	LTER INTO:	1 x 60mL	plastic RED	GREEN Z		
Comments						•			
MURKY	GRE	-4							
Rea J	RAN DRY alter > Wains								
		×.							

A chi co to secon sec a

Job #: 2201	1-109 C	ient: <u>Hope</u>	Vally	Location:	Serpe	Aire		
Well ID: MW 2 Date: 18 6 13 Sampler: 51								
Monitoring Well	Informatio	n						
Depth to Water:	L	<u>. 630 (n</u>	nm TOC)	Depth to Bo	ottom:	7.24	(m)	
Standpipe:	0	<u>70 (n</u>	ו)	Monument	Cover 🗳	ę		
Lock: 🗷 None	ock: ☑ None							
Equipment IDs								
Water Quality Meter: 3 TTA Kit: 3								
Pump:		1	Т	ALK Kit:		4		
Dipper:		2						
Sampling								
Samping								
Sample ID:	NMW.	202		COC No:_	26011-	109 - 0		
Time	рН	EC	DO	Temp	Redox	TTA	TALK	
844	5.66	159.7	2-09	21.7	189.5	9 Na 1705		
850	5.48	158.1	2.92	21.7	220.6	0.17	0.1	
Bottles		MW S	UITE					
1 x 1000mL plastic	GREEN	1 x 60m	L plastic BLU			plactic MAD		
1 x 125mL plastic			BACK & FI		1 x 60mL	plastic MAR		
Comments			b/tort d l'il					
Total	to	a dry						
Or heize drawn in rais primine but dich wit								
run day. (could hear sure in well)								
		/						

Monitoring Well Field Record Rev 3 March 2012

Job #: 52011-109 Client: H.V. NURSER Location: SERPEJTINE									
Well ID: MWB Date: 18 6 13 Sampler: JI									
Monitoring Well	Informatio	n							
Depth to Water:	(.	473 (n	nm TOC)	Depth to Bo	ottom:	4.00	(m)		
Standpipe:	6	<u> の テン</u> (m) Monument Cover ロ							
Lock: 🗹 None	ſ	⊐ Padlock (YL)	🗆 Envir	o Cap	□ Gatic			
Equipment IDs									
Water Quality Me	ter:	3	Т	TA Kit:		3			
Pump:		1	Т	ALK Kit:		4			
Dipper:		7							
Sampling									
Samping									
Sample ID: <u>IAV N</u>	I MW 3	02		COC No:_	[2011-	109-07			
Time	рН	EC	DO	Temp	Redox	TTA	TALK		
903	4.80	647	G .0	18.9	89.4				
\$210 920	511	305	0.37	189	- 21.1	0.34	01		
Bottles		MW S	UITE						
1 x 1000mL plastic	GREEN	⊡ 1 x 60m	L plastic BL	UE 🖆					
1 x 125mL plastic `	YELLOW	☑ 1 x 500r	nL plastic G	REEN**	1 x 60mL	plastic MAR	OON D		
1 x 125mL plastic I	PURPLE	STATES **BRING	BACK & FI	LTER INTO:	1 x 60mL	plastic RED/	GREEN 🗗		
Comments									
Murky	grey								
Strong M2S									
J									
					4				

Job #: 52011	-109 C	lient: <u>Mogel</u>	ally Nor	≝Location:	SERPENT	דושט	,
Well ID: Mwc	\E	Date: <u></u> \⊀	6/13	Sampler:_	DI		
Monitoring Well	Informatio	n					
Depth to Water:		73_(r	nm TOC)	Depth to Bo	ttom:	4.50	(m)
Standpipe:	C	5.70 (n	n)	Monument	Cover E	1	
Lock: 🗹 None	I	□ Padlock (YL)		□ Enviro Cap		□ Gatic	
Equipment IDs							
Water Quality Me	ter:	3		TTA Kit:		3	
Pump:		١	-	TALK Kit:		4	
Dipper:			2				
Sampling							
Sample ID: <u>HV</u> N	M~ 402			COC No:_	2311-10	9-02	
Time	рН	EC	DO	Temp	Redox	TTA	TALK
925	6.38	404	5.02	18.3	- 23.4	0.35	0.21
				_			
				_			
Bottles		MW S	UITE				
1 x 1000mL plastic	GREEN	□ 1 x 60m	L plastic BL	UE 🛛			
1 x 125mL plastic `	YELLOW	□ 1 x 500	mL plastic (GREEN**	1 x 60mL	plastic MAF	ROON
1 x 125mL plastic I	PURPLE	**BRING	G BACK & F	ILTER INTO:	1 x 60mL	plastic RED	/GREEN 🛛
Comments							
Ran	dra	repeated	lly				
Sgrp	led al	-tez 13	Smins				
Intermed	lide resu	its onit	ch due	to runniv	rg dry		
	1						

Monitoring Well Field Record Rev 3 March 2012

Job #: <u>MW</u>	50 0	lient: <u>Hope</u>	Valley	_Location:	Serpe	Aire	
Well ID: <u> </u>	11-109	Date: <u>۱</u> ۴	6/13	Sampler:_	5		
Monitoring Well	Informatio	n					
Depth to Water:	1	-29 <u>3</u> (r	nm TOC)	Depth to Bo	ttom:	3:05	(m)
Standpipe:		3-70 (n	n)	Monument Cover			
Lock: D None		□ Padlock (YL)		о Сар	□ Gatic	
Equipment IDs							
Water Quality Me	ter:	3	1	TA Kit:		3	
Pump:		١	1	ALK Kit:		4	
Dipper:		2	2 				
Sampling							
Sample ID: Hvr	J MWJ	61		COC No:_	5211-	107-02	
Time	ρН	EC	DO	Temp	Redox	TTA	TALK
945	6.45	396.1	1.97	18.6	-44.2	0.60	0.)
Bottles		MW S	UITE				
1 x 1000mL plastic	GREEN	□ 1 x 60m	L plastic BL	UE 🗆			
1 x 125mL plastic `	YELLOW	□ 1 x 500r	nL plastic G	REEN**	1 x 60mL	plastic MAR	DON 🖸
1 x 125mL plastic I	PURPLE	□ **BRING	G BACK & F	LTER INTO:	1 x 60mL	plastic RED/0	GREEN D
Comments						30	Second
RA-	10 6	n eft	er 2	mino	t eve	n Zm	145
Pw	mpet	dry	3 time	is be	Fore	Samp liny	
fre	oh Ma	6			1		

Job #: 62.1	1-109 C	lient: MoPE	VALLEY	_Location:	SERF	BUTIN	E		
Well ID: <u>M</u>	6[Date: <u>\</u>	613	Sampler:_	10				
Monitoring Well	Monitoring Well Information								
Depth to Water:]	. 652 (n	nm TOC)	Depth to Bo	ttom:	4.25	(m)		
Standpipe:	6	· <u>70</u> (n	า)	Monument	Cover E	Y			
Lock:	E	⊐ Padlock (`	YL)	□ Envir	o Cap	□ Gatic			
Equipment IDs									
Water Quality Meter: 3 TTA Kit: 3									
Pump:		١	Т	ALK Kit:		4			
Dipper:		2	-						
Sampling									
Sample ID: HUN MW 602 COC No: 22011 - 109-62									
Time	рН	EC	DO	Temp	Redox	TTA	TALK		
1000am	5.51	845	0.15	19.1	-10-5				
1015am	5.61	948	0.06	19.3	-375	0.35	6.1		
			-						
Deril		BANA/ O	1 11 alla llear						
Bottles	ODEEN	IVIVV 5	UIIE	UE 5	-				
1 x 1000mL plastic	VELLOW	1 x 60m	nl plastic BL	REEN** D	1 x 60ml	plastic MAR			
1 x 125mL plastic	PURPLE	2 **BRING	G BACK & FI	LTER INTO:	1 x 60mL	plastic RED/0	GREEN		
Comments							adala (1948) (2048)(2043)		

Job #: 2201	1.101 Cl	ient: <u>HP</u>	\checkmark	_Location:_	Rapids	Rich			
Well ID: M	Well ID: MW Date: $Ro[s]$ Sampler: $\overline{51}$								
Monitoring Well Information									
Depth to Water:	8	<u>30</u> (m	nm TOC)	Depth to Bo	ttom:		(m)		
Standpipe:		(m	ı)	Monument	Cover E	3			
Lock: 🖸 None	E	∃ Padlock (\	(L)	🗆 Envir	o Cap	□ Gatic			
Equipment IDs	Equipment IDs								
Water Quality Meter: 15 () TTA Kit: 3									
Pump:	- 1	UISIER	<u>т</u>	ALK Kit:		4			
Dipper:			3						
Sampling									
Camping	Sampling								
Sample ID: 110	JMW I	<u> </u>		COC NO:_	1011-	109-0	>		
Time	рН	EC	DO	Temp	Redox	TTA	TALK		
728	6.53	352.0	7.1	15.0	193:				
734	5-44	3444	5 1	18 6	187.L	0.3	0.1		
Bottles		ASSE	SSMENT S	UITE 1					
1 x 1000mL plastic	GREEN	🗹 1 x 60ml	_ plastic BL	UE 🛛	**BRING	BACK & FIL	FER INTO:		
1 x 125mL plastic `	YELLOW	白 1 x 60ml	_ plastic REI	D/GREEN 🟳	1 x 60mL	plastic MAR	OON 🗆		
1 x 125mL plastic I	PURPLE	□ 1 x 500n	nL plastic G	REEN**	1 x 60mL	plastic RED/	GREEN 🗆		
Comments									
Randm	after	5 - 10	illecte	a n	ex +	Sany	ste		

Monitoring Well Field Record									
Job #: <u>Av</u>	CI	ient: <u>k P</u>	ر ر	-upi dos	Rol				
Well ID: Mw	Well ID: Mw2 Date: 20 8 13 Sampler: 51								
Monitoring Well	Informatio	n							
Depth to Water:	3	79(n	nm TOC)	Depth to Bo	ttom:		(m)		
Standpipe:	-	(n	ו)	Monument (Cover 2	I.			
Lock: 🖾 None	Ľ] Padlock (YL)	🗆 Enviro	o Cap	□ Gatic			
Equipment IDs									
Water Quality Me	ter:	151 1	Т	TA Kit:	(-	3			
Pump:	T	NSTER	<u>\</u> T	ALK Kit:	(Í)			
Dipper:		3							
Sampling									
Sample ID: HU-MWZ 03 COC No: 2211-109-003									
Time	рН	EC	DO	Temp	Redox	TTA	TALK		
7.49	5.54	114-1	5.7	183	2118				
754	570	150-3	24	19.6	226.9				
7.59	564	146.5	2.5	19.1	236.7	0.1	0.08		
Bottles	CREEN	ASSE	SSMENT S		**001110				
1 x 125mL plastic	YELLOW	EX 1 x 60m	L plastic BE	D/GREEN	1 x 60mL	plastic MAR			
1 x 125mL plastic	PURPLE	1 x 500r	nL plastic G	REEN**	1 x 60mL	plastic RED/	GREEN E		
Comments									

Job #: <u>くない</u>	_109_C	ient: <u>\\</u>	$^{\circ}$	_ Location:_	Rapich	Red	
Well ID: ML][Date: 20	8/13	Sampler <u>:</u>	2		
Monitoring Well	Information	า					
Depth to Water:	r: <u>\$2.0</u> (mm TOC) Depth to Bottom:						
Standpipe:		(m	ı)	Monument	Cover 🔏	Í	
Lock: 🗟 None	E] Padlock (`	YL)	🗆 Enviro	о Сар	□ Gatic	
Equipment IDs							
Water Quality Me	ter: <u> </u>	51 1		TTA Kit:		3	
Pump:		UISTE R	1	TALK Kit:		4	
Dipper:		3					
Sampling							
Sample ID: \\ V	N MUS	03		COC No:	2211-1	09-03	
Time	рН	EC	DO	Temp	Redox	TTA	TALK
8.09	451	313.2	6.8	16.3	1507		
GILI	4.41	317 3	0	15 8	1283		
514	4.45	327 4	D	15.8	719	0.4	0.1
						<i>N</i> .	
Bottles		ASSE	SSMENT S	SUITE 1			
1 x 1000mL plastic	GREEN	🖾 1 x 60ml	_ plastic Bl	LUE 🖾	**BRING	BACK & FIL	FER INTO:
1 x 125mL plastic `	YELLOW	🛛 1 x 60ml	_ plastic RE	ED/GREEN	1 x 60mL	plastic MAR	.00N 🗔
1 x 125mL plastic I	PURPLE	🖾 🛛 1 x 500n	nL plastic (GREEN**	1 x 60mL	plastic RED/	GREEN 🛛
Comments							

Job #: 5231	tion C	lient: <u></u> \v	~	_Location:_	Rapids	(2)		
Well ID: M	wby	Date:	21/8	Sampler <u>:</u>	-31		<u>_</u>	
Monitoring Well	Informatio	n						
Depth to Water:	Depth to Water:							
Standpipe:		(n	ר)	Monument	Cover E	T		
Lock: 🖻 None	1	🗆 Padlock (YL)	🗆 Envir	o Cap	□ Gatic		
Equipment IDs								
Water Quality Me	ter:	1× (D)	Т	TA Kit:		3		
Pump:		USTAR	Т	ALK Kit:		4		
Dipper:								
Sampling								
Sample ID: HVM	MWG D	3		COC No:_	6201-10	9-03		
Time	рΗ	EC	DO	Temp	Redox	TTA	TALK	
908	6 14	324:5	4.4	17.2	102.3			
9-13	5.90	252.0	6.3	15.7	83.9			
918	5.89	243.4	5.9	15.7	82.6	0.3	0.15	
				-				
Bottles		Acce	COMENT C					
1 x 1000mL plastic	GREEN	A 1 x 60ml	plastic BL		**BRING	BACK & EIL		
1 x 125mL plastic	YELLOW	□ 1 x 60ml	_ plastic REI	D/GREEN E	1 x 60mL	plastic MAR	CON I	
1 x 125mL plastic I	PURPLE	🗹 1 x 500n	nL plastic G	REEN**	- 1 x 60mL	plastic RED/	GREEN A	
Comments								
		-						

ENVIRONMENTAL SERVICES										
	Monitoring Well Field Record									
Job #: <u>くし</u>	1.100 C	lient: <u></u> k	\sim	_Location:_	Rapido	Ra				
Well ID:	<u>u</u> <u>s</u> [Date: 20	8/13	Sampler <u>:</u>	51					
Monitoring Well	Informatio	n								
Depth to Water:	_7	<u>30</u> (r	nm TOC)	Depth to Bo	ttom:		(m)			
Standpipe:		(n	n)	Monument	Cover E	3				
Lock: 🖻 None	I] Padlock (YL)	🗆 Envir	o Cap	□ Gatic				
Equipment IDs			,							
Water Quality Me	ter: ។	51	\ T	TA Kit:		っ				
Pump:		UISTER) T	ALK Kit		4				
Dipper:		3		, ill i i i i i i i i i i i i i i i i i						
Sampling										
Sample ID: FIV	MW5 0	3		COC No:	22011-1	09_ 03				
Time	Hq	EC	DO	Temp	emp Redox TTA TALK					
848	4 82	1255	2.6	16:5	145.4					
853	522	121.8	4.8	15.3	1.42.8					
858	5.52	133.4	4.7	155	1073	0-3	0.05			
							0			
D - 44		1005								
1 x 1000mL plastic	CREEN	ASSE	SSMENT S		** 0011001					
1 x 125mL plastic		\Box 1 x 60m	L plastic BE		1 v 60ml	Diastic MAE				
1 x 125mL plastic F	PURPLE 4	\overline{x} 1 x 500r	nL plastic G	REEN**	1 x 60mL	plastic RED	GREEN PI			
Comments					TXCOUNT					

Monitoring Well Field Record									
Job #: <201	1-109 C	lient: <u>HP</u>	V	_Location:_	Rapid	5 20			
Well ID:	261	Date: Lo	8 13	Sampler <u>:</u>	51				
Monitoring Well	Informatio	n							
Depth to Water:		10 <u>8</u> (n	nm TOC)	Depth to Bo	ottom:		(m)		
Standpipe:		(n	ר)	Monument	Cover 🛛	A			
Lock: 🖾 None	1	🗆 Padlock (YL)	🗆 Envir	o Cap	□ Gatic			
Equipment IDs									
Water Quality Me	ter: <u>1</u>	SI ()	Т	TA Kit:		3			
Pump:		15152	Т	ALK Kit:		4			
Dipper:		3							
Sampling									
Sample ID: HUN	mui	07		COC No:_	21011-	109 - 07	2		
Time	рН	EC	DO	Temp	Redox	TTA	TALK		
828	4.28	294.4	2.4	16.5	1651				
\$ 33	4.30	366.5	1-1	163	1381				
835	4.34	3964	1.1	16.3	92.8	6-30	0-12		
D									
Bottles	ODEEN	ASSE ASSE	SSMENT S		**00100				
1 x 125ml plastic	YELLOW	1 x 60m	L plastic BL	DIGREEN A	1 x 60ml	plastic MAR	OON ST		
1 x 125mL plastic	PURPLE	EL 1 x 500r	nL plastic G	REEN**	1 x 60mL	plastic RED/	GREEN 1		
Comments			· ·						

Appendix C – February Laboratory Documentation

Site: HOPE V	ALCEY	NUSER	CY SE	RPEN	TIM	-	_						2		
Job #: $E 201/ - 109$									\mathbb{N}	$ D\rangle$	N),				
Sampler: JM							42 	1999 (1920) 200 (1970) 1999 (1920)				*****			
CoC #: E2011	CoC #: EZO/1-109-01							ENVIRONMENTAL SERVICES							
Quote #: EP/7	84/12					Mobile Dewatering Environmental Services								•	
Laboratory: AL	S	£					Midvale	WA 6	056						
Date and time del	ivered: 2	1213	15.55	-		P: 08 9250 6960 F: 08 9250 8269									
Received by: R	AUNDER	81				E	E:`info@))envir	onmer	talser	vices.c	om.au			
Comments:		A 1		2	Anal	ysis D	etectic	n Lim	its						
Cour	D 404	PLS .	FILTER	K. Marina									· · · · · · · · · · · · · · · · · · ·		
LAB	SAMPU	ES - M	W3/MI	NY MW	E L		I		· ·	L · _					
					Sur		En	vironm	iental Perth	Divisio	n				
THAN	IX J	TUSTIA			S			Wo	rk Ord	er					
O amala ID		Time	Com		See		E	EP1	301	307	,				
Sample ID	Lab ID	туре	Date	Time	4S	<u> </u>	ALL RETURN								
HUNMWI-01	l	WATER	21/2	10.00											
HVNMW2-01	2											-			
HUN MW3-01	3					/	Tele	ohone :	+ 61-8-9	209 765	55				
HUNMW4-01	4					(ļ								
HUNMWS-01	5														
HUNMW6-01	6	ľ	/												
						-		•							
						<i>:</i>									
	•								÷				· · ·		
	· · ·														
	······														
· · · · · · · · · · · · · · · · · · ·															
		<u> </u>													
		· · · · · · · · · · · · · · · · · · ·													
						-							 		
										-					
		·													

Condition of Sample: Cool / Ambient / Warm

-

2.

Relinquished by:

SAMPLE RECEIPT NOTIFICATION (SRN)

Comprehensive Report

Work Order	: F	P13	:01	307

Client Contact Address	i Mobile D i Info i Po Box 2 Midland	EWATERING 39 WA, AUSTRALIA 6939	Laboratory Contact Address	Enviror Lauren 10 Hod	6090)				
E-mail Telephone Facsimile	info@envi +61 08 92 :	ronmentalservices.com.au 50 4995	E-mail Telephone Facsimile	iauren. 08 9209 08 9209	ren.ockwell@alsenviro.com 9209 7606 9209 7600					
Project	: E2011-109	9	Page	: 1 of 3	3					
C-O-C number Site	: : E2011-109 : HOPE VA	9-01 LLEY NUSERY INF	Quote number	: EP2012	2012MOBDEW0134 (EP/785/12)					
Sampler	: J.M.		QC Level	ENEPM QCS3 I	PM 1999 Schedule B(3) and AL S3 requirement					
Dates										
Date Samples Received Client Requested Due Date		21-FEB-2013 28-FEB-2013	Issue Date Scheduled Reporting	g Date	: 21-FEB-2013 17:58 Date : 28-FEB-2013					
Delivery Detail	S									
Mode of Delivery No. of coolers/boxes Security Seal		: Carrier : 2 Medium Hard Esky : Intact.	Temperature No. of samples rece No. of samples anal	ived ysed	: 13.2 - Ice present : 6 : 6					

General Comments

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Proactive Holding Time Report
 - Requested Deliverables
- Sample containers do not comply to pretreatment / preservation standards (AS, APHA, USEPA). Please refer to the Sample Container(s)/Preservation Non-Compliance Log at the end of this report for details.
- Please see scanned COC for sample discrepencies: extra samples , samples not received etc.
- Sample containers do not comply to pretreatment / preservation standards (AS, APHA, USEPA). Please refer to the Sample Container(s)/Preservation Non-Compliance Log at the end of this report for details.
- pH analysis should be conducted within 6 hours of sampling.
- Analytical work for this work order will be conducted at ALS Environmental Perth.
- Please direct any turnaround / technical queries to the laboratory contact designated above.
- Please direct any queries related to sample condition / numbering / breakages to Sample Receipt (SamplesPerth@alsenviro.com)
- Sample Disposal Aqueous (14 days), Solid (60 days) from date of completion of Work Order.

Address 10 Hod Way Malaga WA Australia 6090 PHONE +61-8-9209 7655 Facsimile +61-8-9209 7600

Environmental Division Perth ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company

S

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

Method Client sample ID	Sample Container Received	Preferred Sample Container for Analysis
EG051G : Ferrous Iron by Discrete Analyser		
HVNMW2-01	- Clear Plastic Bottle - Natural	- Clear Plastic Bottle - HCI - Filtered
HVNMW3-01	- Clear Plastic Bottle - Natural	- Clear Plastic Bottle - HCI - Filtered
HVNMW4-01	- Clear Plastic Bottle - Natural	- Clear Plastic Bottle - HCI - Filtered
HVNMW6-01	- Clear Plastic Bottle - Natural	- Clear Plastic Bottle - HCI - Filtered

Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process neccessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package.

If no sampling time is provided, the sampling time will default to 15:00 on the date of sampling. If no sampling date is provided the sampling date will be accurate by the

date is provided, laboratory for p bracketed without a Matrix: WATER	the sampling date processing purposes a time component.	will be assumed by t and will be sho	tne wn	- EA005P	- EA010P vity (PC)	- EA015H solved Solids - High Le	- EA025H ed Solids (High Level)	- EA045	- ED038 s CaCO3	- EG020F d Metals by ICPMS	- EG020T coverable Metals by ICF
Laboratory sample ID	Client sampling date / time	Client sample ID		WATER pH (PC)	WATER Conducti	WATER Total Dis	WATER Suspend	WATER Turbidity	WATER Acidity a:	WATER	WATER Total Re
EP1301307-001	21-FEB-2013 10:00	HVNMW1-01		✓	✓	✓	✓	✓	✓	✓	✓
EP1301307-002	21-FEB-2013 10:00	HVNMW2-01		✓	✓	✓	✓	✓	✓	✓	✓
EP1301307-003	21-FEB-2013 10:00	HVNMW3-01		✓	✓	✓	✓	✓	✓	✓	✓
EP1301307-004	21-FEB-2013 10:00	HVNMW4-01		✓	✓	✓	✓	✓	✓	✓	✓
EP1301307-005	21-FEB-2013 10:00	HVNMW5-01		✓	✓	✓	✓	✓	✓	✓	✓
EP1301307-006	21-FEB-2013 10:00	HVNMW6-01		✓	✓	✓	✓	✓	✓	✓	✓
Matrix: WATER Laboratory sample ID	Client sampling date / time	Client sample ID		WATER - EG035T Total Mercury by FIMS	WATER - EG050G-F Hexavalent Chromium by Discrete Analyser - Filtered	WATER - EG051G Ferrous Iron by Discrete Analyser	WATER - EK085M Suifide as S 2-	WATER - EP030 BOD	WATER - NT-02 Major Anions (Chloride, Sulphate, Alkalinity)	WATER - NT-08A Total Nitrogen + NO2 + NO3 + NH3 + Total P +	
EP1301307-001	21-FEB-2013 10:00	HVNMW1-01		✓	✓	✓	✓	✓	✓	✓	
EP1301307-002	21-FEB-2013 10:00	HVNMW2-01		✓	✓	✓	✓	✓	✓	✓	
EP1301307-003	21-FEB-2013 10:00	HVNMW3-01		✓	✓	✓	✓	✓	✓	✓	
EP1301307-004	21-FEB-2013 10:00	HVNMW4-01		✓	✓	✓	✓	✓	✓	✓	
EP1301307-005	21-FEB-2013 10:00	HVNMW5-01		✓	✓	✓	✓	✓	✓	✓	
EP1301307-006	21-FEB-2013 10:00	HVNMW6-01		\checkmark	✓	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	

Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

Requested Deliverables

ACCOUNTS PAYABLE (WA)

- A4 - AU Tax Invoice (INV)	Email	deb@mobiledewatering.com.au
INFO		
 *AU Certificate of Analysis - NATA (COA) 	Email	info@environmentalservices.com.au
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	info@environmentalservices.com.au
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	info@environmentalservices.com.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	info@environmentalservices.com.au
- Chain of Custody (CoC) (COC)	Email	info@environmentalservices.com.au
- EDI Format - ENMRG (ENMRG)	Email	info@environmentalservices.com.au
- EDI Format - ESDAT (ESDAT)	Email	info@environmentalservices.com.au

Email

- EDI Format - XTab (XTAB)

info@environmentalservices.com.au info@environmentalservices.com.au

Environmental Division

CERTIFICATE OF ANALYSIS									
Work Order	EP1301307	Page	: 1 of 8						
Client		Laboratory	: Environmental Division Perth						
Contact	: INFO	Contact	: Lauren Ockwell						
Address	: PO BOX 239	Address	: 10 Hod Way Malaga WA Australia 6090						
	MIDLAND WA, AUSTRALIA 6939								
E-mail	: info@environmentalservices.com.au	E-mail	: lauren.ockwell@alsenviro.com						
Telephone	: +61 08 9250 4995	Telephone	: 08 9209 7606						
Facsimile	:	Facsimile	: 08 9209 7600						
Project	: E2011-109	QC Level	: NEPM 1999 Schedule B(3) and ALS QCS3 requirement						
Order number	:								
C-O-C number	: E2011-109-01	Date Samples Received	: 21-FEB-2013						
Sampler	: J.M.	Issue Date	: 28-FEB-2013						
Site	: HOPE VALLEY NUSERY SERPENTINE								
		No. of samples received	: 6						
Quote number	: EP/785/12	No. of samples analysed	: 6						

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

NATA Accredited

Accredited for compliance with

ISO/IEC 17025.

- General Comments
- Analytical Results

_aboratory 825	Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Benjamin Nicholson	Metals Chemist	Perth Inorganics
Chas Tucker	Inorganic Chemist	Perth Inorganics
Chas Tucker	Inorganic Chemist	Perth Inorganics
Chas Tucker	Inorganic Chemist	Perth Inorganics
Scott James	Laboratory Manager	Perth Inorganics

Address 10 Hod Way Malaga WA Australia 6090 PHONE +61-8-9209 7655 Facsimile +61-8-9209 7600 Environmental Division Perth ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

- EG020: It is recognised that total concentration is less than dissolved for some metal analytes. However, the difference is within experimental variation of the methods.
- EG020: Metals LOR for particular sample(s) raised due to high matrix interference
- EK061G\EK067G: LOR for sample 'HVNMW2-01' raised due to the high amount of NOx present.
- TDS by method EA-015 may bias high due to the presence of fine particulate matter, which may pass through the prescribed GF/C paper.

Page	: 3 of 8
Work Order	: EP1301307
Client	: MOBILE DEWATERING
Project	: E2011-109

Sub-Matrix: WATER (Matrix: WATER)	Client sample ID		HVNMW1-01	HVNMW2-01	HVNMW3-01	HVNMW4-01	HVNMW5-01	
	Cl	ient samplii	ng date / time	21-FEB-2013 10:00				
Compound	CAS Number	LOR	Unit	EP1301307-001	EP1301307-002	EP1301307-003	EP1301307-004	EP1301307-005
EA005P: pH by PC Titrator	or to Humbol							
pH Value		0.01	pH Unit	6.49	6.26	5.63	6.74	6.94
EA010P: Conductivity by PC Titrator								
Electrical Conductivity @ 25°C		1	µS/cm	432	184	449	704	592
EA015: Total Dissolved Solids								
Total Dissolved Solids @180°C		10	mg/L	1340	1540	1950	1690	350
EA025: Suspended Solids								
Suspended Solids (SS)		5	mg/L	3750	31	3300	7500	500
EA045: Turbidity								
Turbidity		0.1	NTU	8810	36.1	7480	2090	1810
ED037P: Alkalinity by PC Titrator								
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	<1	<1
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1	<1	<1
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	12	5	9	98	58
Total Alkalinity as CaCO3		1	mg/L	12	5	9	98	58
ED038A: Acidity								
Acidity as CaCO3		1	mg/L	20	9	49	58	29
ED041G: Sulfate (Turbidimetric) as SO4 2	2- by DA							
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	<20	10	33	59	86
ED045G: Chloride Discrete analyser								
Chloride	16887-00-6	1	mg/L	24	28	122	136	85
EG020F: Dissolved Metals by ICP-MS								
Aluminium	7429-90-5	0.01	mg/L	3.37	0.04	0.89	0.05	0.01
Arsenic	7440-38-2	0.001	mg/L	0.002	<0.001	0.005	0.004	<0.001
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Chromium	7440-47-3	0.001	mg/L	0.005	<0.001	0.002	<0.001	<0.001
Manganese	7439-96-5	0.001	mg/L	0.010	0.007	0.007	0.505	1.68
Nickel	7440-02-0	0.001	mg/L	0.003	<0.001	<0.001	<0.001	<0.001
Selenium	7782-49-2	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Zinc	7440-66-6	0.005	mg/L	0.021	0.006	<0.005	0.010	0.006
Iron	7439-89-6	0.05	mg/L	0.84	<0.05	0.38	0.82	3.34
EG020T: Total Metals by ICP-MS								
Aluminium	7429-90-5	0.01	mg/L	46.9	1.83	89.8	59.2	1.14
Arsenic	7440-38-2	0.001	mg/L	0.012	<0.001	0.016	0.026	0.008

Page : 4 of 8 Work Order : EP1301307 Client : MOBILE DEWATERING Project : E2011-109

Sub-Matrix: WATER (Matrix: WATER)	Clie	nt sample ID	HVNMW1-01	HVNMW2-01	HVNMW3-01	HVNMW4-01	HVNMW5-01
	lient samplin	g date / time	21-FEB-2013 10:00				
Compound CAS Number	LOR	Unit	EP1301307-001	EP1301307-002	EP1301307-003	EP1301307-004	EP1301307-005
EG020T: Total Metals by ICP-MS - Continued							
Cadmium 7440-43-9	0.0001	mg/L	<0.0001	<0.0001	<0.0001	0.0010	<0.0001
Chromium 7440-47-3	0.001	mg/L	0.199	<0.001	0.057	0.080	0.014
Copper 7440-50-8	0.001	mg/L	0.065	<0.001	0.006	0.053	0.006
Lead 7439-92-1	0.001	mg/L	0.117	<0.001	0.176	0.061	0.001
Manganese 7439-96-5	0.001	mg/L	0.021	0.007	0.012	3.34	1.72
Molybdenum 7439-98-7	0.001	mg/L	0.004	<0.001	<0.001	0.001	0.007
Nickel 7440-02-0	0.001	mg/L	0.010	<0.001	0.031	0.011	<0.001
Selenium 7782-49-2	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Silver 7440-22-4	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Zinc 7440-66-6	0.005	mg/L	0.083	<0.005	0.008	0.315	0.006
Iron 7439-89-6	0.05	mg/L	6.43	0.27	3.12	510	34.5
EG035T: Total Recoverable Mercury by FIMS							
Mercury 7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.0001	0.0003	<0.0001
EG050F: Dissolved Hexavalent Chromium							
Hexavalent Chromium 18540-29-9	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01
EG051G: Ferrous Iron by Discrete Analyser							
Ferrous Iron	0.05	mg/L	0.46	<0.05	0.32	0.09	3.03
EK055G: Ammonia as N by Discrete Analyser							
Ammonia as N 7664-41-7	0.01	mg/L	0.04	0.04	0.52	1.49	1.03
EK057G: Nitrite as N by Discrete Analyser							
Nitrite as N	0.01	mg/L	<0.01	0.03	<0.01	<0.01	0.01
EK058G: Nitrate as N by Discrete Analyser							
Nitrate as N 14797-55-8	0.01	mg/L	1.55	8.19	<0.01	<0.01	0.01
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete An	alyser						
Nitrite + Nitrate as N	0.01	mg/L	1.55	8.22	<0.01	<0.01	0.02
EK061G: Total Kjeldahl Nitrogen By Discrete Analyser							
Total Kjeldahl Nitrogen as N	0.1	mg/L	1.0	<0.5	4.4	15.2	1.8
EK062G: Total Nitrogen as N (TKN + NOx) by Discrete A	nalyser						
[^] Total Nitrogen as N	0.1	mg/L	2.6	8.2	4.4	15.2	1.8
EK067G: Total Phosphorus as P by Discrete Analyser							
Total Phosphorus as P	0.01	mg/L	0.61	<0.05	0.48	1.05	0.02
EK071G: Reactive Phosphorus as P by discrete analyse	r						
Reactive Phosphorus as P	0.01	mg/L	0.15	<0.01	<0.01	<0.01	<0.01

Page	5 of 8
Work Order	: EP1301307
Client	: MOBILE DEWATERING
Project	: E2011-109

Sub-Matrix: WATER (Matrix: WATER)	ATER) Client sample ID			HVNMW1-01	HVNMW2-01	HVNMW3-01	HVNMW4-01	HVNMW5-01
	Ci	lient sampli	ng date / time	21-FEB-2013 10:00				
Compound	CAS Number	LOR	Unit	EP1301307-001	EP1301307-002	EP1301307-003	EP1301307-004	EP1301307-005
EK085M: Sulfide as S2-								
Sulfide as S2-	18496-25-8	0.1	mg/L	<0.1	<0.1	<0.1	<0.1	<0.1
EP030: Biochemical Oxygen Demand (BOD)								
Biochemical Oxygen Demand		2	mg/L	<2	<2	<2	5	3
		1						

Sub-Matrix: WATER (Matrix: WATER)	Client sample ID			HVNMW6-01	 	
	Client sampling date / time		21-FEB-2013 10:00	 	 	
Compound	CAS Number	LOR	Unit	EP1301307-006	 	
EA005P: pH by PC Titrator	CAS Number					
pH Value		0.01	pH Unit	6.23	 	
FA010P: Conductivity by PC Titrator						
Electrical Conductivity @ 25°C		1	µS/cm	812	 	
EA015: Total Dissolved Solids						
Total Dissolved Solids @180°C		10	mg/L	402	 	
EA025: Suspended Solids						
Suspended Solids (SS)		5	mg/L	1600	 	
EA045: Turbidity						
Turbidity		0.1	NTU	5270	 	
ED037P: Alkalinity by PC Titrator						
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	 	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	 	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	21	 	
Total Alkalinity as CaCO3		1	mg/L	21	 	
ED038A: Acidity						
Acidity as CaCO3		1	mg/L	23	 	
ED041G: Sulfate (Turbidimetric) as SO4 2	2- by DA					
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	552	 	
ED045G: Chloride Discrete analyser						
Chloride	16887-00-6	1	mg/L	229	 	
EG020F: Dissolved Metals by ICP-MS						
Aluminium	7429-90-5	0.01	mg/L	0.37	 	
Arsenic	7440-38-2	0.001	mg/L	0.005	 	
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	 	
Chromium	7440-47-3	0.001	mg/L	<0.001	 	
Manganese	7439-96-5	0.001	mg/L	0.003	 	
Nickel	7440-02-0	0.001	mg/L	<0.001	 	
Selenium	7782-49-2	0.01	mg/L	<0.01	 	
	7440-66-6	0.005	mg/L	<0.005	 	
iron	7439-89-6	0.05	mg/L	0.92	 	
EG020T: Total Metals by ICP-MS		0.01				
Aluminium	7429-90-5	0.01	mg/L	17.5	 	
Arsenic	7440-38-2	0.001	mg/L	0.006	 	

Page : 7 of 8 Work Order : EP1301307 Client : MOBILE DEWATERING Project : E2011-109

Sub-Matrix: WATER (Matrix: WATER)	b-Matrix: WATER (Matrix: WATER) Client sample ID		HVNMW6-01						
	Ci	lient samplii	ng date / time	21-FEB-2013 10:00					
Compound	CAS Number	LOR	Unit	EP1301307-006					
EG020T: Total Motals by ICB-MS_Continu	Ind	10/1	U.I.K						
Cadmium	7440-43-9	0.0001	mg/L	<0.0001					
Chromium	7440-47-3	0.001	mg/L	0.006					
Copper	7440-50-8	0.001	mg/L	0.009					
Lead	7439-92-1	0.001	mg/L	0.052					
Manganese	7439-96-5	0.001	mg/L	0.004					
Molybdenum	7439-98-7	0.001	mg/L	<0.001					
Nickel	7440-02-0	0.001	mg/L	0.006					
Selenium	7782-49-2	0.01	mg/L	<0.01					
Silver	7440-22-4	0.001	mg/L	<0.001					
Zinc	7440-66-6	0.005	mg/L	0.049					
Iron	7439-89-6	0.05	mg/L	1.51					
EG035T: Total Recoverable Mercury by FIMS									
Mercury	7439-97-6	0.0001	mg/L	0.0002					
EG050F: Dissolved Hexavalent Chromiur	n								
Hexavalent Chromium	18540-29-9	0.01	mg/L	<0.01					
EG051G: Ferrous Iron by Discrete Analys	ser								
Ferrous Iron		0.05	mg/L	0.86					
EK055G: Ammonia as N by Discrete Ana	lyser								
Ammonia as N	7664-41-7	0.01	mg/L	0.21					
EK057G: Nitrite as N by Discrete Analys	er								
Nitrite as N		0.01	mg/L	<0.01					
EK058G: Nitrate as N by Discrete Analys	ser								
Nitrate as N	14797-55-8	0.01	mg/L	0.21					
EK059G: Nitrite plus Nitrate as N (NOx)	by Discrete Ana	lyser							
Nitrite + Nitrate as N		0.01	mg/L	0.21					
EK061G: Total Kjeldahl Nitrogen By Disc	rete Analyser	0.4							
Total Kjeldahl Nitrogen as N		0.1	mg/L	1.8					
EK062G: Total Nitrogen as N (TKN + NOx	() by Discrete Ar	nalyser		A A					
Total Nitrogen as N		0.1	mg/L	2.0					
EK067G: Total Phosphorus as P by Disci	rete Analyser	0.01		A.C.2					
Total Phosphorus as P		0.01	mg/L	0.33					
EK071G: Reactive Phosphorus as P by d	liscrete analyse	0.01							
Reactive Phosphorus as P		0.01	mg/L	0.22					

Page	: 8 of 8
Work Order	: EP1301307
Client	: MOBILE DEWATERING
Project	: E2011-109

Sub-Matrix: WATER (Matrix: WATER)	Client sample ID			HVNMW6-01					
Client sampling date / time			21-FEB-2013 10:00						
Compound	CAS Number	LOR	Unit	EP1301307-006					
EK085M: Sulfide as S2-									
Sulfide as S2-	18496-25-8	0.1	mg/L	<0.1					
EP030: Biochemical Oxygen Demand (BOD)									
Biochemical Oxygen Demand		2	mg/L	<2					

Environmental Division

QUALITY CONTROL REPORT

Work Order	: EP1301307	Page	: 1 of 12
Client	: MOBILE DEWATERING	Laboratory	: Environmental Division Perth
Contact	: INFO	Contact	: Lauren Ockwell
Address	: PO BOX 239	Address	: 10 Hod Way Malaga WA Australia 6090
	MIDLAND WA, AUSTRALIA 6939		
E-mail	: info@environmentalservices.com.au	E-mail	: lauren.ockwell@alsenviro.com
Telephone	: +61 08 9250 4995	Telephone	: 08 9209 7606
Facsimile	:	Facsimile	: 08 9209 7600
Project	: E2011-109	QC Level	: NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Site	: HOPE VALLEY NUSERY SERPENTINE		
C-O-C number	: E2011-109-01	Date Samples Received	: 21-FEB-2013
Sampler	: J.M.	Issue Date	: 28-FEB-2013
Order number	:		
		No. of samples received	: 6
Quote number	: EP/785/12	No. of samples analysed	: 6

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Accredited for compliance with ISO/IEC 17025.

NATA Accredited Laboratory 825 Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Benjamin Nicholson	Metals Chemist	Perth Inorganics
Chas Tucker	Inorganic Chemist	Perth Inorganics
Chas Tucker	Inorganic Chemist	Perth Inorganics
Chas Tucker	Inorganic Chemist	Perth Inorganics
Scott James	Laboratory Manager	Perth Inorganics

Address 10 Hod Way Malaga WA Australia 6090 PHONE +61-8-9209 7655 Facsimile +61-8-9209 7600 Environmental Division Perth ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

Page	: 2 of 12
Work Order	: EP1301307
Client	: MOBILE DEWATERING
Project	: E2011-109

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

 Key :
 Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

 CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

 LOR = Limit of reporting

 RPD = Relative Percentage Difference

= Indicates failed QC

Page	: 3 of 12
Work Order	: EP1301307
Client	: MOBILE DEWATERING
Project	: E2011-109

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR:-No Limit; Result between 10 and 20 times LOR:-0% - 50%; Result > 20 times LOR:-0% - 20%.

Sub-Matrix: WATER				Laboratory Duplicate (DUP) Report					
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EA005P: pH by PC Ti	trator (QC Lot: 2746838)								
EP1301301-003	Anonymous	EA005-P: pH Value		0.01	pH Unit	7.28	7.32	0.5	0% - 20%
EP1301310-001	Anonymous	EA005-P: pH Value		0.01	pH Unit	7.36	7.42	0.8	0% - 20%
EA010P: Conductivity	y by PC Titrator (QC Lot: 27	46834)							
EP1301287-001	Anonymous	EA010-P: Electrical Conductivity @ 25°C		1	μS/cm	643	641	0.3	0% - 20%
EP1301298-007	Anonymous	EA010-P: Electrical Conductivity @ 25°C		1	µS/cm	1720	1730	0.4	0% - 20%
EA010P: Conductivity	y by PC Titrator (QC Lot: 27	46839)							
EP1301301-003	Anonymous	EA010-P: Electrical Conductivity @ 25°C		1	µS/cm	225	222	1.4	0% - 20%
EP1301310-001	Anonymous	EA010-P: Electrical Conductivity @ 25°C		1	µS/cm	1260	1300	3.1	0% - 20%
EA015: Total Dissolv	ed Solids (QC Lot: 2746443)								
EP1301307-001	HVNMW1-01	EA015H: Total Dissolved Solids @180°C		10	mg/L	1340	1130	17.1	0% - 20%
EP1301344-001	Anonymous	EA015H: Total Dissolved Solids @180°C		10	mg/L	2830	2800	1.1	0% - 20%
EA025: Suspended S	olids (QC Lot: 2746444)								
EP1301307-001	HVNMW1-01	EA025H: Suspended Solids (SS)		5	mg/L	3750	3800	1.3	0% - 20%
EP1301344-001	Anonymous	EA025H: Suspended Solids (SS)		5	mg/L	60	60	0.0	0% - 50%
EA045: Turbidity (QC	C Lot: 2743200)								
EP1301275-001	Anonymous	EA045: Turbidity		0.1	NTU	5.4	4.9	9.6	0% - 20%
EP1301310-002	Anonymous	EA045: Turbidity		0.1	NTU	1.7	2.0	17.0	0% - 20%
ED037P: Alkalinity by	PC Titrator (QC Lot: 27468	37)							
EP1301301-003	Anonymous	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	49	51	4.6	0% - 20%
		ED037-P: Total Alkalinity as CaCO3		1	mg/L	49	51	4.6	0% - 20%
EP1301310-001	Anonymous	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	334	336	0.8	0% - 20%
		ED037-P: Total Alkalinity as CaCO3		1	mg/L	334	336	0.8	0% - 20%
ED038A: Acidity (QC	Lot: 2748324)								
EP1301287-001	Anonymous	ED038: Acidity as CaCO3		1	mg/L	39	41	4.4	0% - 20%
EP1301307-006	HVNMW6-01	ED038: Acidity as CaCO3		1	mg/L	23	23	0.0	0% - 20%
ED041G: Sulfate (Tur	bidimetric) as SO4 2- by DA	(QC Lot: 2742138)							
EP1301287-001	Anonymous	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	88	87	1.3	0% - 20%
EP1301310-001	Anonymous	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	54	55	2.1	0% - 20%
ED045G: Chloride Dis	screte analyser (QC Lot: 27	42137)							
EP1301287-001	Anonymous	ED045G: Chloride	16887-00-6	1	mg/L	141	140	0.0	0% - 20%

Page	: 4 of 12
Work Order	: EP1301307
Client	: MOBILE DEWATERING
Project	· E2011-109

Sub-Matrix: WATER				Laboratory Duplicate (DUP) Report					
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
ED045G: Chloride Di	screte analyser (QC	_ot: 2742137) - continued							
EP1301310-001	Anonymous	ED045G: Chloride	16887-00-6	1	mg/L	194	192	1.3	0% - 20%
EG020F: Dissolved M	letals by ICP-MS (QC	Lot: 2746484)							
EP1301285-008	Anonymous	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit
		EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Manganese	7439-96-5	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	0.042	0.043	0.0	No Limit
		EG020A-F: Aluminium	7429-90-5	0.01	mg/L	<0.01	<0.01	0.0	No Limit
		EG020A-F: Selenium	7782-49-2	0.01	mg/L	<0.01	<0.01	0.0	No Limit
		EG020A-F: Iron	7439-89-6	0.05	mg/L	<0.05	<0.05	0.0	No Limit
EP1301287-004	Anonymous	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit
		EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Manganese	7439-96-5	0.001	mg/L	0.015	0.014	12.3	0% - 20%
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	0.011	0.010	0.0	0% - 20%
		EG020A-F: Aluminium	7429-90-5	0.01	mg/L	0.02	0.02	0.0	0% - 20%
		EG020A-F: Selenium	7782-49-2	0.01	mg/L	<0.01	<0.01	0.0	No Limit
		EG020A-F: Iron	7439-89-6	0.05	mg/L	2.54	2.47	2.9	0% - 20%
EG020T: Total Metals	s by ICP-MS (QC Lot:	2746474)							
EP1301265-001	Anonymous	EG020A-T: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit
		EG020A-T: Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-T: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-T: Copper	7440-50-8	0.001	mg/L	0.001	<0.001	0.0	No Limit
		EG020A-T: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-T: Manganese	7439-96-5	0.001	mg/L	0.286	0.290	1.2	0% - 20%
		EG020A-T: Molybdenum	7439-98-7	0.001	mg/L	0.003	0.003	0.0	No Limit
		EG020A-T: Nickel	7440-02-0	0.001	mg/L	0.003	0.003	0.0	No Limit
		EG020A-T: Zinc	7440-66-6	0.005	mg/L	<0.005	<0.005	0.0	No Limit
		EG020A-T: Aluminium	7429-90-5	0.01	mg/L	0.03	0.03	0.0	No Limit
		EG020A-T: Selenium	7782-49-2	0.01	mg/L	0.02	0.02	0.0	No Limit
		EG020A-T: Iron	7439-89-6	0.05	mg/L	<0.05	<0.05	0.0	No Limit
EP1301288-008	Anonymous	EG020A-T: Cadmium	7440-43-9	0.0001	mg/L	<0.0010	<0.0010	0.0	0% - 50%
		EG020A-T: Arsenic	7440-38-2	0.001	mg/L	<0.010	<0.010	0.0	0% - 50%
		EG020A-T: Chromium	7440-47-3	0.001	mg/L	0.031	0.028	10.7	0% - 20%
		EG020A-T: Copper	7440-50-8	0.001	mg/L	1.07	1.04	2.8	0% - 20%
		EG020A-T: Lead	7439-92-1	0.001	mg/L	0.044	0.043	0.0	0% - 20%
		EG020A-T: Manganese	7439-96-5	0.001	mg/L	0.633	0.613	3.3	0% - 20%
		EG020A-T: Molybdenum	7439-98-7	0.001	mg/L	<0.010	<0.010	0.0	0% - 50%

Page	5 of 12
Work Order	: EP1301307
Client	: MOBILE DEWATERING
Project	: E2011-109

Sub-Matrix: WATER	-Matrix: WATER				Laboratory Duplicate (DUP) Report					
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)	
EG020T: Total Metals	by ICP-MS (QC Lot: 27464	74) - continued								
EP1301288-008	Anonymous	EG020A-T: Nickel	7440-02-0	0.001	mg/L	0.238	0.228	4.1	0% - 20%	
		EG020A-T: Zinc	7440-66-6	0.005	mg/L	0.306	0.297	2.8	0% - 20%	
		EG020A-T: Aluminium	7429-90-5	0.01	mg/L	70.2	67.8	3.4	0% - 20%	
		EG020A-T: Selenium	7782-49-2	0.01	mg/L	<0.10	<0.10	0.0	0% - 50%	
		EG020A-T: Iron	7439-89-6	0.05	mg/L	10.3	9.90	3.6	0% - 20%	
EG020T: Total Metals	by ICP-MS (QC Lot: 27464	175)								
EP1301265-001	Anonymous	EG020B-T: Silver	7440-22-4	0.001	mg/L	0.001	<0.001	0.0	No Limit	
EP1301288-008	Anonymous	EG020B-T: Silver	7440-22-4	0.001	mg/L	<0.010	<0.010	0.0	0% - 50%	
EG020T: Total Metals	by ICP-MS (QC Lot: 27464	176)								
EP1301307-002	HVNMW2-01	EG020A-T: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit	
		EG020A-T: Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	0.0	No Limit	
		EG020A-T: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.0	No Limit	
		EG020A-T: Copper	7440-50-8	0.001	mg/L	<0.001	<0.001	0.0	No Limit	
		EG020A-T: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.0	No Limit	
		EG020A-T: Manganese	7439-96-5	0.001	mg/L	0.007	0.007	0.0	No Limit	
		EG020A-T: Molybdenum	7439-98-7	0.001	mg/L	<0.001	<0.001	0.0	No Limit	
		EG020A-T: Nickel	7440-02-0	0.001	mg/L	<0.001	<0.001	0.0	No Limit	
		EG020A-T: Zinc	7440-66-6	0.005	mg/L	<0.005	<0.005	0.0	No Limit	
		EG020A-T: Aluminium	7429-90-5	0.01	mg/L	1.83	1.96	7.0	0% - 20%	
		EG020A-T: Selenium	7782-49-2	0.01	mg/L	<0.01	<0.01	0.0	No Limit	
		EG020A-T: Iron	7439-89-6	0.05	mg/L	0.27	0.30	8.2	No Limit	
EG020T: Total Metals	by ICP-MS (QC Lot: 27464	177)								
EP1301307-002	HVNMW2-01	EG020B-T: Silver	7440-22-4	0.001	mg/L	<0.001	<0.001	0.0	No Limit	
EG035T: Total Recov	verable Mercury by FIMS (C	QC Lot: 2746513)								
EP1301265-001	Anonymous	EG035T: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit	
EP1301307-004	HVNMW4-01	EG035T: Mercury	7439-97-6	0.0001	mg/L	0.0003	0.0003	0.0	No Limit	
EG050F: Dissolved H	exavalent Chromium (QC I	Lot: 2745761)								
EP1301307-001	HVNMW1-01	EG050G-F: Hexavalent Chromium	18540-29-9	0.01	mg/L	<0.01	<0.01	0.0	No Limit	
EP1301348-001	Anonymous	EG050G-F: Hexavalent Chromium	18540-29-9	0.01	mg/L	<0.01	<0.01	0.0	No Limit	
EG051G: Ferrous Iro	n by Discrete Analyser (QC	; Lot: 2741378)								
EP1301307-001	HVNMW1-01	EG051G: Ferrous Iron		0.05	mg/L	0.46	0.46	0.0	No Limit	
EK055G: Ammonia a	s N by Discrete Analyser(C	QC Lot: 2741377)								
EP1301307-001	HVNMW1-01	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	0.04	0.03	36.8	No Limit	
EK057G: Nitrite as N	by Discrete Analyser (QC	Lot: 2742139)								
EP1301307-001	HVNMW1-01	EK057G: Nitrite as N		0.01	mg/L	<0.01	<0.01	0.0	No Limit	
EP1301310-001	Anonymous	EK057G: Nitrite as N		0.01	mg/L	0.02	0.02	0.0	No Limit	
EK059G: Nitrite plus	Nitrate as N (NOx) by Disc	rete Analyser (QC Lot: 2741376)								
EP1301298-005	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	0.16	0.16	0.0	0% - 20%	
EP1301307-004	HVNMW4-01	EK059G: Nitrite + Nitrate as N		0.01	mg/L	<0.01	<0.01	0.0	No Limit	

Page	: 6 of 12
Work Order	: EP1301307
Client	: MOBILE DEWATERING
Project	: E2011-109

Sub-Matrix: WATER			[Laboratory L	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EK061G: Total Kjeld	ahl Nitrogen By Discrete A	nalyser (QC Lot: 2748939)							
EP1301307-001	HVNMW1-01	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	1.0	1.0	0.0	0% - 20%
EP1301310-005	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	3.2	3.2	0.0	0% - 20%
EK067G: Total Phos	phorus as P by Discrete A	nalyser (QC Lot: 2748940)							
EP1301307-001	HVNMW1-01	EK067G: Total Phosphorus as P		0.01	mg/L	0.61	0.66	8.2	0% - 20%
EP1301310-005	Anonymous	EK067G: Total Phosphorus as P		0.01	mg/L	3.91	3.98	1.7	0% - 20%
EK071G: Reactive P	hosphorus as P by discret	e analyser (QC Lot: 2742136)							
EP1301287-001	Anonymous	EK071G: Reactive Phosphorus as P		0.01	mg/L	<0.01	<0.01	0.0	No Limit
EP1301310-001	Anonymous	EK071G: Reactive Phosphorus as P		0.01	mg/L	<0.01	<0.01	0.0	No Limit
EK085M: Sulfide as	S2- (QC Lot: 2749219)								
EP1301287-001	Anonymous	EK085: Sulfide as S2-	18496-25-8	0.1	mg/L	<0.1	<0.1	0.0	No Limit
EP1301307-006	HVNMW6-01	EK085: Sulfide as S2-	18496-25-8	0.1	mg/L	<0.1	<0.1	0.0	No Limit
EP030: Biochemical	Oxygen Demand (BOD) (C	QC Lot: 2742819)							
EP1301307-001	HVNMW1-01	EP030: Biochemical Oxygen Demand		2	mg/L	<2	<2	0.0	No Limit
EP1301308-005	Anonymous	EP030: Biochemical Oxygen Demand		2	mg/L	<2	<2	0.0	No Limit

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EA005P: pH by PC Titrator (QCLot: 2746838)									
EA005-P: pH Value		0.01	pH Unit		7.00 pH Unit	101	70	130	
EA010P: Conductivity by PC Titrator (QCLot: 2746834)									
EA010-P: Electrical Conductivity @ 25°C		1	µS/cm	<1	24800 µS/cm	98.5	95	110	
EA010P: Conductivity by PC Titrator (QCLot: 2746839)									
EA010-P: Electrical Conductivity @ 25°C		1	μS/cm	<1	24800 µS/cm	97.5	95	110	
EA015: Total Dissolved Solids (QCLot: 2746443)									
EA015H: Total Dissolved Solids @180°C		10	mg/L	<10	293 mg/L	111	70	130	
FA025: Suspended Solids (QCI of: 2746444)	,								
EA025H: Suspended Solids (SS)		5	mg/L	<5	150 mg/L	95.6	70	130	
FA045: Turbidity (QCI ot: 2743200)	I I								
EA045: Turbidity		0.1	NTU	<0.1	40 NTU	105	91	107	
ED037P: Alkalinity by PC Titrator (OCI ot: 2746837)									
ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-00	1	ma/L	<1					
	1		5						
ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1					
ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	<1					
ED037-P: Total Alkalinity as CaCO3		1	mg/L	<1	200 mg/L	109	87	121	
ED038A: Acidity (QCLot: 2748324)									
ED038: Acidity as CaCO3		1	mg/L		20 mg/L	102	85	119	
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA (QCLot)	2742138)								
ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	<1	25 mg/L	104	88	121	
ED045G: Chloride Discrete analyser (QCLot: 2742137)									
ED045G: Chloride	16887-00-6	1	mg/L	<1	1000 mg/L	92.5	84	120	
EG020F: Dissolved Metals by ICP-MS (QCLot: 2746484)									
EG020A-F: Aluminium	7429-90-5	0.01	mg/L	<0.01	0.50 mg/L	99.9	77	113	
EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	0.100 mg/L	103	89	109	
EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	0.1000 mg/L	102	89	109	
EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	0.100 mg/L	91.8	88	106	
EG020A-F: Manganese	7439-96-5	0.001	mg/L	<0.001	0.100 mg/L	92.7	87	107	
EG020A-F: Nickel	7440-02-0	0.001	mg/L	<0.001	0.100 mg/L	91.6	87	109	
EG020A-F: Selenium	7782-49-2	0.01	mg/L	<0.01	0.10 mg/L	108	93	117	
EG020A-F: Zinc	7440-66-6	0.005	mg/L	<0.005	0.100 mg/L	106	89	115	
EG020A-F: Iron	7439-89-6	0.05	mg/L	<0.05	0.50 mg/L	93.0	83	109	

Page	: 8 of 12
Work Order	: EP1301307
Client	: MOBILE DEWATERING
Project	: E2011-109

Sub-Matrix: WATER				Method Blank (MB)	Laboratory Control Spike (LCS) Report						
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)			
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High			
EG020T: Total Metals by ICP-MS (QCLot: 2746474)											
EG020A-T: Aluminium	7429-90-5	0.01	mg/L	<0.01	0.5 mg/L	110	78	116			
EG020A-T: Arsenic	7440-38-2	0.001	mg/L	<0.001	0.1 mg/L	94.8	77	109			
EG020A-T: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	0.1 mg/L	96.3	78	108			
EG020A-T: Chromium	7440-47-3	0.001	mg/L	<0.001	0.1 mg/L	93.6	80	112			
EG020A-T: Copper	7440-50-8	0.001	mg/L	<0.001	0.1 mg/L	96.0	79	111			
EG020A-T: Lead	7439-92-1	0.001	mg/L	<0.001	0.1 mg/L	89.4	81	109			
EG020A-T: Manganese	7439-96-5	0.001	mg/L	<0.001	0.1 mg/L	94.7	80	112			
EG020A-T: Molybdenum	7439-98-7	0.001	mg/L	<0.001	0.1 mg/L	95.6	86	118			
EG020A-T: Nickel	7440-02-0	0.001	mg/L	<0.001	0.1 mg/L	94.2	80	112			
EG020A-T: Selenium	7782-49-2	0.01	mg/L	<0.01	0.1 mg/L	96.9	75	107			
EG020A-T: Zinc	7440-66-6	0.005	mg/L	<0.005	0.1 mg/L	101	74	108			
EG020A-T: Iron	7439-89-6	0.05	mg/L	<0.05	0.5 mg/L	92.5	75	115			
EG020T: Total Metals by ICP-MS (QCLot: 2746475)											
EG020B-T: Silver	7440-22-4	0.001	mg/L	<0.001	0.01 mg/L	78.8	70	130			
EG020T: Total Metals by ICP-MS (QCLot: 2746476)											
EG020A-T: Aluminium	7429-90-5	0.01	mg/L	<0.01	0.5 mg/L	109	78	116			
EG020A-T: Arsenic	7440-38-2	0.001	mg/L	<0.001	0.1 mg/L	97.6	77	109			
EG020A-T: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	0.1 mg/L	96.2	78	108			
EG020A-T: Chromium	7440-47-3	0.001	mg/L	<0.001	0.1 mg/L	96.9	80	112			
EG020A-T: Copper	7440-50-8	0.001	mg/L	<0.001	0.1 mg/L	97.8	79	111			
EG020A-T: Lead	7439-92-1	0.001	mg/L	<0.001	0.1 mg/L	91.0	81	109			
EG020A-T: Manganese	7439-96-5	0.001	mg/L	<0.001	0.1 mg/L	94.9	80	112			
EG020A-T: Molybdenum	7439-98-7	0.001	mg/L	<0.001	0.1 mg/L	96.9	86	118			
EG020A-T: Nickel	7440-02-0	0.001	mg/L	<0.001	0.1 mg/L	97.1	80	112			
EG020A-T: Selenium	7782-49-2	0.01	mg/L	<0.01	0.1 mg/L	97.8	75	107			
EG020A-T: Zinc	7440-66-6	0.005	mg/L	<0.005	0.1 mg/L	101	74	108			
EG020A-T: Iron	7439-89-6	0.05	mg/L	<0.05	0.5 mg/L	109	75	115			
EG020T: Total Metals by ICP-MS (QCLot: 2746477)											
EG020B-T: Silver	7440-22-4	0.001	mg/L	<0.001	0.01 mg/L	75.9	70	130			
EG035T: Total Recoverable Mercury by FIMS (QCI	_ot: 2746513)										
EG035T: Mercury	7439-97-6	0.0001	mg/L	<0.0001	0.0100 mg/L	101	82.3	118			
EG050F: Dissolved Hexavalent Chromium (QCLot:	2745761)										
EG050G-F: Hexavalent Chromium	18540-29-9	0.01	mg/L	<0.01	0.5 mg/L	101	91	115			
EG051G: Ferrous Iron by Discrete Analyser (QCLo	t: 2741378)										
EG051G: Ferrous Iron		0.05	mg/L	<0.05	2.00 mg/L	101	89	113			
EK055G: Ammonia as N by Discrete Analyser (QCI	Lot: 2741377)										
EK055G: Ammonia as N	7664-41-7	0.01	mg/L	<0.01	1 mg/L	99.8	87	115			
EK057G: Nitrite as N by Discrete Analyser (QCLot	: 2742139)										

Page	: 9 of 12
Work Order	: EP1301307
Client	: MOBILE DEWATERING
Project	: E2011-109

Sub-Matrix: WATER		Method Blank (MB)	Laboratory Control Spike (LCS) Report				
			Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound CAS Num	ber LOR	Unit	Result	Concentration	LCS	Low	High
EK057G: Nitrite as N by Discrete Analyser (QCLot: 2742139) - contir	ued						
EK057G: Nitrite as N	0.01	mg/L	<0.01	0.5 mg/L	98.0	86	112
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser (QCLo	: 2741376)						
EK059G: Nitrite + Nitrate as N	0.01	mg/L	<0.01	0.5 mg/L	105	92	112
EK061G: Total Kjeldahl Nitrogen By Discrete Analyser (QCLot: 27489	39)						
EK061G: Total Kjeldahl Nitrogen as N	0.1	mg/L	<0.1	10 mg/L	89.3	74	130
EK067G: Total Phosphorus as P by Discrete Analyser (QCLot: 27489	40)						
EK067G: Total Phosphorus as P	0.01	mg/L	<0.01	4.42 mg/L	101	70	130
EK071G: Reactive Phosphorus as P by discrete analyser (QCLot: 274	2136)						
EK071G: Reactive Phosphorus as P	0.01	mg/L	<0.01	0.5 mg/L	97.0	87	115
EK085M: Sulfide as S2- (QCLot: 2749219)							
EK085: Sulfide as S2- 18496-25	8 0.10	mg/L	<0.1	0.50 mg/L	102	82	116
EP030: Biochemical Oxygen Demand (BOD) (QCLot: 2742819)							
EP030: Biochemical Oxygen Demand	2	mg/L	<2	198 mg/L	85.8	84	114

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: WATER				Matrix Spike (MS) Report					
				Spike	SpikeRecovery(%)	Recovery Li	mits (%)		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High		
ED041G: Sulfate (T	urbidimetric) as SO4 2- by DA (QCLot: 2742138)								
EP1301287-001	Anonymous	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	100 mg/L	109	70	130		
ED045G: Chloride	Discrete analyser (QCLot: 2742137)								
EP1301287-001	Anonymous	ED045G: Chloride	16887-00-6	250 mg/L	123	70	130		
EG020F: Dissolved	Metals by ICP-MS (QCLot: 2746484)								
EP1301285-009	Anonymous	EG020A-F: Arsenic	7440-38-2	0.200 mg/L	118	70	130		
		EG020A-F: Cadmium	7440-43-9	0.0500 mg/L	112	70	130		
		EG020A-F: Chromium	7440-47-3	0.200 mg/L	97.5	70	130		
		EG020A-F: Manganese	7439-96-5	0.200 mg/L	98.4	70	130		
		EG020A-F: Nickel	7440-02-0	0.200 mg/L	96.9	70	130		
		EG020A-F: Zinc	7440-66-6	0.200 mg/L	119	70	130		
EG020T: Total Meta	als by ICP-MS (QCLot: 2746474)								
EP1301265-003	Anonymous	EG020A-T: Arsenic	7440-38-2	1.00 mg/L	108	70	130		
		EG020A-T: Cadmium	7440-43-9	0.25 mg/L	103	70	130		
		EG020A-T: Chromium	7440-47-3	1.00 mg/L	93.7	70	130		
		EG020A-T: Copper	7440-50-8	1.00 mg/L	92.6	70	130		

Page	: 10 of 12
Work Order	: EP1301307
Client	: MOBILE DEWATERING
Project	: E2011-109

Sub-Matrix: WATER			Ма	atrix Spike (MS) Report			
				Spike	SpikeRecovery(%)	Recovery Li	mits (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EG020T: Total Meta	als by ICP-MS (QCLot: 2746474) - continued						
EP1301265-003	Anonymous	EG020A-T: Lead	7439-92-1	1.00 mg/L	92.7	70	130
		EG020A-T: Manganese	7439-96-5	1.00 mg/L	94.3	70	130
		EG020A-T: Nickel	7440-02-0	1.00 mg/L	95.9	70	130
		EG020A-T: Zinc	7440-66-6	1.00 mg/L	94.1	70	130
EG020T: Total Meta	als by ICP-MS (QCLot: 2746476)						
EP1301307-003	HVNMW3-01	EG020A-T: Arsenic	7440-38-2	1.00 mg/L	87.2	70	130
		EG020A-T: Cadmium	7440-43-9	0.25 mg/L	105	70	130
		EG020A-T: Chromium	7440-47-3	1.00 mg/L	77.5	70	130
		EG020A-T: Copper	7440-50-8	1.00 mg/L	110	70	130
		EG020A-T: Lead	7439-92-1	1.00 mg/L	104	70	130
		EG020A-T: Manganese	7439-96-5	1.00 mg/L	76.3	70	130
		EG020A-T: Nickel	7440-02-0	1.00 mg/L	108	70	130
		EG020A-T: Zinc	7440-66-6	1.00 mg/L	114	70	130
EG035T: Total Rec	coverable Mercury by FIMS (QCLot: 2746513)						
EP1301265-003	Anonymous	EG035T: Mercury	7439-97-6	0.0100 mg/L	105	70	130
EG050F: Dissolved	Hexavalent Chromium (QCLot: 2745761)						
EP1301307-001	HVNMW1-01	EG050G-F: Hexavalent Chromium	18540-29-9	0.5 mg/L	94.9	70	130
EG051G: Ferrous I	ron by Discrete Analyser (QCLot: 2741378)						
EP1301307-001	HVNMW1-01	EG051G: Ferrous Iron		2.5 mg/L	102	70	130
EK055G: Ammonia	as N by Discrete Analyser (QCLot: 2741377)						_
EP1301307-001	HVNMW1-01	EK055G: Ammonia as N	7664-41-7	1.00 mg/L	95.7	70	130
EK057G: Nitrite as	N by Discrete Analyser (QCLot: 2742139)						
EP1301307-001	HVNMW1-01	EK057G: Nitrite as N		0.6 mg/L	86.8	70	130
EK059G: Nitrite pl	us Nitrate as N (NOx) by Discrete Analyser (QCLot: 274	1376)					
EP1301298-005	Anonymous	EK059G: Nitrite + Nitrate as N		0.5 mg/L	107	70	130
EK061G: Total Kjel	dahl Nitrogen By Discrete Analyser (QCLot: 2748939)						
EP1301307-001	HVNMW1-01	EK061G: Total Kjeldahl Nitrogen as N		5.0 mg/L	96.5	70	130
EK067G: Total Pho	sphorus as P by Discrete Analyser (QCLot: 2748940)						
EP1301307-001	HVNMW1-01	EK067G: Total Phosphorus as P		1 mg/L	80.6	70	130
EK071G: Reactive	Phosphorus as P by discrete analyser(QCLot: 2742136						
EP1301287-001	Anonymous	EK071G: Reactive Phosphorus as P		0.5 mg/L	100	70	130

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

The quality control term Matrix Spike (MS) and Matrix Spike Duplicate (MSD) refers to intralaboratory split samples spiked with a representative set of target analytes. The purpose of these QC parameters are to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Page	: 11 of 12
Work Order	: EP1301307
Client	: MOBILE DEWATERING
Project	; E2011-109

Sub-Matrix: WATER				Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report						
					Spike Recovery (%)		Recovery Limits (%)		RP	Ds (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Control Limit
EK059G: Nitrite plu	us Nitrate as N (NOx) by D	Discrete Analyser (QCLot: 2741376)								
EP1301298-005	Anonymous	EK059G: Nitrite + Nitrate as N		0.5 mg/L	107		70	130		
EK055G: Ammonia	as N by Discrete Analyse	r (QCLot: 2741377)								
EP1301307-001	HVNMW1-01	EK055G: Ammonia as N	7664-41-7	1.00 mg/L	95.7		70	130		
EG051G: Ferrous l	ron by Discrete Analyser	(QCL of: 2741378)								
EP1301307-001	HVNMW1-01	EG051G: Eerrous Iron		2.5 mg/L	102		70	130		
EK071G: Poactive	Phoenborus as P by discr			5	-					
EP1301287-001	Anonymous	EK071C: Posctive Phosphorus as P		0.5 mg/l	100		70	130		
		ERO/ 1G. Reactive Phospholus as P		0.0 mg/L	100		10	100		
ED045G: Chloride I	Discrete analyser (QCLot:	: 2/4213/)	16997 00 6	2E0 mg/l	102		70	120		
EP1301287-001	Anonymous	ED045G: Chloride	16887-00-6	250 mg/L	123		70	130		
ED041G: Sulfate (T	urbidimetric) as SO4 2- by	/ DA (QCLot: 2742138)								
EP1301287-001	Anonymous	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	100 mg/L	109		70	130		
EK057G: Nitrite as	N by Discrete Analyser (QCLot: 2742139)								
EP1301307-001	HVNMW1-01	EK057G: Nitrite as N		0.6 mg/L	86.8		70	130		
EG050F: Dissolved	Hexavalent Chromium (C	QCLot: 2745761)								
EP1301307-001	HVNMW1-01	EG050G-F: Hexavalent Chromium	18540-29-9	0.5 mg/L	94.9		70	130		
EG020T: Total Meta	als by ICP-MS (QCLot: 274	46474)								
EP1301265-003	Anonymous	EG020A-T: Arsenic	7440-38-2	1.00 mg/L	108		70	130		
		EG020A-T: Cadmium	7440-43-9	0.25 mg/L	103		70	130		
		EG020A-T: Chromium	7440-47-3	1.00 mg/L	93.7		70	130		
		EG020A-T: Copper	7440-50-8	1.00 mg/L	92.6		70	130		
		EG020A-T: Lead	7439-92-1	1.00 mg/L	92.7		70	130		
		EG020A-T: Manganese	7439-96-5	1.00 mg/L	94.3		70	130		
		EG020A-T: Nickel	7440-02-0	1.00 mg/L	95.9		70	130		
		EG020A-T: Zinc	7440-66-6	1.00 mg/L	94.1		70	130		
EG020T: Total Meta	als by ICP-MS (QCLot: 274	46476)								
EP1301307-003	HVNMW3-01	EG020A-T: Arsenic	7440-38-2	1.00 mg/L	87.2		70	130		
		EG020A-T: Cadmium	7440-43-9	0.25 mg/L	105		70	130		
		EG020A-T: Chromium	7440-47-3	1.00 mg/L	77.5		70	130		
		EG020A-T: Copper	7440-50-8	1.00 mg/L	110		70	130		
		EG020A-T: Lead	7439-92-1	1.00 mg/L	104		70	130		
		EG020A-T: Manganese	7439-96-5	1.00 mg/L	76.3		70	130		
		EG020A-T: Nickel	7440-02-0	1.00 mg/L	108		70	130		
		EG020A-T: Zinc	7440-66-6	1.00 mg/L	114		70	130		
EG020F: Dissolved	Metals by ICP-MS (QCLo	ot: 2746484)								
EP1301285-009	Anonymous	EG020A-F: Arsenic	7440-38-2	0.200 mg/L	118		70	130		
		EG020A-F: Cadmium	7440-43-9	0.0500 mg/L	112		70	130		
		EG020A-F: Chromium	7440-47-3	0.200 mg/L	97.5		70	130		

Page	: 12 of 12
Work Order	: EP1301307
Client	: MOBILE DEWATERING
Project	: E2011-109

Sub-Matrix: WATER			Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report							
				Spike	Spike Red	covery (%)	Recovery	Limits (%)	RPDs	s (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Control Limit
EG020F: Dissolved	Metals by ICP-MS (QCLot: 2746484) - co	ntinued								
EP1301285-009	Anonymous	EG020A-F: Manganese	7439-96-5	0.200 mg/L	98.4		70	130		
		EG020A-F: Nickel	7440-02-0	0.200 mg/L	96.9		70	130		
	EG020A-F: Zinc 7440-66-		7440-66-6	0.200 mg/L	119		70	130		
EG035T: Total Rec	overable Mercury by FIMS (QCLot: 27465	513)								
EP1301265-003	Anonymous	EG035T: Mercury	7439-97-6	0.0100 mg/L	105		70	130		
EK061G: Total Kjelo	lahl Nitrogen By Discrete Analyser (QCL	ot: 2748939)								
EP1301307-001	HVNMW1-01	EK061G: Total Kjeldahl Nitrogen as N		5.0 mg/L	96.5		70	130		
EK067G: Total Phos	sphorus as P by Discrete Analyser(QCLo	ot: 2748940)								
EP1301307-001	HVNMW1-01	EK067G: Total Phosphorus as P		1 mg/L	80.6		70	130		

Environmental Division

INTERPRETIVE QUALITY CONTROL REPORT

Work Order	: EP1301307	Page	: 1 of 12
Client Contact Address	: MOBILE DEWATERING : INFO : PO BOX 239 MIDLAND WA, AUSTRALIA 6939	Laboratory Contact Address	: Environmental Division Perth : Lauren Ockwell : 10 Hod Way Malaga WA Australia 6090
E-mail Telephone Facsimile	: info@environmentalservices.com.au : +61 08 9250 4995 :	E-mail Telephone Facsimile	: lauren.ockwell@alsenviro.com : 08 9209 7606 : 08 9209 7600
Project Site	: E2011-109 : HOPE VALLEY NUSERY SERPENTINE	QC Level	: NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Sampler Order number	: E2011-109-01 : J.M. :	Issue Date	28-FEB-2013
Quote number	: EP/785/12	No. of samples received No. of samples analysed	: 6 : 6

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Interpretive Quality Control Report contains the following information:

- Analysis Holding Time Compliance
- Quality Control Parameter Frequency Compliance
- Brief Method Summaries
- Summary of Outliers

Address 10 Hod Way Malaga WA Australia 6090 PHONE +61-8-9209 7655 Facsimile +61-8-9209 7600 Environmental Division Perth ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

Analysis Holding Time Compliance

The following report summarises extraction / preparation and analysis times and compares with recommended holding times. Dates reported represent first date of extraction or analysis and precludes subsequent dilutions and reruns. Information is also provided re the sample container (preservative) from which the analysis aliquot was taken. Elapsed period to analysis represents number of days from sampling where no extraction / digestion is involved or period from extraction / digestion where this is present. For composite samples, sampling date is assumed to be that of the oldest sample contributing to the composite. Sample date for laboratory produced leachates is assumed as the completion date of the leaching process. Outliers for holding time are based on USEPA SW 846, APHA, AS and NEPM (1999). A listing of breaches is provided in the Summary of Outliers.

Holding times for leachate methods (excluding elutriates) vary according to the analytes being determined on the resulting solution. For non-volatile analytes, the holding time compliance assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These soil holding times are: Organics (14 days); Mercury (28 days) & other metals (180 days). A recorded breach therefore does not guarantee a breach for all non-volatile parameters.

Matrix: WATER					Evaluation:	<pre>x = Holding time</pre>	breach ; 🗸 = Withir	n holding time.
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA005P: pH by PC Titrator								
Clear Plastic Bottle - Natural (EA005-P)								
HVNMW1-01,	HVNMW2-01,	21-FEB-2013		21-FEB-2013		26-FEB-2013	21-FEB-2013	×
HVNMW3-01,	HVNMW4-01,							
HVNMW5-01,	HVNMW6-01							
EA010P: Conductivity by PC Titrator								
Clear Plastic Bottle - Natural (EA010-P)								
HVNMW1-01,	HVNMW2-01,	21-FEB-2013		21-MAR-2013		26-FEB-2013	21-MAR-2013	 ✓
HVNMW3-01,	HVNMW4-01,							
HVNMW5-01,	HVNMW6-01							
EA015: Total Dissolved Solids								
Clear Plastic Bottle - Natural (EA015H)								
HVNMW1-01,	HVNMW2-01,	21-FEB-2013		28-FEB-2013		26-FEB-2013	28-FEB-2013	 ✓
HVNMW3-01,	HVNMW4-01,							
HVNMW5-01,	HVNMW6-01							
EA025: Suspended Solids								
Clear Plastic Bottle - Natural (EA025H)								
HVNMW1-01,	HVNMW2-01,	21-FEB-2013		28-FEB-2013		26-FEB-2013	28-FEB-2013	✓
HVNMW3-01,	HVNMW4-01,							
HVNMW5-01,	HVNMW6-01							
EA045: Turbidity								
Clear Plastic Bottle - Natural (EA045)								
HVNMW1-01,	HVNMW2-01,	21-FEB-2013				22-FEB-2013	23-FEB-2013	✓
HVNMW3-01,	HVNMW4-01,							
HVNMW5-01,	HVNMW6-01							
ED037P: Alkalinity by PC Titrator								
Clear Plastic Bottle - Natural (ED037-P)								
HVNMW1-01,	HVNMW2-01,	21-FEB-2013		07-MAR-2013		26-FEB-2013	07-MAR-2013	 ✓
HVNMW3-01,	HVNMW4-01,							
HVNMW5-01,	HVNMW6-01							

Page	: 3 of 12
Work Order	: EP1301307
Client	: MOBILE DEWATERING
Project	: E2011-109

Matrix: WATER					Evaluation	× = Holding time	breach ; ✓ = Withir	n holding time.
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
ED038A: Acidity								
Clear Plastic Bottle - Natural (ED038)								
HVNMW1-01,	HVNMW2-01,	21-FEB-2013				27-FEB-2013	07-MAR-2013	✓
HVNMW3-01,	HVNMW4-01,							
HVNMW5-01,	HVNMW6-01							
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA								
Clear Plastic Bottle - Natural (ED041G)								
HVNMW1-01,	HVNMW2-01,	21-FEB-2013		21-MAR-2013		21-FEB-2013	21-MAR-2013	✓
HVNMW3-01,	HVNMW4-01,							
HVNMW5-01,	HVNMW6-01							
ED045G: Chloride Discrete analyser								
Clear Plastic Bottle - Natural (ED045G)								
HVNMW1-01,	HVNMW2-01,	21-FEB-2013		21-MAR-2013		21-FEB-2013	21-MAR-2013	✓
HVNMW3-01,	HVNMW4-01,							
HVNMW5-01,	HVNMW6-01							
EG020F: Dissolved Metals by ICP-MS								
Clear Plastic Bottle - Filtered; Lab-acidified (EG020A-F)								
HVNMW1-01,	HVNMW2-01,	21-FEB-2013		20-AUG-2013		27-FEB-2013	20-AUG-2013	✓
HVNMW3-01,	HVNMW4-01,							
HVNMW5-01,	HVNMW6-01							
EG020T: Total Metals by ICP-MS								
Clear Plastic Bottle - Unfiltered; Lab-acidified (EG020A-T)								
HVNMW1-01,	HVNMW2-01,	21-FEB-2013	26-FEB-2013	20-AUG-2013	~	26-FEB-2013	20-AUG-2013	✓
HVNMW3-01,	HVNMW4-01,							
HVNMW5-01,	HVNMW6-01							
EG020T: Total Metals by ICP-MS								
Clear Plastic Bottle - Unfiltered; Lab-acidified (EG020B-T)								
HVNMW1-01,	HVNMW2-01,	21-FEB-2013	26-FEB-2013	20-AUG-2013	-	26-FEB-2013	20-AUG-2013	✓
HVNMW3-01,	HVNMW4-01,							
HVNMW5-01,	HVNMW6-01							
EG035T: Total Recoverable Mercury by FIMS								
Clear Plastic Bottle - Unfiltered; Lab-acidified (EG035T)								
HVNMW1-01,	HVNMW2-01,	21-FEB-2013				26-FEB-2013	21-MAR-2013	✓
HVNMW3-01,	HVNMW4-01,							
HVNMW5-01,	HVNMW6-01							
EG050F: Dissolved Hexavalent Chromium								
Clear Plastic Bottle - NaOH (EG050G-F)								
HVNMW1-01,	HVNMW2-01,	21-FEB-2013				27-FEB-2013	21-MAR-2013	✓
HVNMW3-01,	HVNMW4-01,							
HVNMW5-01,	HVNMW6-01							

Page	: 4 of 12
Work Order	: EP1301307
Client	: MOBILE DEWATERING
Project	: E2011-109

Matrix: WATER					Evaluation	× = Holding time	breach ; 🗸 = Withir	n holding time.
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EG051G: Ferrous Iron by Discrete Analyser								
Clear Plastic Bottle - HCl - Filtered (EG051G)							00 555 0040	
HVNMW1-01,	HVNMW5-01	21-FEB-2013				21-FEB-2013	28-FEB-2013	✓
		21-FEB-2013				21-FEB-2013	22-EEB-2013	
HVNMW2-01		21-1 20-2010				21-1 20-2010	221202010	•
EK055G: Ammonia as N by Discrete Analyser		1	1	1		1		
HVNMW1_01		21-FFB-2013		21-MAR-2013		21-FFB-2013	21-MAR-2013	
HVNMW3-01		111125 1010		21 100 11 2010		211122 2010	21 10 11 2010	•
HVNMW5-01								
						<u> </u>		
Clear Pleatic Bettle Netural (EK057C)		1						
HVNMW1-01		21-FEB-2013		23-FEB-2013		21-FEB-2013	23-FEB-2013	
HVNMW3-01	HVNMW4-01							•
HVNMW5-01	HVNMW6-01							
EK050C: Nitrite plue Nitrate as N (NOx), by Disor								
Clear Plastic Bottle Sulfuric Acid (EK059G)	ete Analyser	1						
HVNMW1-01	HVNMW2-01	21-FEB-2013		21-MAR-2013		21-FEB-2013	21-MAR-2013	1
HVNMW3-01	HVNMW4-01							•
HVNMW5-01.	HVNMW6-01							
EK061G: Total Kieldahl Nitrogen By Discrete Ana	llvser							
Clear Plastic Bottle - Sulfuric Acid (EK061G)								
HVNMW1-01,	HVNMW2-01,	21-FEB-2013	28-FEB-2013	21-MAR-2013	1	28-FEB-2013	21-MAR-2013	 ✓
HVNMW3-01,	HVNMW4-01,							
HVNMW5-01,	HVNMW6-01							
EK067G: Total Phosphorus as P by Discrete Anal	lyser							
Clear Plastic Bottle - Sulfuric Acid (EK067G)								
HVNMW1-01,	HVNMW2-01,	21-FEB-2013	28-FEB-2013	21-MAR-2013	1	28-FEB-2013	21-MAR-2013	✓
HVNMW3-01,	HVNMW4-01,							
HVNMW5-01,	HVNMW6-01							
EK071G: Reactive Phosphorus as P by discrete a	analyser							
Clear Plastic Bottle - Natural (EK071G)								
HVNMW1-01,	HVNMW2-01,	21-FEB-2013		23-FEB-2013		21-FEB-2013	23-FEB-2013	✓
HVNMW3-01,	HVNMW4-01,							
HVNMW5-01,	HVNMW6-01							
EK085M: Sulfide as S2-								
Clear Plastic Bottle - Zinc Acetate/NaOH (EK085)								
HVNMW1-01,	HVNMW2-01,	21-FEB-2013				27-FEB-2013	28-FEB-2013	✓
HVNMW3-01,	HVNMW4-01,							
HVNMW5-01,	HVNMW6-01							

Page	5 of 12
Work Order	: EP1301307
Client	: MOBILE DEWATERING
Project	: E2011-109

Matrix: WATER					Evaluation:	× = Holding time	breach ; ✓ = Withir	holding time.
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP030: Biochemical Oxygen Demand	I (BOD)							
Clear Plastic Bottle - Natural (EP030)								
HVNMW1-01,	HVNMW2-01,	21-FEB-2013				22-FEB-2013	23-FEB-2013	✓
HVNMW3-01,	HVNMW4-01,							
HVNMW5-01,	HVNMW6-01							

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(where) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Outly Control Sengel Type Count Rate (A) Ana/Yee / Methods Method CC Reveal Execution Execution Ana/Yee / Methods Method CC Reveal Execution Execution Ana/Yee / Methods Execution Execution Execution Execution Alarient / Methods Execution Execution Execution NEPM 1990 Schodule B(3) and ALS OCS3 requirement Alarient / Method PCD Execution Execution NEPM 1990 Schodule B(3) and ALS OCS3 requirement Electronical Oxygen Demand (BOD) EP0430 2 11 18.2 10.0 NEPM 1990 Schodule B(3) and ALS OCS3 requirement Conduction by Discrete Analyser ED0456 1 7 14.3 10.0 NEPM 1990 Schodule B(3) and ALS OCS3 requirement Desched Metals by OCPM Schulz EXECOSC 1 14.2 10.0 NEPM 1990 Schodule B(3) and ALS OCS3 requirement Meander Chambare Execosche Execosche 1 14.2 10.0 NEPM 1990 Schodule B(3) and ALS OCS3 requireme	Matrix: WATER Evaluation: * = Quality Control frequency not within specification ; * = Quality Control frequency within specification ;							ot within specification ; \checkmark = Quality Control frequency within specification.
Analytead Method O.C. Resource Faculation Executed Faculation Acadity and Scickion Carbonale ED038 2 10 200 10.0 ✓ NEPM 1999 Schedule B(3) and ALS QCS3 requirement Alainly by CTatolar ED037.P 2 20 10.0 ✓ NEPM 1999 Schedule B(3) and ALS QCS3 requirement Anomocia as N try Disorete analyser ED0366 1 6 16.7 10.0 ✓ NEPM 1999 Schedule B(3) and ALS QCS3 requirement Choide by Disorete Analyser ED0366 2 119 16.8 10.0 ✓ NEPM 1999 Schedule B(3) and ALS QCS3 requirement Choide by Disorete Analyser ED0306.2 17 11.8 10.0 ✓ NEPM 1999 Schedule B(3) and ALS QCS3 requirement Dealowed Matab V(CP-MS- Suite A E00206.F 2 17 11.8 10.0 ✓ NEPM 1999 Schedule B(3) and ALS QCS3 requirement Dealowed Matab V(CP-MS- Suite A E00206.F 2 13 16.0 ✓ NEPM 1999 Schedule B(3) and ALS QCS3 requirement Nifite an Vitrale analyser Eb02026 2	Quality Control Sample Type		Co	ount	Rate (%) Quality Control			Quality Control Specification
Laboratory Opplectes (DLP) Alcaling Sackanov Garbonate ED038 2 10 10.0 V NEPM 1999 Schedule B(3) and ALS OCS3 requirement Alcaling by PC Titator ED037.P 2 20 10.0 V NEPM 1999 Schedule B(3) and ALS OCS3 requirement Alcaling by PC Titator ED0350 2 11 18.2 10.0 V NEPM 1999 Schedule B(3) and ALS OCS3 requirement Hondre Di Sacrete Analyser ED0450 2 11 18.2 10.0 V NEPM 1999 Schedule B(3) and ALS OCS3 requirement Conductivity by PC Titator EA010-P 4 400 10.0 V NEPM 1999 Schedule B(3) and ALS OCS3 requirement Conductivity by PC Titator EA010-P 4 400 10.0 V NEPM 1999 Schedule B(3) and ALS OCS3 requirement Descrete Analyser E0051G 1 7 14.3 10.0 V NEPM 1999 Schedule B(3) and ALS OCS3 requirement Netro by Discrete Analyser E0051G 1 7 14.3 10.0 V NEPM 1999 Schedule B(3) and ALS OCS3 requirement Netro by Discrete Anal	Analytical Methods	Method	00	Reaular	Actual	Expected	Evaluation	
Actify ac Calculum Carbonate ED037P 2 10 10.0 V NFEM 1999 Schedule B(3) and ALS OCSS requirement Amonito ys PC Trator ED037P 2 20 10.0 V NEPM 1999 Schedule B(3) and ALS OCSS requirement Bochmaild Dyopen Demand (BOO) EP039 2 11 16.2 10.0 V NEPM 1999 Schedule B(3) and ALS OCSS requirement Chorde Dy Dacrete Analyser ED0406 2 19 10.0 V NEPM 1999 Schedule B(3) and ALS OCSS requirement Chorde Dy Dacrete Analyser ED0406 2 19 10.0 V NEPM 1999 Schedule B(3) and ALS OCSS requirement Encode Int Dy Discrete Analyser EG0506 F 2 17 14.8 10.0 V NEPM 1999 Schedule B(3) and ALS OCSS requirement Encode Protophone Sa PS/ Discrete Analyser EG0506 F 2 11 16.0 V NEPM 1999 Schedule B(3) and ALS OCSS requirement Nitrit as N (Noty Discrete Analyser EK0576 2 10 10.0 V NEPM 1999 Schedule B(3) and ALS OCSS requirement Nitrit as N (Noty Discrete Analyser EK0576 2	Laboratory Duplicates (DUP)							
Akalinity by C Titrator EE0357 2 20 10.0 10.0 V NEPM 1999 Schedule (0) and ALS CCS3 requirement Biochemical Cxygen Demand (BCD) EP0300 2 11 10.0 V NEPM 1999 Schedule (0) and ALS CCS3 requirement Biochemical Cxygen Demand (BCD) EP03460 2 19 10.0 V NEPM 1999 Schedule (0) and ALS CCS3 requirement Conductivity by PC Titrator EA010-P 4 40 10.0 V NEPM 1999 Schedule (0) and ALS CCS3 requirement Disolver Methatis (VCPMS - Sulta AL EE0300.F 2 11 11.8 10.0 V NEPM 1999 Schedule (0) and ALS CCS3 requirement Bioshew Methatis All (VCPMS - Sulta Alle (VCPMS - Sulta Alle (VCPMS - Sulta Alle (VCPMS - Sulta	Acidity as Calcium Carbonate	ED038	2	10	20.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Annona as Ny Diserde analyser EKASC 1 6 167 10.0 ✓ NEPM 1999 Schude (B) and ALS CCS3 requirement. Elonchaud Xoyan Demand (BOC) ED04G 2 19 10.0 ✓ NEPM 1999 Schude (B) and ALS CCS3 requirement. Cholide by Discrete Analyser ED04De 2 19 10.0 ✓ NEPM 1999 Schude (B) and ALS CCS3 requirement. Discrete Analyser EG03DA 2 17 11.6 10.0 ✓ NEPM 1999 Schudue (B) and ALS CCS3 requirement. Hexaratent Chroning by Discrete Analyser EG03DA 1 7 11.6 10.0 ✓ NEPM 1999 Schudue (B) and ALS CCS3 requirement. Ninte as N (Xotay by Discrete Analyser - Dissolved EG03DA 2 13 15.4 10.0 ✓ NEPM 1999 Schudue (B) and ALS CCS3 requirement. Ninte as N (Xotay by Discrete Analyser EK03G2 2 13 15.4 10.0 ✓ NEPM 1999 Schudue (B) and ALS CCS3 requirement. Ninte as N (Xotay by Discrete Analyser EK03G2 2 19 10.5 10.0 ✓ NEPM 1999 Schudue (B) and ALS CCS3 requirement.	Alkalinity by PC Titrator	ED037-P	2	20	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Biochemical Oxygen Demand (BOD) EPO 390 2 11 18.2 10.0 ✓ NEPM 1999 Schedule B(3) and ALS CCS3 requirement Conductly by PC Trator EA0 10-P 4 40 10.0 ✓ NEPM 1999 Schedule B(3) and ALS CCS3 requirement Desched Matheirs by ICP-MS - Suite A EG020A-F 2 17 11.8 10.0 ✓ NEPM 1999 Schedule B(3) and ALS CCS3 requirement Froms Ion ty Discrete Analyser EG020G-F 2 11 18.2 10.0 ✓ NEPM 1999 Schedule B(3) and ALS CCS3 requirement Initia and Nitia on Nitia on Nition S NOX Discrete Analyser EK057G 2 15 13.3 10.0 ✓ NEPM 1999 Schedule B(3) and ALS CCS3 requirement Nitit as N by Discrete Analyser EK057G 2 15 13.3 10.0 ✓ NEPM 1999 Schedule B(3) and ALS CCS3 requirement Staffe (Turbinitorito) as OA2 by Discrete Analyser EK057G 2 19 10.5 10.0 ✓ NEPM 1999 Schedule B(3) and ALS CCS3 requirement Staffe (Turbinitorito) as OA2 by Discrete Analyser EK056G 2 19 10.5 10.0<	Ammonia as N by Discrete analyser	EK055G	1	6	16.7	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Chorde by Discrete Analyser EDD45G 2 19 10.5 10.0 V NEPM 1999 Schedule B(3) and ALS CCS3 requirement Discrete Analyser EG020A,F 2 17 11.8 10.0 V NEPM 1999 Schedule B(3) and ALS CCS3 requirement Hexavient Chorning Discrete Analyser EG020A,F 2 17 11.8 10.0 V NEPM 1999 Schedule B(3) and ALS CCS3 requirement Nitrie and Nitrate as N (NOx) by Discrete Analyser EG020A,F 2 13 16.0 V NEPM 1999 Schedule B(3) and ALS CCS3 requirement Nitrite as N (NOx) by Discrete Analyser EK050G 2 15 13.3 10.0 V NEPM 1999 Schedule B(3) and ALS CCS3 requirement Nitrite as N (NOx) by Discrete Analyser EK057G 2 15 13.3 10.0 V NEPM 1999 Schedule B(3) and ALS CCS3 requirement Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser EK057G 2 19 10.5 10.0 V NEPM 1999 Schedule B(3) and ALS CCS3 requirement Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser EK047G 2 19 10.5 10.0	Biochemical Oxygen Demand (BOD)	EP030	2	11	18.2	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Conductivity by PC Tirtator EA 010-P 4 40 10.0 10.0 V NEPM 1999 Schedule R(3) and ALS CCS3 requirement Desived Metals by ICP-MS - Suite A EG005.6 1 7 11.8 10.0 V NEPM 1999 Schedule R(3) and ALS CCS3 requirement Haxavalent Chromium by Discrete Analyser EG005.6 2 11 18.2 10.0 V NEPM 1999 Schedule R(3) and ALS CCS3 requirement Nithe an Nitrole as N (NOx) by Discrete Analyser EK0507 2 13 15.4 10.0 V NEPM 1999 Schedule R(3) and ALS CCS3 requirement Nithe an Nitrate as N (NOx) by Discrete Analyser EK0576 2 13 15.4 10.0 V NEPM 1999 Schedule R(3) and ALS CCS3 requirement Nitte as Ny Discrete Analyser EK0576 2 19 10.5 10.0 V NEPM 1999 Schedule R(3) and ALS CCS3 requirement Staffa Citra/Informicity as SO4-2 by Discrete Analyser EK0676 2 19 10.5 10.0 V NEPM 1999 Schedule R(3) and ALS CCS3 requirement Staffa Citra/Informicity as SO4-2 by Discrete Analyser EK0676 2 19 10	Chloride by Discrete Analyser	ED045G	2	19	10.5	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissover Metals by ICP-MS - Suite A EEG203.F I <td>Conductivity by PC Titrator</td> <td>EA010-P</td> <td>4</td> <td>40</td> <td>10.0</td> <td>10.0</td> <td>✓</td> <td>NEPM 1999 Schedule B(3) and ALS QCS3 requirement</td>	Conductivity by PC Titrator	EA010-P	4	40	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Ferrous in by Discrete Analyser ECOBS (C) 1 14.3 10.0 ✓ NEPM 1999 Schedule B(3) and ALS OCS3 requirement Nitrie and Nitrate as N (NOx) by Discrete Analyser ECOBS (C) 2 13 15.4 10.0 ✓ NEPM 1999 Schedule B(3) and ALS OCS3 requirement Nitrie and Nitrate as N (NOx) by Discrete Analyser ECOS (C) 2 13 10.0 ✓ NEPM 1999 Schedule B(3) and ALS OCS3 requirement Reactive Phosphorus as P-By Discrete Analyser ECOS (C) 2 10.0 10.0 ✓ NEPM 1999 Schedule B(3) and ALS OCS3 requirement Suffee Graditic (Figh Leve) ECOS (C) 2 19 10.5 10.0 ✓ NEPM 1999 Schedule B(3) and ALS OCS3 requirement Suffee Graditic (Figh Leve) ECOS (C) ECOS (C) 19 10.5 10.0 ✓ NEPM 1999 Schedule B(3) and ALS OCS3 requirement Total Mitria by ICP-MS - Suffee Graditic (Figh Leve) ECOS (C) 19 10.5 10.0 ✓ NEPM 1999 Schedule B(3) and ALS OCS3 requirement Total Mitria by ICP-MS - Suffee Graditic (Figh Leve) ECOS (C) 10.5 10.0 ✓ NEPM 1999 Schedule B(3) and ALS OCS3	Dissolved Metals by ICP-MS - Suite A	EG020A-F	2	17	11.8	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Hexavalent Chronium by Discrete Analyser EQ680C-F 2 11 18.2 10.0 ✓ NEPM 1999 Schedule B(3) and ALS QCS3 requirement Nutrite an NINCab / Discrete Analyser EK057G 2 15 13.3 10.0 ✓ NEPM 1999 Schedule B(3) and ALS QCS3 requirement Pi by PC Trator EK057G 2 15 13.3 10.0 ✓ NEPM 1999 Schedule B(3) and ALS QCS3 requirement Reactive Prosphorus as P-By Discrete Analyser EK057G 2 10 10.0 ✓ NEPM 1999 Schedule B(3) and ALS QCS3 requirement Sulfaet G(Turbidimetric) as SO4 2- by Discrete Analyser EE00410 2 19 10.5 10.0 ✓ NEPM 1999 Schedule B(3) and ALS QCS3 requirement Sulfaet G(Lurbidimetric) as SO4 2- by Discrete Analyser EE00410 2 15 13.3 10.0 ✓ NEPM 1999 Schedule B(3) and ALS QCS3 requirement Total Disclah Nitrogen as N By Discrete Analyser EK0616 2 19 10.5 10.0 ✓ NEPM 1999 Schedule B(3) and ALS QCS3 requirement Total Kideah Nitrogen as N By Discrete Analyser EK0676 2 19 10.5	Ferrous Iron by Discrete Analyser	EG051G	1	7	14.3	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Nitrie as N (Noc) by Discrete Analyser EK059G 2 13 15.4 10.0 ✓ NEPM 1999 Schedule B(3) and ALS QCS3 requirement Nitrie as N by Discrete Analyser EK057 2 15 13.3 10.0 ✓ NEPM 1999 Schedule B(3) and ALS QCS3 requirement Reactive Phosphorus as P-By Discrete Analyser EK017G 2 19 10.5 10.0 ✓ NEPM 1999 Schedule B(3) and ALS QCS3 requirement Suifae (Turbidinetic) as S04 2- by Discrete Analyser EK068 2 19 10.5 10.0 ✓ NEPM 1999 Schedule B(3) and ALS QCS3 requirement Suifae (Turbidinetic) as S04 2- by Discrete Analyser EK068 2 19 10.5 10.0 ✓ NEPM 1999 Schedule B(3) and ALS QCS3 requirement Total Discoved Solids (High Level) EA025H 2 15 13.3 10.0 ✓ NEPM 1999 Schedule B(3) and ALS QCS3 requirement Total Discoved Solids (High Level) EA025H 2 15 13.3 10.0 ✓ NEPM 1999 Schedule B(3) and ALS QCS3 requirement Total Microup YEMS EG020AT 3 25 12.0 10.0	Hexavalent Chromium by Discrete Analyser - Dissolved	EG050G-F	2	11	18.2	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Nitrie as N p Discrete Analyser E K057G 2 15 13.3 10.0 ✓ NEPM 1999 Schedule B(3) and ALS QCS3 requirement pH by P C Titrator E K057G 2 10 10.0 ✓ NEPM 1999 Schedule B(3) and ALS QCS3 requirement Sulfate C1/UbidImetric) as SO 4 - by Discrete Analyser E K071G 2 19 10.5 10.0 ✓ NEPM 1999 Schedule B(3) and ALS QCS3 requirement Sulfate C1/UbidImetric) as SO 4 - by Discrete Analyser E K071G 2 19 10.5 10.0 ✓ NEPM 1999 Schedule B(3) and ALS QCS3 requirement Sulfate S2- E K025G 2 19 10.5 10.0 ✓ NEPM 1999 Schedule B(3) and ALS QCS3 requirement Total Kjedah Ntrogen as N Ey Discrete Analyser E K025G 2 19 10.5 10.0 ✓ NEPM 1999 Schedule B(3) and ALS QCS3 requirement Total Kjedah Ntrogen as N Ey Discrete Analyser E K035G 2 19 10.5 10.0 ✓ NEPM 1999 Schedule B(3) and ALS QCS3 requirement Total Metals by (CP-MS - Suite A E G020AT 3 25 12.0 10.0 ✓ <	Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	2	13	15.4	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
pH by PC Tirator EA005.p 2 20 10.0 IO.0 V NEPM 1999 Schedule B(3) and ALS QCS3 requirement Reactive Phosphorus as P-By Discrete Analyser EE00416 2 19 10.5 10.0 V NEPM 1999 Schedule B(3) and ALS QCS3 requirement Sulfact (Turbidimetric) as SO4 2- by Discrete Analyser EE00416 2 19 10.5 10.0 V NEPM 1999 Schedule B(3) and ALS QCS3 requirement Suspende Solids (High Level) EEA025H 2 19 10.5 10.0 V NEPM 1999 Schedule B(3) and ALS QCS3 requirement Total Disolved Solids (High Level) EEA025H 2 19 10.5 10.0 V NEPM 1999 Schedule B(3) and ALS QCS3 requirement Total Metals by ICP-MS - Suite A EG020AT 3 25 12.0 10.0 V NEPM 1999 Schedule B(3) and ALS QCS3 requirement Total Metals by ICP-MS - Suite A EG020AT 3 25 12.0 10.0 V NEPM 1999 Schedule B(3) and ALS QCS3 requirement Total Metals by ICP-MS - Suite A EG020AT 3 25 12.0 10.0 V	Nitrite as N by Discrete Analyser	EK057G	2	15	13.3	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Reactive Phosphorus as P-By Discrete AnalyserEKO7 (21910.510.0 \checkmark NEPM 1999 Schedule B(3) and ALS QCS3 requirementSulfate (Turbidimetric) as SO4 2- by Discrete AnalyserED041G21910.510.0 \checkmark NEPM 1999 Schedule B(3) and ALS QCS3 requirementSuspended Solids (High Level)EA02BH21513.310.0 \checkmark NEPM 1999 Schedule B(3) and ALS QCS3 requirementTotal Disorded Solids (High Level)EA02BH21513.310.0 \checkmark NEPM 1999 Schedule B(3) and ALS QCS3 requirementTotal Sieldafin Nitrogen as N By Discrete AnalyserEK061G21910.510.0 \checkmark NEPM 1999 Schedule B(3) and ALS QCS3 requirementTotal Metals by ICP-MS - Suite AEG030AT32512.010.0 \checkmark NEPM 1999 Schedule B(3) and ALS QCS3 requirementTotal Metals by ICP-MS - Suite AEG020AT32512.010.0 \checkmark NEPM 1999 Schedule B(3) and ALS QCS3 requirementTotal Metals by ICP-MS - Suite AEG020AT32512.010.0 \checkmark NEPM 1999 Schedule B(3) and ALS QCS3 requirementTotal Metals by ICP-MS - Suite AEG020AT32512.010.0 \checkmark NEPM 1999 Schedule B(3) and ALS QCS3 requirementTotal Metals by ICP-MS - Suite AEG020AT32512.010.0 \checkmark NEPM 1999 Schedule B(3) and ALS QCS3 requirementTotal Metals by ICP-MS - Suite AEG050AT21910.510.0 \checkmark NEPM 1999 Schedule B(3) and ALS QCS3 requirement </td <td>pH by PC Titrator</td> <td>EA005-P</td> <td>2</td> <td>20</td> <td>10.0</td> <td>10.0</td> <td>✓</td> <td>NEPM 1999 Schedule B(3) and ALS QCS3 requirement</td>	pH by PC Titrator	EA005-P	2	20	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Sulfact (Turbidimetric) as SO4 2- by Discrete Analyser ED041G 2 19 10.5 10.0 ✓ NEPM 1999 Schedule B(3) and ALS QCS3 requirement Sulfade as S2- Suspended Solids (High Level) EA025H 2 19 10.5 10.0 ✓ NEPM 1999 Schedule B(3) and ALS QCS3 requirement Total Dissolved Solids (High Level) EA015H 2 15 13.3 10.0 ✓ NEPM 1999 Schedule B(3) and ALS QCS3 requirement Total Dissolved Solids (High Level) EA015H 2 15 13.3 10.0 ✓ NEPM 1999 Schedule B(3) and ALS QCS3 requirement Total Metrals by ICP-MS - Suite A EG035T 2 13 15.4 10.0 ✓ NEPM 1999 Schedule B(3) and ALS QCS3 requirement Total Metals by ICP-MS - Suite A EG020A-T 3 25 12.0 10.0 ✓ NEPM 1999 Schedule B(3) and ALS QCS3 requirement Total Metals by ICP-MS - Suite B EG020A-T 3 25 12.0 10.0 ✓ NEPM 1999 Schedule B(3) and ALS QCS3 requirement Total Metals by ICP-MS - Suite B EG020A-T 3 25 10.0 <	Reactive Phosphorus as P-By Discrete Analyser	EK071G	2	19	10.5	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Sulfde as S2- EK085 2 19 10.5 10.0 ✓ NEPM 1999 Schedule B(3) and ALS QCS3 requirement Suspended Solids (High Level) EA05H 2 15 13.3 10.0 ✓ NEPM 1999 Schedule B(3) and ALS QCS3 requirement Total Disolved Solids (High Level) EA015H 2 15 13.3 10.0 ✓ NEPM 1999 Schedule B(3) and ALS QCS3 requirement Total Kjeldahl Nitrogen as N By Discrete Analyser EK061G 2 19 10.5 10.0 ✓ NEPM 1999 Schedule B(3) and ALS QCS3 requirement Total Metals by ICP-MS - Suite A EG020AT 3 25 12.0 10.0 ✓ NEPM 1999 Schedule B(3) and ALS QCS3 requirement Total Metals by ICP-MS - Suite B EG020AT 3 25 12.0 10.0 ✓ NEPM 1999 Schedule B(3) and ALS QCS3 requirement Total Metals by ICP-MS - Suite B EG020AT 3 25 12.0 10.0 ✓ NEPM 1999 Schedule B(3) and ALS QCS3 requirement Total Metals by ICP-MS - Suite B EG020BAT 3 </td <td>Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser</td> <td>ED041G</td> <td>2</td> <td>19</td> <td>10.5</td> <td>10.0</td> <td>✓</td> <td>NEPM 1999 Schedule B(3) and ALS QCS3 requirement</td>	Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	2	19	10.5	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Suspended Solids (High Level)EA025H21513.310.0✓NEPM 1999 Schedule B(3) and ALS QC3 requirementTotal Dissolved Solids (High Level)EA015H21513.310.0✓NEPM 1999 Schedule B(3) and ALS QC3 requirementTotal Kjeldah INtrogen as N By Discrete AnalyserEK061621910.510.0✓NEPM 1999 Schedule B(3) and ALS QC3 requirementTotal Metals by ICP-MS - Suite AEG030721315.410.0✓NEPM 1999 Schedule B(3) and ALS QC3 requirementTotal Metals by ICP-MS - Suite BEG020A-T32512.010.0✓NEPM 1999 Schedule B(3) and ALS QC3 requirementTotal Metals by ICP-MS - Suite BEG020A-T32512.010.0✓NEPM 1999 Schedule B(3) and ALS QC3 requirementTotal Metals by ICP-MS - Suite BEG020A-T32512.010.0✓NEPM 1999 Schedule B(3) and ALS QC3 requirementTotal Metals by ICP-MS - Suite BEK057621910.510.0✓NEPM 1999 Schedule B(3) and ALS QC3 requirementTotal Metals by ICP-MS - Suite BEK056611010.05.0✓NEPM 1999 Schedule B(3) and ALS QC3 requirementTotal Metals by ICP-MS - Suite AED037.P22010.010.0✓NEPM 1999 Schedule B(3) and ALS QC3 requirementAddity as Calcum CarbonateED037.P22010.010.0✓NEPM 1999 Schedule B(3) and ALS QC3 requirementAddity by DC TitratorED037.P2 <t< td=""><td>Sulfide as S2-</td><td>EK085</td><td>2</td><td>19</td><td>10.5</td><td>10.0</td><td>✓</td><td>NEPM 1999 Schedule B(3) and ALS QCS3 requirement</td></t<>	Sulfide as S2-	EK085	2	19	10.5	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Dissolved Solids (High Level)EA015H21513.310.0 \checkmark NEPM 1999Schedule B(3) and ALS QCS3 requirementTotal Kjeldahl Nitrogen as N By Discrete AnalyserEK061G21910.510.0 \checkmark NEPM 1999Schedule B(3) and ALS QCS3 requirementTotal Mercury by FIMSEG036T21315.410.0 \checkmark NEPM 1999Schedule B(3) and ALS QCS3 requirementTotal Metals by ICP-MS - Suite AEG020A-T32512.010.0 \checkmark NEPM 1999Schedule B(3) and ALS QCS3 requirementTotal Metals by ICP-MS - Suite AEG020B-T32512.010.0 \checkmark NEPM 1999Schedule B(3) and ALS QCS3 requirementTotal Metals by ICP-MS - Suite AEG020B-T32512.010.0 \checkmark NEPM 1999Schedule B(3) and ALS QCS3 requirementTotal Metals by ICP-MS - Suite AEG020B-T32512.010.0 \checkmark NEPM 1999Schedule B(3) and ALS QCS3 requirementTotal Metals by ICP-MS - Suite AEG020B-T22010.010.0 \checkmark NEPM 1999Schedule B(3) and ALS QCS3 requirementTotal Metals by ICP-MS - Suite AEG020B-TEG020B-T22010.010.0 \checkmark NEPM 1999Schedule B(3) and ALS QCS3 requirementAddity as Calcium CarbonateEG020B-TEQ037-P22010.010.0 \checkmark NEPM 1999Schedule B(3) and ALS QCS3 requirementAlkalinity by PC TitratorED037-P22010.010.0	Suspended Solids (High Level)	EA025H	2	15	13.3	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Kjeldahl Nitrogen as N By Discrete AnalyserEK061G21910.510.0 \checkmark NEPM 1999 Schedule B(3) and ALS QCS3 requirementTotal Metarb V ICP-MS - Suite AEG035T21315.410.0 \checkmark NEPM 1999 Schedule B(3) and ALS QCS3 requirementTotal Metals by ICP-MS - Suite BEG020A-T32512.010.0 \checkmark NEPM 1999 Schedule B(3) and ALS QCS3 requirementTotal Metals by ICP-MS - Suite BEG020B-T32512.010.0 \checkmark NEPM 1999 Schedule B(3) and ALS QCS3 requirementTotal Metals by ICP-MS - Suite BEG020B-T32512.010.0 \checkmark NEPM 1999 Schedule B(3) and ALS QCS3 requirementTotal Metals by ICP-MS - Suite BEG020B-T32512.010.0 \checkmark NEPM 1999 Schedule B(3) and ALS QCS3 requirementTotal Metals by ICP-MS - Suite BEG020B-T21910.510.0 \checkmark NEPM 1999 Schedule B(3) and ALS QCS3 requirementTurbidityEA04522010.010.0 \checkmark NEPM 1999 Schedule B(3) and ALS QCS3 requirementLaboratory Control Samples (LCS)Haminity by PC TitratorED037-P22010.010.0 \checkmark NEPM 1999 Schedule B(3) and ALS QCS3 requirementAkalinity by PC TitratorED037-P22010.010.0 \checkmark NEPM 1999 Schedule B(3) and ALS QCS3 requirementAkalinity by PC TitratorED037-P22010.010.0 \checkmark NEPM 1999 Schedule B(3) and ALS QCS3 requirementAkalinity by PC T	Total Dissolved Solids (High Level)	EA015H	2	15	13.3	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Mercury by FINSEG035T21315.410.0✓NEPM 1999 Schedule B(3) and ALS QCS3 requirementTotal Metals by ICP-MS - Suite AEG020A-T32512.010.0✓NEPM 1999 Schedule B(3) and ALS QCS3 requirementTotal Metals by ICP-MS - Suite BEG020B-T32512.010.0✓NEPM 1999 Schedule B(3) and ALS QCS3 requirementTotal Metals by ICP-MS - Suite AEG020B-T32512.010.0✓NEPM 1999 Schedule B(3) and ALS QCS3 requirementTotal Phosphorus as P By Discrete AnalyserEK067G21910.510.0✓NEPM 1999 Schedule B(3) and ALS QCS3 requirementTurbidityEA04522010.010.0✓NEPM 1999 Schedule B(3) and ALS QCS3 requirementLaboratory Control Samples (LCS)Acidity as Calcium CarbonateED037-P22010.010.0✓NEPM 1999 Schedule B(3) and ALS QCS3 requirementAnimonia as N by Discrete analyserEK055G1616.75.0✓NEPM 1999 Schedule B(3) and ALS QCS3 requirementBiochemical Oxygen Demand (BOD)EP0301119.15.0✓NEPM 1999 Schedule B(3) and ALS QCS3 requirementChoide by Discrete AnalyserEE0020A-F1119.15.0✓NEPM 1999 Schedule B(3) and ALS QCS3 requirementDissolved Metals by ICP-MS - Suite AEG020A-F1119.15.0✓NEPM 1999 Schedule B(3) and ALS QCS3 requirementDissolved Metals by ICP-MS - Suite A	Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	2	19	10.5	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Metals by ICP-MS - Suite AEG020A-T32512.010.0✓NEPM 1999 Schedule B(3) and ALS QCS3 requirementTotal Metals by ICP-MS - Suite BEG020B-T32512.010.0✓NEPM 1999 Schedule B(3) and ALS QCS3 requirementTotal Metals by ICP-MS - Suite BEK067G21910.510.0✓NEPM 1999 Schedule B(3) and ALS QCS3 requirementTotal Phosphorus as P By Discrete AnalyserEK067G21910.510.0✓NEPM 1999 Schedule B(3) and ALS QCS3 requirementTurbidityEA04522010.010.0✓NEPM 1999 Schedule B(3) and ALS QCS3 requirementLaboratory Control Samples (LCS)Laboratory Control Samples (LCS)Aklainity by PC TitratorED03811010.0✓NEPM 1999 Schedule B(3) and ALS QCS3 requirementAklainity by PC TitratorED037-P22010.010.0✓NEPM 1999 Schedule B(3) and ALS QCS3 requirementChoirde by Discrete analyserED035G1616.75.0✓NEPM 1999 Schedule B(3) and ALS QCS3 requirementBiochemical Oxygen Demand (BOD)EP0301119.15.0✓NEPM 1999 Schedule B(3) and ALS QCS3 requirementConductivity by PC TitratorEA010-P64015.015.0✓NEPM 1999 Schedule B(3) and ALS QCS3 requirementDissolved Metals by ICP-MS - Suite AEG020A-F1175.95.0✓NEPM 1999 Schedule B(3) and ALS QCS3 requirementFerrous I	Total Mercury by FIMS	EG035T	2	13	15.4	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Metals by ICP-MS - Suite BEG020B-T32512.010.0✓NEPM 1999 Schedule B(3) and ALS QCS3 requirementTotal Phosphorus as P By Discrete AnalyserEK067G21910.510.0✓NEPM 1999 Schedule B(3) and ALS QCS3 requirementTurbidityEA0422010.010.0✓NEPM 1999 Schedule B(3) and ALS QCS3 requirementLaboratory Control Samples (LCS)EE22010.010.0✓NEPM 1999 Schedule B(3) and ALS QCS3 requirementAlkalinity by PC TitratorED03811010.05.0✓NEPM 1999 Schedule B(3) and ALS QCS3 requirementAlkalinity by PC TitratorED037-P22010.010.0✓NEPM 1999 Schedule B(3) and ALS QCS3 requirementBiochemical Oxygen Demand (BOD)EE0037-P22010.010.0✓NEPM 1999 Schedule B(3) and ALS QCS3 requirementChloride by Discrete AnalyserEE0045G1616.75.0✓NEPM 1999 Schedule B(3) and ALS QCS3 requirementChloride by Discrete AnalyserEE0045G21910.510.0✓NEPM 1999 Schedule B(3) and ALS QCS3 requirementDissolved Metals by ICP-MS - Suite AEG020A-F11175.95.0✓NEPM 1999 Schedule B(3) and ALS QCS3 requirementFerrous Iron by Discrete AnalyserEG051G1714.35.0✓NEPM 1999 Schedule B(3) and ALS QCS3 requirementHexavalent Chromium by Discrete AnalyserEG050G-F1113	Total Metals by ICP-MS - Suite A	EG020A-T	3	25	12.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Phosphorus as P By Discrete AnalyserEK067G21910.510.0✓NEPM 1999 Schedule B(3) and ALS QCS3 requirementTurbidityEA04522010.010.0✓NEPM 1999 Schedule B(3) and ALS QCS3 requirementLaboratory Control Samples (LCS)Acidity as Calcium CarbonateED03811010.05.0✓NEPM 1999 Schedule B(3) and ALS QCS3 requirementAlkalinity by PC TitratorED037-P22010.010.0✓NEPM 1999 Schedule B(3) and ALS QCS3 requirementAnmonia as N by Discrete analyserEE0561616.75.0✓NEPM 1999 Schedule B(3) and ALS QCS3 requirementBiochemical Oxygen Demand (BOD)EP0301119.15.0✓NEPM 1999 Schedule B(3) and ALS QCS3 requirementChloride by Discrete AnalyserED045G21910.510.0✓NEPM 1999 Schedule B(3) and ALS QCS3 requirementConductivity by PC TitratorEA010-P640015.0✓NEPM 1999 Schedule B(3) and ALS QCS3 requirementDissolved Metals by ICP-MS - Suite AEG020A-F1175.95.0✓NEPM 1999 Schedule B(3) and ALS QCS3 requirementFerrous Iron by Discrete AnalyserEG051G1714.35.0✓NEPM 1999 Schedule B(3) and ALS QCS3 requirementHexavalent Chromium by Discrete AnalyserEG050G1119.15.0✓NEPM 1999 Schedule B(3) and ALS QCS3 requirementHexavalent Chromium by Discrete AnalyserEG0	Total Metals by ICP-MS - Suite B	EG020B-T	3	25	12.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
TurbidityEA04522010.010.0✓NEPM 1999 Schedule B(3) and ALS QCS3 requirementLaboratory Control Samples (LCS)Acidity as Calcium CarbonateED03811010.05.0✓NEPM 1999 Schedule B(3) and ALS QCS3 requirementAlkalinity by PC TitratorED037-P22010.010.0✓NEPM 1999 Schedule B(3) and ALS QCS3 requirementAmmonia as N by Discrete analyserEK05561616.75.0✓NEPM 1999 Schedule B(3) and ALS QCS3 requirementBiochemical Oxygen Demand (BOD)EP0301119.15.0✓NEPM 1999 Schedule B(3) and ALS QCS3 requirementChoirdie by Discrete AnalyserED045621910.510.0✓NEPM 1999 Schedule B(3) and ALS QCS3 requirementConductivity by PC TitratorED04561119.15.0✓NEPM 1999 Schedule B(3) and ALS QCS3 requirementDissolved Metals by ICP-MS - Suite AEG020A-F1175.95.0✓NEPM 1999 Schedule B(3) and ALS QCS3 requirementFerrous Iron by Discrete AnalyserEG05161714.35.0✓NEPM 1999 Schedule B(3) and ALS QCS3 requirementFerrous Iron by Discrete Analyser - DissolvedEG0506-F1119.15.0✓NEPM 1999 Schedule B(3) and ALS QCS3 requirementNitrite and Nitrate as N (NOX) by Discrete AnalyserEK05561119.15.0✓NEPM 1999 Schedule B(3) and ALS QCS3 requirementNitrite as N by Discrete Ana	Total Phosphorus as P By Discrete Analyser	EK067G	2	19	10.5	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Laboratory Control Samples (LCS)Acidity as Calcium CarbonateED03811010.05.0✓NEPM 1999 Schedule B(3) and ALS QCS3 requirementAlkalinity by PC TitratorED037-P22010.010.0✓NEPM 1999 Schedule B(3) and ALS QCS3 requirementAmmonia as N by Discrete analyserEK055G1616.75.0✓NEPM 1999 Schedule B(3) and ALS QCS3 requirementBiochemical Oxygen Demand (BOD)EP0301119.15.0✓NEPM 1999 Schedule B(3) and ALS QCS3 requirementChloride by Discrete AnalyserED045G21910.510.0✓NEPM 1999 Schedule B(3) and ALS QCS3 requirementConductivity by PC TitratorED045G21910.510.0✓NEPM 1999 Schedule B(3) and ALS QCS3 requirementDissolved Metals by ICP-MS - Suite AEG020A-F1175.95.0✓NEPM 1999 Schedule B(3) and ALS QCS3 requirementFerrous Iron by Discrete AnalyserEG020A-F1175.95.0✓NEPM 1999 Schedule B(3) and ALS QCS3 requirementFerrous Iron by Discrete AnalyserEG050G-F1119.15.0✓NEPM 1999 Schedule B(3) and ALS QCS3 requirementNitrite and Nitrate as N (NOX) by Discrete AnalyserEG050G-F1119.15.0✓NEPM 1999 Schedule B(3) and ALS QCS3 requirementNitrite as N by Discrete AnalyserEK055G1137.75.0✓NEPM 1999 Schedule B(3) and ALS QCS3 requirement <td< td=""><td>Turbidity</td><td>EA045</td><td>2</td><td>20</td><td>10.0</td><td>10.0</td><td>✓</td><td>NEPM 1999 Schedule B(3) and ALS QCS3 requirement</td></td<>	Turbidity	EA045	2	20	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Acidity as Calcium CarbonateED03811010.05.0NEPM 1999 Schedule B(3) and ALS QCS3 requirementAcidity as Calcium CarbonateED037-P22010.010.0NEPM 1999 Schedule B(3) and ALS QCS3 requirementAlkalinity by PC TitratorED037-P22010.010.0NEPM 1999 Schedule B(3) and ALS QCS3 requirementAmmonia as N by Discrete analyserEK055G1616.75.0NEPM 1999 Schedule B(3) and ALS QCS3 requirementBiochemical Oxygen Demand (BOD)EP0301119.15.0NEPM 1999 Schedule B(3) and ALS QCS3 requirementChloride by Discrete AnalyserED045G21910.510.0NEPM 1999 Schedule B(3) and ALS QCS3 requirementConductivity by PC TitratorED045G21910.510.0NEPM 1999 Schedule B(3) and ALS QCS3 requirementDissolved Metals by ICP-MS - Suite AEG020A-F1175.95.0NEPM 1999 Schedule B(3) and ALS QCS3 requirementFerrous Iron by Discrete AnalyserEG051G1714.35.0NEPM 1999 Schedule B(3) and ALS QCS3 requirementHexavalent Chromium by Discrete Analyser - DissolvedEG050G-F1119.15.0NEPM 1999 Schedule B(3) and ALS QCS3 requirementNitrite and Nitrate as N (NOx) by Discrete AnalyserEK057G1137.75.0NEPM 1999 Schedule B(3) and ALS QCS3 requirementNitrite as N by Discrete AnalyserEK057G1156.75.0NEPM 1999 Schedule B(3) and ALS QCS3 requirement <td>Laboratory Control Samples (LCS)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Laboratory Control Samples (LCS)							
Alkalinity by PC TitratorED037-P22010.010.0NEPM 1999 Schedule B(3) and ALS QCS3 requirementArmonia as N by Discrete analyserEK05561616.75.0NEPM 1999 Schedule B(3) and ALS QCS3 requirementBiochemical Oxygen Demand (BOD)EP0301119.15.0NEPM 1999 Schedule B(3) and ALS QCS3 requirementChloride by Discrete AnalyserED045621910.510.0NEPM 1999 Schedule B(3) and ALS QCS3 requirementConductivity by PC TitratorED045621910.510.0NEPM 1999 Schedule B(3) and ALS QCS3 requirementDissolved Metals by ICP-MS - Suite AEG020A-F1175.95.0NEPM 1999 Schedule B(3) and ALS QCS3 requirementFerrous Iron by Discrete AnalyserEG050G-F1175.95.0NEPM 1999 Schedule B(3) and ALS QCS3 requirementHexavalent Chromium by Discrete Analyser - DissolvedEG050G-F1119.15.0MEPM 1999 Schedule B(3) and ALS QCS3 requirementNitrite and Nitrate as N (NOX) by Discrete AnalyserEK050G1119.15.0MEPM 1999 Schedule B(3) and ALS QCS3 requirementNitrite as N by Discrete AnalyserEK057G1119.15.0MEPM 1999 Schedule B(3) and ALS QCS3 requirementNitrite as N by Discrete AnalyserEK057G1137.75.0MEPM 1999 Schedule B(3) and ALS QCS3 requirementNitrite as N by Discrete AnalyserEK057G1156.75.0MEPM 1999 Schedule B(3) and ALS QCS3 requirement	Acidity as Calcium Carbonate	ED038	1	10	10.0	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Ammonia as N by Discrete analyserEK055G1616.75.0✓NEPM 1999 Schedule B(3) and ALS QCS3 requirementBiochemical Oxygen Demand (BOD)EP0301119.15.0✓NEPM 1999 Schedule B(3) and ALS QCS3 requirementChloride by Discrete AnalyserED045G21910.510.0✓NEPM 1999 Schedule B(3) and ALS QCS3 requirementConductivity by PC TitratorEA010-P64015.015.0✓NEPM 1999 Schedule B(3) and ALS QCS3 requirementDissolved Metals by ICP-MS - Suite AEG020A-F1175.95.0✓NEPM 1999 Schedule B(3) and ALS QCS3 requirementFerrous Iron by Discrete AnalyserEG051G1714.35.0✓NEPM 1999 Schedule B(3) and ALS QCS3 requirementHexavalent Chromium by Discrete Analyser - DissolvedEG050G-F1119.15.0✓NEPM 1999 Schedule B(3) and ALS QCS3 requirementNitrite and Nitrate as N (NOx) by Discrete AnalyserEK059G1137.75.0✓NEPM 1999 Schedule B(3) and ALS QCS3 requirementNitrite as N by Discrete AnalyserEK057G1137.75.0✓NEPM 1999 Schedule B(3) and ALS QCS3 requirementNitrite as N by Discrete AnalyserEK057G1156.75.0✓NEPM 1999 Schedule B(3) and ALS QCS3 requirement	Alkalinity by PC Titrator	ED037-P	2	20	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Biochemical Oxygen Demand (BOD)EP0301119.15.0✓NEPM 1999 Schedule B(3) and ALS QCS3 requirementChloride by Discrete AnalyserED045G21910.510.0✓NEPM 1999 Schedule B(3) and ALS QCS3 requirementConductivity by PC TitratorEA010-P64015.0✓NEPM 1999 Schedule B(3) and ALS QCS3 requirementDissolved Metals by ICP-MS - Suite AEG020A-F1175.95.0✓NEPM 1999 Schedule B(3) and ALS QCS3 requirementFerrous Iron by Discrete AnalyserEG051G1714.35.0✓NEPM 1999 Schedule B(3) and ALS QCS3 requirementHexavalent Chromium by Discrete Analyser - DissolvedEG050G-F1119.15.0✓NEPM 1999 Schedule B(3) and ALS QCS3 requirementNitrite and Nitrate as N (NOx) by Discrete AnalyserEK059G1137.75.0✓NEPM 1999 Schedule B(3) and ALS QCS3 requirementNitrite as N by Discrete AnalyserEK057G1137.75.0✓NEPM 1999 Schedule B(3) and ALS QCS3 requirement	Ammonia as N by Discrete analyser	EK055G	1	6	16.7	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Chloride by Discrete AnalyserED045G21910.510.0✓NEPM 1999 Schedule B(3) and ALS QCS3 requirementConductivity by PC TitratorEA010-P64015.015.0✓NEPM 1999 Schedule B(3) and ALS QCS3 requirementDissolved Metals by ICP-MS - Suite AEG020A-F1175.95.0✓NEPM 1999 Schedule B(3) and ALS QCS3 requirementFerrous Iron by Discrete AnalyserEG051G1714.35.0✓NEPM 1999 Schedule B(3) and ALS QCS3 requirementHexavalent Chromium by Discrete Analyser - DissolvedEG050G-F1119.15.0✓NEPM 1999 Schedule B(3) and ALS QCS3 requirementNitrite and Nitrate as N (NOx) by Discrete AnalyserEK059G1137.75.0✓NEPM 1999 Schedule B(3) and ALS QCS3 requirementNitrite as N by Discrete AnalyserEK057G1136.75.0✓NEPM 1999 Schedule B(3) and ALS QCS3 requirement	Biochemical Oxygen Demand (BOD)	EP030	1	11	9.1	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Conductivity by PC TitratorEA010-P64015.015.0NEPM 1999 Schedule B(3) and ALS QCS3 requirementDissolved Metals by ICP-MS - Suite AEG020A-F1175.95.0Image: Conductivity by Discrete AnalyserNEPM 1999 Schedule B(3) and ALS QCS3 requirementFerrous Iron by Discrete Analyser - DissolvedEG050G-F1714.35.0Image: Conductivity by Discrete AnalyserHexavalent Chromium by Discrete Analyser - DissolvedEG050G-F1119.15.0Image: Conduct B(3) and ALS QCS3 requirementNitrite and Nitrate as N (NOx) by Discrete AnalyserEK050G1137.75.0Image: Conduct B(3) and ALS QCS3 requirementNitrite as N by Discrete AnalyserEK057G1156.75.0Image: Conduct B(3) and ALS QCS3 requirementNitrite as N by Discrete AnalyserEK057G1156.75.0Image: Conduct B(3) and ALS QCS3 requirement	Chloride by Discrete Analyser	ED045G	2	19	10.5	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Metals by ICP-MS - Suite AEG020A-F1175.95.0NEPM 1999 Schedule B(3) and ALS QCS3 requirementFerrous Iron by Discrete AnalyserEG051G1714.35.0Image: NEPM 1999 Schedule B(3) and ALS QCS3 requirementHexavalent Chromium by Discrete Analyser - DissolvedEG050G-F1119.15.0Image: NEPM 1999 Schedule B(3) and ALS QCS3 requirementNitrite and Nitrate as N (NOx) by Discrete AnalyserEK059G1137.75.0Image: NEPM 1999 Schedule B(3) and ALS QCS3 requirementNitrite as N by Discrete AnalyserEK057G1156.75.0Image: NEPM 1999 Schedule B(3) and ALS QCS3 requirement	Conductivity by PC Titrator	EA010-P	6	40	15.0	15.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Ferrous Iron by Discrete AnalyserEG051G1714.35.0NEPM 1999 Schedule B(3) and ALS QCS3 requirementHexavalent Chromium by Discrete Analyser - DissolvedEG050G-F1119.15.0NEPM 1999 Schedule B(3) and ALS QCS3 requirementNitrite and Nitrate as N (NOx) by Discrete AnalyserEK059G1137.75.0NEPM 1999 Schedule B(3) and ALS QCS3 requirementNitrite as N by Discrete AnalyserEK057G1156.75.0NEPM 1999 Schedule B(3) and ALS QCS3 requirement	Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	17	5.9	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Hexavalent Chromium by Discrete Analyser - DissolvedEG050G-F1119.15.0✓NEPM 1999 Schedule B(3) and ALS QCS3 requirementNitrite and Nitrate as N (NOx) by Discrete AnalyserEK059G1137.75.0✓NEPM 1999 Schedule B(3) and ALS QCS3 requirementNitrite as N by Discrete AnalyserEK057G1156.75.0✓NEPM 1999 Schedule B(3) and ALS QCS3 requirement	Ferrous Iron by Discrete Analyser	EG051G	1	7	14.3	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Nitrite and Nitrate as N (NOx) by Discrete AnalyserEK059G1137.75.0NEPM 1999 Schedule B(3) and ALS QCS3 requirementNitrite as N by Discrete AnalyserEK057G1156.75.0NEPM 1999 Schedule B(3) and ALS QCS3 requirement	Hexavalent Chromium by Discrete Analyser - Dissolved	EG050G-F	1	11	9.1	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Nitrite as N by Discrete Analyser EK057G 1 15 6.7 5.0 🗸 NEPM 1999 Schedule B(3) and ALS QCS3 requirement	Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	13	7.7	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
	Nitrite as N by Discrete Analyser	EK057G	1	15	6.7	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
pH by PC Titrator EA005-P 2 20 10.0 10.0 🖌 NEPM 1999 Schedule B(3) and ALS QCS3 requirement	pH by PC Titrator	EA005-P	2	20	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement

Page	: 7 of 12
Work Order	: EP1301307
Client	: MOBILE DEWATERING
Project	: E2011-109

Matrix: WATER				Evaluation	n: 🗴 = Quality Co	ntrol frequency r	to twithin specification ; \checkmark = Quality Control frequency within specification.
Quality Control Sample Type		С	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	00	Reaular	Actual	Expected	Evaluation	
Laboratory Control Samples (LCS) - Continued							
Reactive Phosphorus as P-By Discrete Analyser	EK071G	1	19	5.3	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	2	19	10.5	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Sulfide as S2-	EK085	1	19	5.3	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Suspended Solids (High Level)	EA025H	2	15	13.3	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Dissolved Solids (High Level)	EA015H	2	15	13.3	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	2	19	10.5	10.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Mercury by FIMS	EG035T	1	13	7.7	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Metals by ICP-MS - Suite A	EG020A-T	2	25	8.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Metals by ICP-MS - Suite B	EG020B-T	2	25	8.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Phosphorus as P By Discrete Analyser	EK067G	2	19	10.5	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Turbidity	EA045	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Method Blanks (MB)							
Alkalinity by PC Titrator	ED037-P	1	20	5.0	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Ammonia as N by Discrete analyser	EK055G	1	6	16.7	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Biochemical Oxygen Demand (BOD)	EP030	1	11	9.1	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Chloride by Discrete Analyser	ED045G	1	19	5.3	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Conductivity by PC Titrator	EA010-P	2	40	5.0	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	17	5.9	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Ferrous Iron by Discrete Analyser	EG051G	1	7	14.3	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Hexavalent Chromium by Discrete Analyser - Dissolved	EG050G-F	1	11	9.1	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	13	7.7	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Nitrite as N by Discrete Analyser	EK057G	1	15	6.7	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Reactive Phosphorus as P-By Discrete Analyser	EK071G	1	19	5.3	5.0	~	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	1	19	5.3	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Sulfide as S2-	EK085	1	19	5.3	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Suspended Solids (High Level)	EA025H	1	15	6.7	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Dissolved Solids (High Level)	EA015H	1	15	6.7	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	19	5.3	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Mercury by FIMS	EG035T	1	13	7.7	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Metals by ICP-MS - Suite A	EG020A-T	2	25	8.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Metals by ICP-MS - Suite B	EG020B-T	2	25	8.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Phosphorus as P By Discrete Analyser	EK067G	1	19	5.3	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Turbidity	EA045	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Matrix Spikes (MS)							
Ammonia as N by Discrete analyser	EK055G	1	6	16.7	5.0	1	ALS QCS3 requirement
Chloride by Discrete Analyser	ED045G	1	19	5.3	5.0	1	ALS QCS3 requirement
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	17	5.9	5.0	 ✓	ALS QCS3 requirement
Ferrous Iron by Discrete Analyser	EG051G	1	7	14.3	5.0		ALS QCS3 requirement
Hexavalent Chromium by Discrete Analyser - Dissolved	EG050G-F	1	11	9.1	5.0	 ✓	ALS QCS3 requirement
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	13	7.7	5.0	~	ALS QCS3 requirement

Page	: 8 of 12
Work Order	: EP1301307
Client	: MOBILE DEWATERING
Project	: E2011-109

Matrix: WATER				Evaluation	: × = Quality Cor	ntrol frequency no	ot within specification ; \checkmark = Quality Control frequency within specification.
Quality Control Sample Type		Co	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	00	Reaular	Actual	Expected	Evaluation	
Matrix Spikes (MS) - Continued							
Nitrite as N by Discrete Analyser	EK057G	1	15	6.7	5.0	✓	ALS QCS3 requirement
Reactive Phosphorus as P-By Discrete Analyser	EK071G	1	19	5.3	5.0	✓	ALS QCS3 requirement
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	1	19	5.3	5.0	✓	ALS QCS3 requirement
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	19	5.3	5.0	✓	ALS QCS3 requirement
Total Mercury by FIMS	EG035T	1	13	7.7	5.0	✓	ALS QCS3 requirement
Total Metals by ICP-MS - Suite A	EG020A-T	2	25	8.0	5.0	✓	ALS QCS3 requirement
Total Phosphorus as P By Discrete Analyser	EK067G	1	19	5.3	5.0	✓	ALS QCS3 requirement

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
pH by PC Titrator	EA005-P	WATER	APHA 21st ed. 4500 H+ B. This procedure determines pH of water samples by automated ISE. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Conductivity by PC Titrator	EA010-P	WATER	APHA 21st ed., 2510 B This procedure determines conductivity by automated ISE. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Total Dissolved Solids (High Level)	EA015H	WATER	In-House, APHA 21st ed., 2540C A gravimetric procedure that determines the amount of `filterable` residue in an aqueous sample. A well-mixed sample is filtered through a glass fibre filter (1.2um). The filtrate is evaporated to dryness and dried to constant weight at 180+/-5C. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Suspended Solids (High Level)	EA025H	WATER	In-House, APHA 21st ed., 2540D A gravimetric procedure employed to determine the amount of `non-filterable` residue in a aqueous sample. The prescribed GFC (1.2um) filter is rinsed with deionised water, oven dried and weighed prior to analysis. A well-mixed sample is filtered through a glass fibre filter (1.2um). The residue on the filter paper is dried at 104+/-2C. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Turbidity	EA045	WATER	APHA 21st ed., 2130 B. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Alkalinity by PC Titrator	ED037-P	WATER	APHA 21st ed., 2320 B This procedure determines alkalinity by automated measurement (e.g. PC Titrate) using pH 4.5 for indicating the total alkalinity end-point. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Acidity as Calcium Carbonate	ED038	WATER	APHA 21st ed., 2310 B Acidity is determined by titration with a standardised alkali to an end-point pH of 8.3. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	WATER	APHA 21st ed., 4500-SO4 Dissolved sulfate is determined in a 0.45um filtered sample. Sulfate ions are converted to a barium sulfate suspension in an acetic acid medium with barium chloride. Light absorbance of the BaSO4 suspension is measured by a photometer and the SO4-2 concentration is determined by comparison of the reading with a standard curve. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Chloride by Discrete Analyser	ED045G	WATER	APHA 21st ed., 4500 CI - G.The thiocyanate ion is liberated from mercuric thiocyanate through sequestration of mercury by the chloride ion to form non-ionised mercuric chloride.in the presence of ferric ions the librated thiocynate forms highly-coloured ferric thiocynate which is measured at 480 nm APHA 21st edition seal method 2 017-1-L april 2003
Dissolved Metals by ICP-MS - Suite A	EG020A-F	WATER	(APHA 21st ed., 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020): Samples are 0.45 um filtered prior to analysis. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Total Metals by ICP-MS - Suite A	EG020A-T	WATER	(APHA 21st ed., 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020): The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.

Analytical Methods	Method	Matrix	Method Descriptions
Total Metals by ICP-MS - Suite B	EG020B-T	WATER	(APHA 21st ed., 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020): The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Total Mercury by FIMS	EG035T	WATER	AS 3550, APHA 21st ed. 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. A bromate/bromide reagent is used to oxidise any organic mercury compounds in the unfiltered sample. The ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Hexavalent Chromium by Discrete Analyser - Dissolved	EG050G-F	WATER	APHA 21st ed., 3500 Cr-A & B. Samples are 0.45 um filtered prior to analysis. Hexavalent chromium is determined directly on water sample by Descrete Analyser as received by pH adjustment and colour development using dephenylcarbazide. Each run of samples is measured against a five-point calibration curve. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Ferrous Iron by Discrete Analyser	EG051G	WATER	APHA 21st ed., 3500 Fe-B. A colorimetric determination based on the reaction between phenanthroline and ferrous iron at pH 3.2-3.3 to form an orange-red complex that is measured against a five-point calibration curve. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Ammonia as N by Discrete analyser	EK055G	WATER	APHA 21st ed., 4500-NH3 G Ammonia is determined by direct colorimetry by Discrete Analyser. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Nitrite as N by Discrete Analyser	EK057G	WATER	APHA 21st ed., 4500-NO2- B. Nitrite is determined by direct colourimetry by Discrete Analyser. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Nitrate as N by Discrete Analyser	EK058G	WATER	APHA 21st ed., 4500-NO3- F. Nitrate is reduced to nitrite by way of a chemical reduction followed by quantification by Discrete Analyser. Nitrite is determined seperately by direct colourimetry and result for Nitrate calculated as the difference between the two results. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	WATER	APHA 21st ed., 4500-NO3- F. Combined oxidised Nitrogen (NO2+NO3) is determined by Chemical Reduction and direct colourimetry by Discrete Analyser. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	WATER	APHA 21st ed., 4500-Norg D. 25mL water samples are digested using a traditional Kjeldahl digestion followed by determination by Discrete Analyser. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Total Nitrogen as N (TKN + Nox) By Discrete Analyser	EK062G	WATER	APHA 21st ed., 4500-Norg / 4500-NO3 This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Total Phosphorus as P By Discrete Analyser	EK067G	WATER	APHA 21st ed., 4500-P B&F This procedure involves sulphuric acid digestion of a 100mL sample to break phosphorus down to orthophosphate. The orthophosphate reacts with ammonium molybdate and antimony potassium tartrate to form a complex which is then reduced and its concentration measured at 880nm using Discrete Analyser. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Reactive Phosphorus as P-By Discrete Analyser	EK071G	WATER	APHA 21st ed., 4500-P F Ammonium molybdate and potassium antimonyl tartrate reacts in acid medium with othophosphate to form a heteropoly acid -phosphomolybdic acid - which is reduced to intensely coloured molybdenum blue by ascorbic acid. Quantification is by Discrete Analyser. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)

Page	: 11 of 12
Work Order	: EP1301307
Client	: MOBILE DEWATERING
Project	: E2011-109

Analytical Methods	Method	Matrix	Method Descriptions
Sulfide as S2-	EK085	WATER	APHA 21st ed., 4500-S2- D Sulfide species present in water samples are immediately precipitated when collected in pretreated caustic/zinc acetate preserved sample containers. After the supernatant is discarded, the resultant precipitate is then coloured using methylene blue indicator and measured using UV-VIS detection at 664nm. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Biochemical Oxygen Demand (BOD)	EP030	WATER	APHA 21st ed., 5210 B The 5-Day BOD test provides an empirical measure of the oxygen consumption capacity of a given water. A portion of the sample is diluted into oxygenated, nutrient rich water, and a seed added to begin biological decay. The initial dissolved oxygen content is measured, then the bottle is sealed and incubated for five days. The remaining dissolved oxygen is measured, and from the difference, the demand for oxygen, by biological decay, is determined. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Preparation Methods	Method	Matrix	Method Descriptions
Digestion for Total Recoverable Metals	EN25	WATER	USEPA SW846-3005 Method 3005 is a Nitric/Hydrochloric acid digestion procedure used to prepare surface and ground water samples for analysis by ICPAES or ICPMS. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)

Summary of Outliers

Outliers : Quality Control Samples

The following report highlights outliers flagged in the Quality Control (QC) Report. Surrogate recovery limits are static and based on USEPA SW846 or ALS-QWI/EN/38 (in the absence of specific USEPA limits). This report displays QC Outliers (breaches) only.

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

- For all matrices, no Method Blank value outliers occur.
- For all matrices, no Duplicate outliers occur.
- For all matrices, no Laboratory Control outliers occur.
- For all matrices, no Matrix Spike outliers occur.

Regular Sample Surrogates

• For all regular sample matrices, no surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

This report displays Holding Time breaches only. Only the respective Extraction / Preparation and/or Analysis component is/are displayed.

	/latrix: V	ATER
--	------------	------

Method		Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Days	Date analysed	Due for analysis	Days
				overdue			overdue
EA005P: pH by PC Titrator							
Clear Plastic Bottle - Natural							
HVNMW1-01,	HVNMW2-01,				26-FEB-2013	21-FEB-2013	5
HVNMW3-01,	HVNMW4-01,						
HVNMW5-01,	HVNMW6-01						

Outliers : Frequency of Quality Control Samples

The following report highlights breaches in the Frequency of Quality Control Samples.

• No Quality Control Sample Frequency Outliers exist.

Appendix D – June Laboratory Documentation

لغ ا									(0789
Site: HOPE	IALLE-	1 NUR	SERY				-/2			
Job#: ミ2つ	11-10	q	•				(M)	DW)	
Sampler: JT										
CoC #: 523	<u>11 - 10</u>	1				El Mobile De	NVIRONME watering F	NTAL SERV	/ICES ental Ser	vices
Quote #: 4	49010	9 EP/7	185/12	-		8 Loton Av	enue			1000
Laboratory: A	- S		- 0			Midland W. P: 08 9250	A 6056 6960			
Date and time del	ivered: [1]	6[13 15-	08			F: 08 9250	8269			
Received by:	aunders					E: Info@er		aiservices.	com.au	
Comments:					Analys	is Detection L	imits			
-					5					
					23		/	Environm		<u>-</u>
					224			Pe	ental Divi erth	sion
Sample ID	Lab ID	Туре	Sam	pling	201			Work	Order	
			Date	Time	¢ v			EP13	0459	0
HVN MW102	-	ω ,	1016						Heliotek (del e d	
MW 202										
Alw 4						· · · · ·				-
1000 q					/			epnone: +6	1-8-9209 76	55
Mw6										
										1
							· · · · ·			
		-								
		-		-						
	1			1						
	``````````````````````````````````````									
									Tan	
Condition of Sam		Amhien	t / Warm	Relin	auished	by:	741	•	JM	
					1	J				




# SAMPLE RECEIPT NOTIFICATION (SRN)

Comprehensive Report

Work Order	FP1304590

Client Contact Address	<ul> <li>MOBILE DEWATERING</li> <li>INFO</li> <li>PO BOX 239</li> <li>MIDLAND WA, AUSTRALIA 6939</li> </ul>	Laboratory : Contact : Address :	Environmental Division Perth Lauren Ockwell 10 Hod Way Malaga WA Australia 6090
E-mail Telephone Facsimile	info@environmentalservices.com.au +61 08 9250 4995 :	E-mail : Telephone : Facsimile :	lauren.ockwell@alsenviro.com 08 9209 7606 08 9209 7600
Project Order number	E2011-109 0789	Page :	1 of 3
C-O-C number Site	E2011-109	Quote number :	EP2012MOBDEW0134 (EP/785/12)
Sampler	: JT	QC Level :	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dates			
Date Samples Rec	eived : 18-JUN-2013	Issue Date	: 19-JUN-2013 07:08
Client Requested [	Due Date         25-JUN-2013	Scheduled Reporting Dat	^{te} 25-JUN-2013
Delivery Det	ails		
Mode of Delivery	Carrier	Temperature	: 6.2 - Ice present
No. of coolers/boxe	es 2 medium hard eskies	No. of samples received	: 6

Node of Delivery	· Camer	remperature	· 0.2 - ice present
No. of coolers/boxes	2 medium hard eskies	No. of samples received	: 6
Security Seal	: Intact.	No. of samples analysed	: 6

#### **General Comments**

- This report contains the following information:
  - Sample Container(s)/Preservation Non-Compliances
  - Summary of Sample(s) and Requested Analysis
  - Proactive Holding Time Report
  - Requested Deliverables
- Samples received in appropriately pretreated and preserved containers.
- Please see scanned COC for sample discrepencies: extra samples , samples not received etc.

• Samples received in appropriately pretreated and preserved containers.

- pH analysis should be conducted within 6 hours of sampling.
- Analytical work for this work order will be conducted at ALS Environmental Perth.
- Please direct any turnaround / technical queries to the laboratory contact designated above.
- Please direct any queries related to sample condition / numbering / breakages to Sample Receipt (SamplesPerth@alsenviro.com)
- Sample Disposal Aqueous (14 days), Solid (60 days) from date of completion of Work Order.

Address 10 Hod Way Malaga WA Australia 6090 PHONE +61-8-9209 7655 Facsimile +61-8-9209 7600 Environmental Division Perth ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company

Environmental 🐊 🛛

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER



Metals by ICPMS

#### Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

#### • No sample container / preservation non-compliance exist.

#### Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process neccessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package. If no sampling time is provided, the sampling time will

default to 15:00 on the date of sampling. If no sampling date is provided, the sampling date will be assumed by the laboratory for processing purposes and will be shown bracketed without a time component.

laboratory for p bracketed without	processing purposes a time component.	s and will b	e shown			- High	gh Leve			SMAC	tals by I
Matrix: WATER	Client sampling	Client samp	le ID	(PC) (PC)	TER - EA010P nductivity (PC)	TER - EA015H al Dissolved Solids	TER - EA025H spended Solids (Hi	.TER - EA045 bidity	TER - ED038 dity as CaCO3	TER - EG020F solved Metals by IC	TER - EG020T al Recoverable Me
	date / time			A Hq	C OI	Tot	NA Sus	A M	A di	NA Dis	Tot
EP1304590-001	18-JUN-2013 15:00	HVN MW1 02		✓	✓	✓	✓	✓	✓	✓	✓
EP1304590-002	18-JUN-2013 15:00	HVN MW2 02		✓	✓	✓	✓	✓	✓	✓	✓
EP1304590-003	18-JUN-2013 15:00	HVN MW3 02		✓	✓	✓	✓	✓	✓	✓	✓
EP1304590-004	18-JUN-2013 15:00	HVN MW4 02		✓	✓	✓	✓	✓	✓	✓	✓
EP1304590-005	18-JUN-2013 15:00	HVN MW5 02		✓	✓	✓	✓	✓	✓	✓	✓
EP1304590-006	18-JUN-2013 15:00	HVN MW6 02		✓	✓	✓	✓	✓	✓	✓	✓
Matrix: <b>WATER</b> Laboratory sample ID	Client sampling date / time	Client samp	le ID	WATER - EG035T Total Mercury by FIMS	WATER - EG050G-F Hexavalent Chromium by Discrete Analyser - Filterec	WATER - EG051G Ferrous Iron by Discrete Analyser	WATER - EK085M Sulfide as S 2-	WATER - EP030 BOD	WATER - NT-02 Major Anions (Chloride, Sulphate, Alkalinity)	WATER - NT-08A Total Nitrogen + NO2 + NO3 + NH3 + Total P +	
EP1304590-001	18-JUN-2013 15:00	HVN MW1 02		✓	✓	✓	✓	✓	✓	✓	
EP1304590-002	18-JUN-2013 15:00	HVN MW2 02		✓	✓	✓	✓	✓	✓	✓	
EP1304590-003	18-JUN-2013 15:00	HVN MW3 02		✓	✓	✓	✓	✓	✓	✓	
EP1304590-004	18-JUN-2013 15:00	HVN MW4 02		✓	✓	✓	✓	✓	✓	✓	
EP1304590-005	18-JUN-2013 15:00	HVN MW5 02		✓	✓	✓	✓	✓	1	✓	
EP1304590-006	18-JUN-2013 15:00	HVN MW6 02		✓	✓	1	✓	1	1	1	

olids - High Level

Level)

#### Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.



#### **Requested Deliverables**

#### ACCOUNTS PAYABLE (WA)

- A4 - AU Tax Invoice ( INV )	Email	deb@mobiledewatering.com.au
INFO		
<ul> <li>*AU Certificate of Analysis - NATA (COA)</li> </ul>	Email	info@environmentalservices.com.au
<ul> <li>*AU Interpretive QC Report - DEFAULT (Anon QCI Rep) ( QCI )</li> </ul>	Email	info@environmentalservices.com.au
<ul> <li>*AU QC Report - DEFAULT (Anon QC Rep) - NATA ( QC )</li> </ul>	Email	info@environmentalservices.com.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	info@environmentalservices.com.au
- Chain of Custody (CoC) ( COC )	Email	info@environmentalservices.com.au
- EDI Format - ENMRG (ENMRG)	Email	info@environmentalservices.com.au
- EDI Format - ESDAT ( ESDAT )	Email	info@environmentalservices.com.au

Email

- EDI Format - XTab ( XTAB )

info@environmentalservices.com.au info@environmentalservices.com.au





**Environmental Division** 

CERTIFICATE OF ANALYSIS								
Work Order	EP1304590	Page	: 1 of 8					
Client	: MOBILE DEWATERING	Laboratory	: Environmental Division Perth					
Contact	: INFO	Contact	: Lauren Ockwell					
Address	: PO BOX 239	Address	: 10 Hod Way Malaga WA Australia 6090					
	MIDLAND WA, AUSTRALIA 6939							
E-mail	: info@environmentalservices.com.au	E-mail	: lauren.ockwell@alsenviro.com					
Telephone	: +61 08 9250 4995	Telephone	: 08 9209 7606					
Facsimile	:	Facsimile	: 08 9209 7600					
Project	: E2011-109	QC Level	: NEPM 1999 Schedule B(3) and ALS QCS3 requirement					
Order number	: 0789							
C-O-C number	: E2011-109	Date Samples Received	: 18-JUN-2013					
Sampler	: JT	Issue Date	: 25-JUN-2013					
Site	: HOPE VALLEY NURSERY							
		No. of samples received	: 6					
Quote number	: EP/785/12	No. of samples analysed	: 6					

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

Accredited for compliance with

ISO/IEC 17025.

- General Comments
- Analytical Results



NATA Accredited Laboratory 825	Signatories
	THE REPORT OF A

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category	
Benjamin Nicholson	Metals Chemist	Perth Inorganics	
Canhuang Ke	Metals Instrument Chemist	Perth Inorganics	
Chas Tucker	Inorganic Chemist	Perth Inorganics	
Chas Tucker	Inorganic Chemist	Perth Inorganics	
Chas Tucker	Inorganic Chemist	Perth Inorganics	

Address 10 Hod Way Malaga WA Australia 6090 PHONE +61-8-9209 7655 Facsimile +61-8-9209 7600 Environmental Division Perth ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company



www.alsglobal.com

**RIGHT SOLUTIONS RIGHT PARTNER** 



#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Key : CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting ^ = This result is computed from individual analyte detections at or above the level of reporting

• EG020:It has been confirmed by re-digestion and re-analysis that total concentration is less than dissolved for sample EP1304590 #3 &6.



Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	HVN MW1 02	HVN MW2 02	HVN MW3 02	HVN MW4 02	HVN MW5 02
	Cli	ient samplii	ng date / time	18-JUN-2013 15:00				
Compound	CAS Number	LOR	Unit	EP1304590-001	EP1304590-002	EP1304590-003	EP1304590-004	EP1304590-005
EA005P: pH by PC Titrator								
pH Value		0.01	pH Unit	6.13	5.83	5.19	6.37	6.48
EA010P: Conductivity by PC Titrator								
Electrical Conductivity @ 25°C		1	μS/cm	434	162	532	550	451
EA015: Total Dissolved Solids								
Total Dissolved Solids @180°C		10	mg/L	3260	129	818	676	336
EA025: Suspended Solids								
Suspended Solids (SS)		5	mg/L	2570	574	310	300	1160
EA045: Turbidity								
Turbidity		0.1	NTU	3100	197	2870	656	1920
ED037P: Alkalinity by PC Titrator								
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	<1	<1
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1	<1	<1
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	12	2	3	58	50
Total Alkalinity as CaCO3		1	mg/L	12	2	3	58	50
ED038A: Acidity								
Acidity as CaCO3		1	mg/L	17	14	43	37	42
ED041G: Sulfate (Turbidimetric) as SO4 2	2- by DA							
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	34	5	40	37	74
ED045G: Chloride Discrete analyser								
Chloride	16887-00-6	1	mg/L	102	16	145	118	60
EG020F: Dissolved Metals by ICP-MS								
Aluminium	7429-90-5	0.01	mg/L	0.53	0.46	1.62	0.31	0.02
Arsenic	7440-38-2	0.001	mg/L	0.001	<0.001	0.002	0.003	<0.001
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Chromium	7440-47-3	0.001	mg/L	0.002	<0.001	0.002	<0.001	<0.001
Manganese	7439-96-5	0.001	mg/L	0.026	0.008	0.025	0.510	1.85
Nickel	7440-02-0	0.001	mg/L	0.006	<0.001	0.002	0.003	0.001
Selenium	7782-49-2	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Zinc	7440-66-6	0.005	mg/L	0.032	0.008	0.015	0.034	0.006
Iron	7439-89-6	0.05	mg/L	0.37	0.14	0.46	7.37	12.3
EG020T: Total Metals by ICP-MS								
Aluminium	7429-90-5	0.01	mg/L	12.8	1.19	11.7	4.06	5.71
Arsenic	7440-38-2	0.001	mg/L	0.006	<0.001	0.009	0.009	0.011

# Page : 4 of 8 Work Order : EP1304590 Client : MOBILE DEWATERING Project : E2011-109



Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	HVN MW1 02	HVN MW2 02	HVN MW3 02	HVN MW4 02	HVN MW5 02
	CI	ient sampliı	ng date / time	18-JUN-2013 15:00				
Compound	S Number	IOR	Unit	EP1304590-001	EP1304590-002	EP1304590-003	EP1304590-004	EP1304590-005
EG020T: Total Metals by ICP-MS - Continued	Sindinber							
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.0003	<0.0001	<0.0001
Chromium	7440-47-3	0.001	mg/L	0.050	<0.001	0.010	0.005	0.191
Copper	7440-50-8	0.001	mg/L	0.017	<0.001	0.004	0.004	0.060
Lead	7439-92-1	0.001	mg/L	0.032	<0.001	0.048	0.004	0.009
Manganese	7439-96-5	0.001	mg/L	0.022	0.005	0.014	0.649	1.90
Molybdenum	7439-98-7	0.001	mg/L	0.002	<0.001	<0.001	<0.001	0.016
Nickel	7440-02-0	0.001	mg/L	0.002	<0.001	0.005	0.001	0.003
Selenium	7782-49-2	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Silver	7440-22-4	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Zinc	7440-66-6	0.005	mg/L	0.021	<0.005	0.010	0.024	0.042
Iron	7439-89-6	0.05	mg/L	3.62	0.18	1.03	35.0	68.6
EG035T: Total Recoverable Mercury by FIMS								
Mercury	7439-97-6	0.0001	mg/L	0.0003	<0.0001	0.0001	<0.0001	<0.0001
EG050F: Dissolved Hexavalent Chromium								
Hexavalent Chromium 18	8540-29-9	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01
EG051G: Ferrous Iron by Discrete Analyser								
Ferrous Iron		0.05	mg/L	0.27	0.06	0.61	5.00	13.1
EK055G: Ammonia as N by Discrete Analyser								
Ammonia as N	7664-41-7	0.01	mg/L	0.04	0.04	0.38	0.42	0.73
EK057G: Nitrite as N by Discrete Analyser								
Nitrite as N		0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01
EK058G: Nitrate as N by Discrete Analyser								
Nitrate as N 14	4797-55-8	0.01	mg/L	0.01	8.82	<0.01	3.11	0.30
EK059G: Nitrite plus Nitrate as N (NOx) by Dis	crete Ana	lyser						
Nitrite + Nitrate as N		0.01	mg/L	0.01	8.82	<0.01	3.11	0.30
EK061G: Total Kjeldahl Nitrogen By Discrete A	nalyser							
Total Kjeldahl Nitrogen as N		0.1	mg/L	0.2	1.4	1.7	2.3	2.0
EK062G: Total Nitrogen as N (TKN + NOx) by D	iscrete Ar	nalyser						
[^] Total Nitrogen as N		0.1	mg/L	0.2	10.2	1.7	5.4	2.3
EK067G: Total Phosphorus as P by Discrete Ar	nalyser				-			
Total Phosphorus as P		0.01	mg/L	0.10	<0.05	0.14	0.09	0.07
EK071G: Reactive Phosphorus as P by discrete	e analyser							
Reactive Phosphorus as P 14	4265-44-2	0.01	mg/L	<0.01	<0.01	0.02	<0.01	<0.01

Page	5 of 8
Work Order	: EP1304590
Client	: MOBILE DEWATERING
Project	: E2011-109



Sub-Matrix: WATER (Matrix: WATER)	R) Client sample ID		HVN MW1 02	HVN MW2 02	HVN MW3 02	HVN MW4 02	HVN MW5 02	
	Cl	lient sampli	ng date / time	18-JUN-2013 15:00				
Compound	CAS Number	LOR	Unit	EP1304590-001	EP1304590-002	EP1304590-003	EP1304590-004	EP1304590-005
EK085M: Sulfide as S2-								
Sulfide as S2-	18496-25-8	0.1	mg/L	<0.1	<0.1	<0.1	<0.1	<0.1
EP030: Biochemical Oxygen Demand (BOD)								
Biochemical Oxygen Demand		2	mg/L	4	<2	2	2	5
•					•			



Sub-Matrix: WATER (Matrix: WATER)	Client sample ID		HVN MW6 02	 	 	
	Client sampling date / time		18-JUN-2013 15:00	 	 	
Compound	CAS Number	LOR	Unit	EP1304590-006	 	 
EA005P: pH by PC Titrator						
pH Value		0.01	pH Unit	5.70	 	 
EA010P: Conductivity by PC Titrator						
Electrical Conductivity @ 25°C		1	µS/cm	1040	 	 
EA015: Total Dissolved Solids						
Total Dissolved Solids @180°C		10	mg/L	840	 	 
EA025: Suspended Solids						
Suspended Solids (SS)		5	mg/L	36	 	 
EA045: Turbidity						
Turbidity		0.1	NTU	441	 	 
ED037P: Alkalinity by PC Titrator						
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	 	 
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	 	 
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	12	 	 
Total Alkalinity as CaCO3		1	mg/L	12	 	 
ED038A: Acidity						
Acidity as CaCO3		1	mg/L	38	 	 
ED041G: Sulfate (Turbidimetric) as SO4 2	2- by DA					
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	55	 	 
ED045G: Chloride Discrete analyser						
Chloride	16887-00-6	1	mg/L	307	 	 
EG020F: Dissolved Metals by ICP-MS						
Aluminium	7429-90-5	0.01	mg/L	0.35	 	 
Arsenic	7440-38-2	0.001	mg/L	0.003	 	 
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	 	 
Chromium	7440-47-3	0.001	mg/L	<0.001	 	 
Manganese	7439-96-5	0.001	mg/L	0.057	 	 
Nickel	7440-02-0	0.001	mg/L	0.002	 	 
Selenium	7782-49-2	0.01	mg/L	<0.01	 	 
Zinc	7440-66-6	0.005	mg/L	0.021	 	 
Iron	7439-89-6	0.05	mg/L	1.84	 	 
EG020T: Total Metals by ICP-MS						
Aluminium	7429-90-5	0.01	mg/L	3.51	 	 
Arsenic	7440-38-2	0.001	mg/L	0.004	 	 

# Page : 7 of 8 Work Order : EP1304590 Client : MOBILE DEWATERING Project : E2011-109



Sub-Matrix: WATER (Matrix: WATER)	-Matrix: WATER (Matrix: WATER) Client sample ID		HVN MW6 02	 	 	
	CI	lient samplii	ng date / time	18-JUN-2013 15:00	 	 
Compound	CAS Number	, LOR	l Init	EP1304590-006	 	 
	CAS Number	LOIN	Offic			
Cadmium	7440-43-9	0.0001	mg/L	0.0001	 	 
Chromium	7440-47-3	0.001	mg/L	0.002	 	 
Copper	7440-50-8	0.001	mg/L	0.005	 	 
Lead	7439-92-1	0.001	mg/L	0.007	 	 
Manganese	7439-96-5	0.001	mg/L	0.010	 	 
Molybdenum	7439-98-7	0.001	mg/L	<0.001	 	 
Nickel	7440-02-0	0.001	mg/L	0.002	 	 
Selenium	7782-49-2	0.01	mg/L	<0.01	 	 
Silver	7440-22-4	0.001	mg/L	<0.001	 	 
Zinc	7440-66-6	0.005	mg/L	0.018	 	 
Iron	7439-89-6	0.05	mg/L	1.69	 	 
EG035T: Total Recoverable Mercury by F	IMS					
Mercury	7439-97-6	0.0001	mg/L	<0.0001	 	 
EG050F: Dissolved Hexavalent Chromium						
Hexavalent Chromium	18540-29-9	0.01	mg/L	<0.01	 	 
EG051G: Ferrous Iron by Discrete Analyse	ər					
Ferrous Iron		0.05	mg/L	1.97	 	 
EK055G: Ammonia as N by Discrete Analy	/ser					
Ammonia as N	7664-41-7	0.01	mg/L	0.30	 	 
EK057G: Nitrite as N by Discrete Analyse	r					
Nitrite as N		0.01	mg/L	<0.01	 	 
EK058G: Nitrate as N by Discrete Analyse	ər					
Nitrate as N	14797-55-8	0.01	mg/L	1.91	 	 
EK059G: Nitrite plus Nitrate as N (NOx) b	y Discrete Ana	lyser				
Nitrite + Nitrate as N		0.01	mg/L	1.91	 	 
EK061G: Total Kjeldahl Nitrogen By Discr	ete Analyser					
Total Kjeldahl Nitrogen as N		0.1	mg/L	2.1	 	 
EK062G: Total Nitrogen as N (TKN + NOx)	by Discrete Ar	nalyser				
↑ Total Nitrogen as N		0.1	mg/L	4.0	 	 
EK067G: Total Phosphorus as P by Discre	ete Analyser					
Total Phosphorus as P		0.01	mg/L	0.29	 	 
EK071G: Reactive Phosphorus as P by dis	screte analyser	0.6.1				
Reactive Phosphorus as P	14265-44-2	0.01	mg/L	0.27	 	 

Page	: 8 of 8
Work Order	: EP1304590
Client	: MOBILE DEWATERING
Project	: E2011-109



Sub-Matrix: WATER (Matrix: WATER)	Client sample ID		HVN MW6 02			 	
	Client sampling date / time			18-JUN-2013 15:00			 
Compound	CAS Number	LOR	Unit	EP1304590-006			 
EK085M: Sulfide as S2-							
Sulfide as S2-	18496-25-8	0.1	mg/L	<0.1			 
EP030: Biochemical Oxygen Demand (BOD)							
Biochemical Oxygen Demand		2	mg/L	8			 





**Environmental Division** 

# **QUALITY CONTROL REPORT**

Work Order	: EP1304590	Page	: 1 of 12
Client		Laboratory	: Environmental Division Perth
Contact	: INFO	Contact	: Lauren Ockwell
Address	PO BOX 239	Address	: 10 Hod Way Malaga WA Australia 6090
	MIDLAND WA, AUSTRALIA 6939		
E-mail	: info@environmentalservices.com.au	E-mail	: lauren.ockwell@alsenviro.com
Telephone	: +61 08 9250 4995	Telephone	: 08 9209 7606
Facsimile	:	Facsimile	: 08 9209 7600
Project	: E2011-109	QC Level	: NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Site	: HOPE VALLEY NURSERY		
C-O-C number	: E2011-109	Date Samples Received	: 18-JUN-2013
Sampler	: JT	Issue Date	: 25-JUN-2013
Order number	: 0789		
		No. of samples received	: 6
Quote number	: EP/785/12	No. of samples analysed	: 6

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Accredited for compliance with ISO/IEC 17025.



#### NATA Accredited Laboratory 825 Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Benjamin Nicholson	Metals Chemist	Perth Inorganics
Canhuang Ke	Metals Instrument Chemist	Perth Inorganics
Chas Tucker	Inorganic Chemist	Perth Inorganics
Chas Tucker	Inorganic Chemist	Perth Inorganics
Chas Tucker	Inorganic Chemist	Perth Inorganics

Address 10 Hod Way Malaga WA Australia 6090 PHONE +61-8-9209 7655 Facsimile +61-8-9209 7600 Environmental Division Perth ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company

www.alsglobal.com

**RIGHT SOLUTIONS RIGHT PARTNER** 

Page	: 2 of 12
Work Order	: EP1304590
Client	: MOBILE DEWATERING
Project	: E2011-109



#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

 Key :
 Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

 CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

 LOR = Limit of reporting

 RPD = Relative Percentage Difference

# = Indicates failed QC

Page	: 3 of 12
Work Order	: EP1304590
Client	: MOBILE DEWATERING
Project	: E2011-109



#### Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR:-No Limit; Result between 10 and 20 times LOR:-0% - 50%; Result > 20 times LOR:-0% - 20%.

Sub-Matrix: WATER						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EA005P: pH by PC T	itrator (QC Lot: 2924281)								
EP1304573-003	Anonymous	EA005-P: pH Value		0.01	pH Unit	7.86	7.89	0.4	0% - 20%
EP1304590-003	HVN MW3 02	EA005-P: pH Value		0.01	pH Unit	5.19	5.14	1.0	0% - 20%
EA010P: Conductivit	ty by PC Titrator (QC Lot: 29	924280)							
EP1304573-003	Anonymous	EA010-P: Electrical Conductivity @ 25°C		1	μS/cm	65000	64700	0.4	0% - 20%
EP1304590-003	HVN MW3 02	EA010-P: Electrical Conductivity @ 25°C		1	µS/cm	532	529	0.6	0% - 20%
EA015: Total Dissolv	ved Solids (QC Lot: 2928457	)							
EP1304563-001	Anonymous	EA015H: Total Dissolved Solids @180°C		10	mg/L	1750	1720	2.1	0% - 20%
EP1304565-007	Anonymous	EA015H: Total Dissolved Solids @180°C		10	mg/L	1530	1480	3.0	0% - 20%
EA015: Total Dissolv	ved Solids (QC Lot: 2928459	)							
EP1304590-005	HVN MW5 02	EA015H: Total Dissolved Solids @180°C		10	mg/L	336	294	13.3	0% - 20%
EP1304607-013	Anonymous	EA015H: Total Dissolved Solids @180°C		10	mg/L	370	368	0.7	0% - 20%
EA025: Suspended S	Solids (QC Lot: 2928458)								
EP1304563-001	Anonymous	EA025H: Suspended Solids (SS)		5	mg/L	24	30	22.2	No Limit
EP1304565-007	Anonymous	EA025H: Suspended Solids (SS)		5	mg/L	54	54	0.0	0% - 50%
EA025: Suspended S	Solids (QC Lot: 2928460)								
EP1304590-005	HVN MW5 02	EA025H: Suspended Solids (SS)		5	mg/L	1160	1040	10.9	0% - 20%
EP1304607-013	Anonymous	EA025H: Suspended Solids (SS)		5	mg/L	84	80	4.9	0% - 50%
EA045: Turbidity (Q	C Lot: 2925434)								
EP1304590-001	HVN MW1 02	EA045: Turbidity		0.1	NTU	3100	3090	0.4	0% - 20%
EP1304594-001	Anonymous	EA045: Turbidity		0.1	NTU	2.9	2.9	0.0	0% - 20%
ED037P: Alkalinity b	y PC Titrator (QC Lot: 29242	282)							
EP1304573-003	Anonymous	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	213	216	1.4	0% - 20%
		ED037-P: Total Alkalinity as CaCO3		1	mg/L	213	216	1.4	0% - 20%
EP1304590-003	HVN MW3 02	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	3	2	0.0	No Limit
		ED037-P: Total Alkalinity as CaCO3		1	mg/L	3	2	0.0	No Limit
ED038A: Acidity (Q0	C Lot: 2931427)								
EP1304590-001	HVN MW1 02	ED038: Acidity as CaCO3		1	mg/L	17	19	10.5	0% - 50%
EP1304593-003	Anonymous	ED038: Acidity as CaCO3		1	mg/L	23	23	0.0	0% - 20%
ED041G: Sulfate (Tu	rbidimetric) as SO4 2- by DA	(QC Lot: 2924304)							
EP1304564-001	Anonymous	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	69	69	0.0	0% - 20%

Page	: 4 of 12
Work Order	: EP1304590
Client	: MOBILE DEWATERING
Project	; E2011-109



Sub-Matrix: WATER			[			Laboratory L	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
ED041G: Sulfate (Tu	rbidimetric) as SO4 2- by DA	A (QC Lot: 2924304) - continued							
EP1304588-001	Anonymous	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	16	16	0.0	0% - 50%
ED045G: Chloride Di	screte analyser (QC Lot: 29	924303)							
EP1304564-001	Anonymous	ED045G: Chloride	16887-00-6	1	mg/L	107	107	0.0	0% - 20%
EP1304588-001	Anonymous	ED045G: Chloride	16887-00-6	1	mg/L	172	170	0.9	0% - 20%
EG020F: Dissolved	letals by ICP-MS (QC Lot: 2	2925407)							
EP1304573-003	Anonymous	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0010	<0.0010	0.0	No Limit
		EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.010	<0.010	0.0	No Limit
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.010	<0.010	0.0	No Limit
		EG020A-F: Manganese	7439-96-5	0.001	mg/L	0.175	0.172	1.8	0% - 50%
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	0.028	0.030	7.5	No Limit
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	<0.050	<0.050	0.0	No Limit
		EG020A-F: Aluminium	7429-90-5	0.01	mg/L	<0.10	<0.10	0.0	No Limit
		EG020A-F: Selenium	7782-49-2	0.01	mg/L	<0.10	<0.10	0.0	No Limit
		EG020A-F: Iron	7439-89-6	0.05	mg/L	<0.50	<0.50	0.0	No Limit
EP1304590-004	HVN MW4 02	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit
		EG020A-F: Arsenic	7440-38-2	0.001	mg/L	0.003	0.002	0.0	No Limit
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Manganese	7439-96-5	0.001	mg/L	0.510	0.515	1.0	0% - 20%
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	0.003	0.003	0.0	No Limit
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	0.034	0.034	0.0	No Limit
		EG020A-F: Aluminium	7429-90-5	0.01	mg/L	0.31	0.30	0.0	0% - 20%
		EG020A-F: Selenium	7782-49-2	0.01	mg/L	<0.01	<0.01	0.0	No Limit
		EG020A-F: Iron	7439-89-6	0.05	mg/L	7.37	7.62	3.3	0% - 20%
EG020T: Total Metal	s by ICP-MS (QC Lot: 29254	114)							
EP1304590-001	HVN MW1 02	EG020A-T: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit
		EG020A-T: Arsenic	7440-38-2	0.001	mg/L	0.006	0.006	0.0	No Limit
		EG020A-T: Chromium	7440-47-3	0.001	mg/L	0.050	0.052	4.7	0% - 20%
		EG020A-T: Copper	7440-50-8	0.001	mg/L	0.017	0.018	0.0	0% - 50%
		EG020A-T: Lead	7439-92-1	0.001	mg/L	0.032	0.031	0.0	0% - 20%
		EG020A-T: Manganese	7439-96-5	0.001	mg/L	0.022	0.022	0.0	0% - 20%
		EG020A-T: Molybdenum	7439-98-7	0.001	mg/L	0.002	0.002	0.0	No Limit
		EG020A-T: Nickel	7440-02-0	0.001	mg/L	0.002	0.002	0.0	No Limit
		EG020A-T: Zinc	7440-66-6	0.005	mg/L	0.021	0.017	20.0	No Limit
		EG020A-T: Aluminium	7429-90-5	0.01	mg/L	12.8	13.6	6.7	0% - 20%
		EG020A-T: Selenium	7782-49-2	0.01	mg/L	<0.01	<0.01	0.0	No Limit
		EG020A-T: Iron	7439-89-6	0.05	mg/L	3.62	3.83	5.6	0% - 20%
EG020T: Total Metals	s by ICP-MS (QC Lot: 29254	115)							
EP1304590-001	HVN MW1 02	EG020B-T: Silver	7440-22-4	0.001	mg/L	<0.001	<0.001	0.0	No Limit
EG035T: Total Reco	verable Mercury by FIMS (0	QC Lot: 2926793)							

Page	5 of 12
Work Order	: EP1304590
Client	: MOBILE DEWATERING
Project	; E2011-109



Sub-Matrix: WATER			Γ			Laboratory I	Duplicate (DUP) Report			
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)	
EG035T: Total Recoverable Mercury by FIMS (QC Lot: 2926793) - continued										
EP1304553-001	Anonymous	EG035T: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit	
EP1304590-002	HVN MW2 02	EG035T: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit	
EG050F: Dissolved H	exavalent Chromium (QC L	ot: 2925232)								
EP1304552-001	Anonymous	EG050G-F: Hexavalent Chromium	18540-29-9	0.01	mg/L	<0.01	<0.01	0.0	No Limit	
EP1304590-005	HVN MW5 02	EG050G-F: Hexavalent Chromium	18540-29-9	0.01	mg/L	<0.01	<0.01	0.0	No Limit	
EG051G: Ferrous Iror	EG051G: Ferrous Iron by Discrete Analyser (QC Lot: 2924311)									
EP1304561-004	Anonymous	EG051G: Ferrous Iron		0.05	mg/L	1.82	1.81	0.6	0% - 20%	
EP1304593-002	Anonymous	EG051G: Ferrous Iron		0.05	mg/L	9.90	9.90	0.0	0% - 20%	
EK055G: Ammonia as	s N by Discrete Analyser (Q	C Lot: 2924274)								
EP1304578-001	Anonymous	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	0.41	0.41	0.0	0% - 20%	
EP1304588-001	Anonymous	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	0.01	0.01	0.0	No Limit	
EK055G: Ammonia as	s N by Discrete Analyser (Q	C Lot: 2924276)								
EP1304590-005	HVN MW5 02	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	0.73	0.73	0.0	0% - 20%	
EP1304601-003	Anonymous	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	0.04	0.03	28.6	No Limit	
EK057G: Nitrite as N by Discrete Analyser (QC Lot: 2924299)										
EP1304564-001	Anonymous	EK057G: Nitrite as N		0.01	mg/L	0.05	0.06	0.0	No Limit	
EP1304588-001	Anonymous	EK057G: Nitrite as N		0.01	mg/L	<0.01	<0.01	0.0	No Limit	
EK057G: Nitrite as N	by Discrete Analyser (QC I	.ot: 2924305)								
EP1304596-001	Anonymous	EK057G: Nitrite as N		0.01	mg/L	0.07	0.08	13.9	No Limit	
EP1304602-004	Anonymous	EK057G: Nitrite as N		0.01	mg/L	<0.01	<0.01	0.0	No Limit	
EK059G: Nitrite plus	Nitrate as N (NOx) by Discr	rete Analyser (QC Lot: 2924273)								
EP1304578-001	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	15.6	15.8	1.1	0% - 20%	
EP1304588-001	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	0.10	0.10	0.0	0% - 50%	
EK059G: Nitrite plus	Nitrate as N (NOx) by Discr	rete Analyser (QC Lot: 2924275)								
EP1304590-005	HVN MW5 02	EK059G: Nitrite + Nitrate as N		0.01	mg/L	0.30	0.28	6.9	0% - 20%	
EP1304601-003	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	0.26	0.26	0.0	0% - 20%	
EK061G: Total Kjelda	hl Nitrogen By Discrete Ana	llyser (QC Lot: 2928716)								
EP1304563-001	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	140	137	2.4	0% - 20%	
EP1304590-003	HVN MW3 02	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	1.7	1.5	8.8	0% - 50%	
EK067G: Total Phosp	horus as P by Discrete Ana	lyser (QC Lot: 2928717)								
EP1304563-001	Anonymous	EK067G: Total Phosphorus as P		0.01	mg/L	19.8	18.7	5.7	0% - 20%	
EP1304590-003	HVN MW3 02	EK067G: Total Phosphorus as P		0.01	mg/L	0.14	0.11	24.8	0% - 50%	
EK071G: Reactive Ph	osphorus as P by discrete a	nalyser (QC Lot: 2924300)								
EP1304564-001	Anonymous	EK071G: Reactive Phosphorus as P	14265-44-2	0.01	mg/L	0.03	0.04	0.0	No Limit	
EP1304588-001	Anonymous	EK071G: Reactive Phosphorus as P	14265-44-2	0.01	mg/L	<0.01	<0.01	0.0	No Limit	
EK085M: Sulfide as S	2- (QC Lot: 2934673)									
EP1304590-001	HVN MW1 02	EK085: Sulfide as S2-	18496-25-8	0.1	mg/L	<0.1	<0.1	0.0	No Limit	
EP1304593-003	Anonymous	EK085: Sulfide as S2-	18496-25-8	0.1	mg/L	<0.1	<0.1	0.0	No Limit	

Page	: 6 of 12
Work Order	: EP1304590
Client	: MOBILE DEWATERING
Project	: E2011-109



Sub-Matrix: WATER					Laboratory Duplicate (DUP) Report					
Laboratory sample ID Client sample ID Method; Compound CAS Number				LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)	
EP030: Biochemical Oxygen Demand (BOD) (QC Lot: 2927175)										
EP1304590-001	HVN MW1 02	EP030: Biochemical Oxygen Demand		2	mg/L	4	<2	57.1	No Limit	
EP1304611-004	Anonymous	EP030: Biochemical Oxygen Demand		2	mg/L	13	12	0.0	No Limit	



#### Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER				Method Blank (MB)	Laboratory Control Spike (LCS) Report			
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EA005P: pH by PC Titrator (QCLot: 2924281)								
EA005-P: pH Value		0.01	pH Unit		7.00 pH Unit	100	70	130
EA010P: Conductivity by PC Titrator (QCLot: 2924280)	)							
EA010-P: Electrical Conductivity @ 25°C		1	μS/cm	<1	24800 µS/cm	94.8	90	110
EA015: Total Dissolved Solids (QCLot: 2928457)								
EA015H: Total Dissolved Solids @180°C		10	mg/L	<10	293 mg/L	91.6	70	130
EA015: Total Dissolved Solids (QCLot: 2928459)								
EA015H: Total Dissolved Solids @180°C		10	mg/L	<10	293 mg/L	122	70	130
EA025: Suspended Solids (QCLot: 2928458)								
EA025H: Suspended Solids (SS)		5	mg/L	<5	150 mg/L	97.7	70	130
EA025: Suspended Solids (QCLot: 2928460)								
EA025H: Suspended Solids (SS)		5	mg/L	<5	150 mg/L	116	70	130
EA045: Turbidity (QCLot: 2925434)								
EA045: Turbidity		0.1	NTU	<0.1	40 NTU	97.2	91	107
ED037P: Alkalinity by PC Titrator (QCLot: 2924282)								
ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-00	1	mg/L	<1				
	1							
ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1				
ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	<1				
ED037-P: Total Alkalinity as CaCO3		1	mg/L	<1	200 mg/L	116	87	121
ED038A: Acidity (QCLot: 2931427)								
ED038: Acidity as CaCO3		1	mg/L		20 mg/L	111	85	119
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA (QCL	_ot: 2924304)							
ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	<1	25 mg/L	105	88	121
ED045G: Chloride Discrete analyser (QCLot: 2924303)								
ED045G: Chloride	16887-00-6	1	mg/L	<1	1000 mg/L	98.2	84	120
EG020F: Dissolved Metals by ICP-MS (QCLot: 2925407	7)							
EG020A-F: Aluminium	7429-90-5	0.01	mg/L	<0.01	0.50 mg/L	90.3	77	113
EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	0.100 mg/L	90.1	89	109
EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	0.1000 mg/L	89.1	89	109
EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	0.100 mg/L	93.9	88	106
EG020A-F: Manganese	7439-96-5	0.001	mg/L	<0.001	0.100 mg/L	98.0	87	107
EG020A-F: Nickel	7440-02-0	0.001	mg/L	<0.001	0.100 mg/L	100	87	109
EG020A-F: Selenium	//82-49-2	0.01	mg/L	<0.01	0.10 mg/L	100	93	117

Page	: 8 of 12
Work Order	: EP1304590
Client	: MOBILE DEWATERING
Project	; E2011-109



Sub-Matrix: WATER		Method Blank (MB)	Laboratory Control Spike (LCS) Report						
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EG020F: Dissolved Metals by ICP-MS (QCLot: 2925407) - continued									
EG020A-F: Zinc	7440-66-6	0.005	mg/L	<0.005	0.100 mg/L	96.2	89	115	
EG020A-F: Iron	7439-89-6	0.05	mg/L	<0.05	0.50 mg/L	96.6	83	109	
EG020T: Total Metals by ICP-MS (QCLot: 2925414)									
EG020A-T: Aluminium	7429-90-5	0.01	mg/L	<0.01	0.5 mg/L	95.3	78	116	
EG020A-T: Arsenic	7440-38-2	0.001	mg/L	<0.001	0.1 mg/L	95.5	77	109	
EG020A-T: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	0.1 mg/L	95.8	78	108	
EG020A-T: Chromium	7440-47-3	0.001	mg/L	<0.001	0.1 mg/L	95.8	80	112	
EG020A-T: Copper	7440-50-8	0.001	mg/L	<0.001	0.1 mg/L	95.4	79	111	
EG020A-T: Lead	7439-92-1	0.001	mg/L	<0.001	0.1 mg/L	99.6	81	109	
EG020A-T: Manganese	7439-96-5	0.001	mg/L	<0.001	0.1 mg/L	95.1	80	112	
EG020A-T: Molybdenum	7439-98-7	0.001	mg/L	<0.001	0.1 mg/L	105	86	118	
EG020A-T: Nickel	7440-02-0	0.001	mg/L	<0.001	0.1 mg/L	96.7	80	112	
EG020A-T: Selenium	7782-49-2	0.01	mg/L	<0.01	0.1 mg/L	94.3	75	107	
EG020A-T: Zinc	7440-66-6	0.005	mg/L	<0.005	0.1 mg/L	90.2	74	108	
EG020A-T: Iron	7439-89-6	0.05	mg/L	<0.05	0.5 mg/L	95.5	75	115	
EG020T: Total Metals by ICP-MS (QCLot: 2925415)									
EG020B-T: Silver	7440-22-4	0.001	mg/L	<0.001	0.01 mg/L	99.5	70	130	
EG035T: Total Recoverable Mercury by FIMS (QCLot:	: 2926793)								
EG035T: Mercury	7439-97-6	0.0001	mg/L	<0.0001	0.0100 mg/L	101	82.3	118	
EG050F: Dissolved Hexavalent Chromium (QCLot: 29)	25232)								
EG050G-F: Hexavalent Chromium	18540-29-9	0.01	mg/L	<0.01	0.5 mg/L	102	91	115	
EG051G: Ferrous Iron by Discrete Analyser (QCLot: 2	924311)								
EG051G: Ferrous Iron		0.05	mg/L	<0.05	2.00 mg/L	102	89	113	
EK055G: Ammonia as N by Discrete Analyser (QCLot:	: 2924274)								
EK055G: Ammonia as N	7664-41-7	0.01	mg/L	<0.01	1 mg/L	90.0	87	115	
EK055G: Ammonia as N by Discrete Analyser (QCI of	· 2924276)								
EK055G: Ammonia as N	7664-41-7	0.01	mg/L	<0.01	1 mg/L	91.7	87	115	
EK057G: Nitrito as N by Discrote Analyser (OCI et: 29	24200)		Ū						
EK057G: Nitrite as N		0.01	ma/L	<0.01	0.5 ma/L	100	86	112	
EK057C: Nitrite es N by Diserte Analyzer (OCI et: 20	24205)		5		J				
EK057G: Nitrite as N		0.01	mg/l	<0.01	0.5 mg/l	98.2	86	112	
EKOSTO, Nitrite as N		0.01	iiig/E	.0.01	0.0 mg/L	00.2	00	112	
EK059G: Nitrite plus Nitrate as N (NOX)" by Discrete A	naryser (QCLot: 29.	0.01	ma/l	<0.01	0.5 mg/l	03.0	02	112	
		0.01	iiiy/L	<b>NU.UI</b>	0.5 mg/L	93.0	92	112	
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete A	nalyser (QCLot: 29)	24275)		<0.01	0.E mg/l	07.9	02	110	
EKU59G: Nitrite + Nitrate as N		0.01	rng/L	<0.01	0.5 mg/L	97.8	92	112	
EK061G: Total Kjeldahl Nitrogen By Discrete Analyser	(QCLot: 2928716)				10 "	011		165	
EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	<0.1	10 mg/L	91.2	74	130	



Sub-Matrix: WATER		Method Blank (MB)	Laboratory Control Spike (LCS) Report					
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EK067G: Total Phosphorus as P by Discrete Analyser(Q0	CLot: 2928717)							
EK067G: Total Phosphorus as P		0.01	mg/L	<0.01	4.42 mg/L	104	70	130
EK071G: Reactive Phosphorus as P by discrete analyser (QCLot: 2924300)								
EK071G: Reactive Phosphorus as P	14265-44-2	0.01	mg/L	<0.01	0.5 mg/L	95.4	87	115
EK085M: Sulfide as S2- (QCLot: 2934673)								
EK085: Sulfide as S2-	18496-25-8	0.10	mg/L	<0.1	0.50 mg/L	97.8	82	116
EP030: Biochemical Oxygen Demand (BOD) (QCLot: 2927	175)							
EP030: Biochemical Oxygen Demand		2	mg/L	<2	198 mg/L	87.2	84	114

#### Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: WATER		Matrix Spike (MS) Report					
				Spike	SpikeRecovery(%)	Recovery Li	mits (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
ED041G: Sulfate (1	Furbidimetric) as SO4 2- by DA (QCLot: 2924304)						
EP1304564-001	Anonymous	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	100 mg/L	92.1	70	130
ED045G: Chloride	Discrete analyser (QCLot: 2924303)						
EP1304564-001	Anonymous	ED045G: Chloride	16887-00-6	1000 mg/L	96.9	70	130
EG020F: Dissolved	d Metals by ICP-MS (QCLot: 2925407)						
EP1304588-001	Anonymous	EG020A-F: Arsenic	7440-38-2	0.200 mg/L	97.0	70	130
		EG020A-F: Cadmium	7440-43-9	0.0500 mg/L	100	70	130
	EG020A-F: Chromium	7440-47-3	0.200 mg/L	86.9	70	130	
	EG020A-F: Manganese	7439-96-5	0.200 mg/L	93.6	70	130	
		EG020A-F: Nickel	7440-02-0	0.200 mg/L	95.4	70	130
		EG020A-F: Zinc	7440-66-6	0.200 mg/L	106	70	130
EG020T: Total Met	als by ICP-MS (QCLot: 2925414)						
EP1304590-002	HVN MW2 02	EG020A-T: Arsenic	7440-38-2	1.00 mg/L	96.9	70	130
		EG020A-T: Cadmium	7440-43-9	0.25 mg/L	98.6	70	130
		EG020A-T: Chromium	7440-47-3	1.00 mg/L	95.7	70	130
		EG020A-T: Copper	7440-50-8	1.00 mg/L	99.4	70	130
		EG020A-T: Lead	7439-92-1	1.00 mg/L	102	70	130
		EG020A-T: Manganese	7439-96-5	1.00 mg/L	98.3	70	130
		EG020A-T: Nickel	7440-02-0	1.00 mg/L	96.6	70	130
		EG020A-T: Zinc	7440-66-6	1.00 mg/L	95.0	70	130
EG035T: Total Re	coverable Mercury by FIMS (QCLot: 2926793)						
EP1304556-002	Anonymous	EG035T: Mercury	7439-97-6	0.0100 mg/L	97.8	70	130

Page	: 10 of 12
Work Order	: EP1304590
Client	: MOBILE DEWATERING
Project	; E2011-109



Sub-Matrix: WATER	Sub-Matrix: WATER					Matrix Spike (MS) Report			
				Spike	SpikeRecovery(%)	Recovery Lii	mits (%)		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High		
EG050F: Dissolved	Hexavalent Chromium (QCLot: 2925232)								
EP1304552-001	Anonymous	EG050G-F: Hexavalent Chromium	18540-29-9	0.5 mg/L	98.8	70	130		
EG051G: Ferrous I	ron by Discrete Analyser (QCLot: 2924311)								
EP1304561-004	Anonymous	EG051G: Ferrous Iron		2.5 mg/L	99.6	70	130		
EK055G: Ammonia	as N by Discrete Analyser (QCLot: 2924274)								
EP1304578-001	Anonymous	EK055G: Ammonia as N	7664-41-7	1.00 mg/L	89.0	70	130		
EK055G: Ammonia	as N by Discrete Analyser (QCLot: 2924276)								
EP1304590-005	HVN MW5 02	EK055G: Ammonia as N	7664-41-7	1.00 mg/L	82.0	70	130		
EK057G: Nitrite as	N by Discrete Analyser (QCLot: 2924299)								
EP1304564-001	Anonymous	EK057G: Nitrite as N		0.5 mg/L	110	70	130		
EK057G: Nitrite as	N by Discrete Analyser (QCLot: 2924305)								
EP1304596-001	Anonymous	EK057G: Nitrite as N		0.5 mg/L	110	70	130		
EK059G: Nitrite pl	us Nitrate as N (NOx) by Discrete Analyser (QCLot: 292	4273)							
EP1304578-001	Anonymous	EK059G: Nitrite + Nitrate as N		0.5 mg/L	# Not Determined	70	130		
EK059G: Nitrite pl	us Nitrate as N (NOx) by Discrete Analyser (QCLot: 292	4275)							
EP1304590-005	HVN MW5 02	EK059G: Nitrite + Nitrate as N		0.5 mg/L	90.0	70	130		
EK061G: Total Kjel	dahl Nitrogen By Discrete Analyser (QCLot: 2928716)								
EP1304563-001	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		5.0 mg/L	# Not Determined	70	130		
EK067G: Total Pho	sphorus as P by Discrete Analyser (QCLot: 2928717)								
EP1304563-001	Anonymous	EK067G: Total Phosphorus as P		1 mg/L	# Not Determined	70	130		
EK071G: Reactive	Phosphorus as P by discrete analyser(QCLot: 2924300)								
EP1304564-001	Anonymous	EK071G: Reactive Phosphorus as P	14265-44-2	0.5 mg/L	103	70	130		

#### Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

The quality control term Matrix Spike (MS) and Matrix Spike Duplicate (MSD) refers to intralaboratory split samples spiked with a representative set of target analytes. The purpose of these QC parameters are to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: WATER	ub-Matrix: WATER				Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report						
				Spike	Spike Re	covery (%)	Recovery	Limits (%)	RPD	s (%)	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Control Limit	
EK059G: Nitrite plu	is Nitrate as N (NOx) by Discrete Analyse	er (QCLot: 2924273)									
EP1304578-001	Anonymous	EK059G: Nitrite + Nitrate as N		0.5 mg/L	# Not		70	130			
					Determined						
1					Determined						

Page	: 11 of 12
Work Order	: EP1304590
Client	: MOBILE DEWATERING
Project	: E2011-109



Sub-Matrix: WATER				Matrix Spike (N	AS) and Matrix Spi	ike Duplicate	e (MSD) Repor	t			
				Spike	Spike Red	covery (%)	Recovery	Limits (%)	RPI	RPDs (%)	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Control Limit	
EK055G: Ammonia	as N by Discrete Analyser (QCLot: 29	924274)									
EP1304578-001	Anonymous	EK055G: Ammonia as N	7664-41-7	1.00 mg/L	89.0		70	130			
EK059G: Nitrite plu	us Nitrate as N (NOx) by Discrete Ana	lvser (QCLot: 2924275)									
EP1304590-005	HVN MW5 02	EK059G: Nitrite + Nitrate as N		0.5 mg/L	90.0		70	130			
EK055G: Ammonia	as N by Discrete Analyser (QCLot: 29	24276)									
EP1304590-005	HVN MW5 02	EK055G: Ammonia as N	7664-41-7	1.00 mg/L	82.0		70	130			
EK057G: Nitrite as	N by Discrete Analyser (OCI of: 2924	299)		Ū							
EP1304564-001	Anonymous	EK057G: Nitrite as N		0.5 ma/L	110		70	130			
EK071C: Posetive	Phoenborus as P by discrete analyser	(OCI at: 2924300)				1					
ER071G. Reactive F		EK071C: Possible Pheenberg of P	14265-44-2	0.5 mg/l	103		70	130			
		EKOTIG. Reactive Phosphorus as P	14200 44 2	0.0 mg/L	100		10	100			
ED045G: Chloride L	Discrete analyser (QCLot: 2924303)	ED0450, Oblacida	16997 00 6	1000 mg/l	06.0		70	120			
EP1304304-001	Anonymous	ED045G: Chloride	10007-00-0	1000 mg/L	90.9		70	130			
ED041G: Sulfate (T	urbidimetric) as SO4 2- by DA (QCLot	:: 2924304)	1 1000 70 0	100	00.4		70	100			
EP1304564-001	Anonymous	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	100 mg/L	92.1		70	130			
EK057G: Nitrite as	N by Discrete Analyser (QCLot: 2924	305)									
EP1304596-001	Anonymous	EK057G: Nitrite as N		0.5 mg/L	110		70	130			
EG051G: Ferrous Ir	ron by Discrete Analyser (QCLot: 292	4311)									
EP1304561-004	Anonymous	EG051G: Ferrous Iron		2.5 mg/L	99.6		70	130			
EG050F: Dissolved	Hexavalent Chromium (QCLot: 29252	232)									
EP1304552-001	Anonymous	EG050G-F: Hexavalent Chromium	18540-29-9	0.5 mg/L	98.8		70	130			
EG020F: Dissolved	Metals by ICP-MS (QCLot: 2925407)										
EP1304588-001	Anonymous	EG020A-F: Arsenic	7440-38-2	0.200 mg/L	97.0		70	130			
		EG020A-F: Cadmium	7440-43-9	0.0500 mg/L	100		70	130			
		EG020A-F: Chromium	7440-47-3	0.200 mg/L	86.9		70	130			
		EG020A-F: Manganese	7439-96-5	0.200 mg/L	93.6		70	130			
		EG020A-F: Nickel	7440-02-0	0.200 mg/L	95.4		70	130			
		EG020A-F: Zinc	7440-66-6	0.200 mg/L	106		70	130			
EG020T: Total Meta	als by ICP-MS (QCLot: 2925414)										
EP1304590-002	HVN MW2 02	EG020A-T: Arsenic	7440-38-2	1.00 mg/L	96.9		70	130			
		EG020A-T: Cadmium	7440-43-9	0.25 mg/L	98.6		70	130			
		EG020A-T: Chromium	7440-47-3	1.00 mg/L	95.7		70	130			
		EG020A-T: Copper	7440-50-8	1.00 mg/L	99.4		70	130			
		EG020A-T: Lead	7439-92-1	1.00 mg/L	102		70	130			
		EG020A-T: Manganese	7439-96-5	1.00 mg/L	98.3		70	130			
		EG020A-T: Nickel	7440-02-0	1.00 mg/L	96.6		70	130			
			/440-00-0	1.00 mg/L	95.0		70	130			
EG035T: Total Rec	coverable Mercury by FIMS (QCLot: 29	026793)		0.0100 "	07.0			100			
EP1304556-002	Anonymous	EG035T: Mercury	7439-97-6	0.0100 mg/L	97.8		70	130			

Page	: 12 of 12
Work Order	: EP1304590
Client	: MOBILE DEWATERING
Project	: E2011-109



			Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Pepert							
Sub-Matrix: WATER	Sub-Matrix: WATER			watrix Spike (MS) and watrix Spike Duplicate (MSD) Report						
				Spike	Spike Red	covery (%)	Recovery	Limits (%)	RPD	's (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Control Limit
EK061G: Total Kjeldahl Nitrogen By Discrete Analyser (QCLot: 2928716)										
EP1304563-001	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		5.0 mg/L	# Not		70	130		
					Determined					
EK067G: Total Pho	sphorus as P by Discrete Analyser(QC	Lot: 2928717)								
EP1304563-001	Anonymous	EK067G: Total Phosphorus as P		1 mg/L	# Not		70	130		
					Determined					





**Environmental Division** 

# **INTERPRETIVE QUALITY CONTROL REPORT**

Work Order	: EP1304590	Page	: 1 of 12
Client	: MOBILE DEWATERING	Laboratory	: Environmental Division Perth
Contact	: INFO	Contact	: Lauren Ockwell
Address	PO BOX 239	Address	: 10 Hod Way Malaga WA Australia 6090
	MIDLAND WA, AUSTRALIA 6939		
E-mail	: info@environmentalservices.com.au	E-mail	: lauren.ockwell@alsenviro.com
Telephone	: +61 08 9250 4995	Telephone	: 08 9209 7606
Facsimile	:	Facsimile	: 08 9209 7600
Project	: E2011-109	QC Level	: NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Site	: HOPE VALLEY NURSERY		
C-O-C number	: E2011-109	Date Samples Received	: 18-JUN-2013
Sampler	: JT	Issue Date	: 25-JUN-2013
Order number	: 0789		
		No. of samples received	: 6
Quote number	: EP/785/12	No. of samples analysed	: 6

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Interpretive Quality Control Report contains the following information:

- Analysis Holding Time Compliance
- Quality Control Parameter Frequency Compliance
- Brief Method Summaries
- Summary of Outliers

Address 10 Hod Way Malaga WA Australia 6090 PHONE +61-8-9209 7655 Facsimile +61-8-9209 7600 Environmental Division Perth ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company



www.alsglobal.com

**RIGHT SOLUTIONS RIGHT PARTNER** 



#### Analysis Holding Time Compliance

The following report summarises extraction / preparation and analysis times and compares with recommended holding times. Dates reported represent first date of extraction or analysis and precludes subsequent dilutions and reruns. Information is also provided re the sample container (preservative) from which the analysis aliquot was taken. Elapsed period to analysis represents number of days from sampling where no extraction / digestion is involved or period from extraction / digestion where this is present. For composite samples, sampling date is assumed to be that of the oldest sample contributing to the composite. Sample date for laboratory produced leachates is assumed as the completion date of the leaching process. Outliers for holding time are based on USEPA SW 846, APHA, AS and NEPM (1999). A listing of breaches is provided in the Summary of Outliers.

Holding times for leachate methods (excluding elutriates) vary according to the analytes being determined on the resulting solution. For non-volatile analytes, the holding time compliance assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These soil holding times are: Organics (14 days); Mercury (28 days) & other metals (180 days). A recorded breach therefore does not guarantee a breach for all non-volatile parameters.

Matrix: WATER					Evaluation:	<pre>x = Holding time</pre>	breach ; 🗸 = Withir	holding time.
Method		Sample Date	Extraction / Preparation			Analysis		
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA005P: pH by PC Titrator								
Clear Plastic Bottle - Natural (EA005-P)								
HVN MW1 02,	HVN MW2 02,	18-JUN-2013		18-JUN-2013		19-JUN-2013	18-JUN-2013	×
HVN MW3 02,	HVN MW4 02,							
HVN MW5 02,	HVN MW6 02							
EA010P: Conductivity by PC Titrator								
Clear Plastic Bottle - Natural (EA010-P)								
HVN MW1 02,	HVN MW2 02,	18-JUN-2013		16-JUL-2013		19-JUN-2013	16-JUL-2013	✓
HVN MW3 02,	HVN MW4 02,							
HVN MW5 02,	HVN MW6 02							
EA015: Total Dissolved Solids								
Clear Plastic Bottle - Natural (EA015H)								
HVN MW1 02,	HVN MW2 02,	18-JUN-2013		25-JUN-2013		21-JUN-2013	25-JUN-2013	✓
HVN MW3 02,	HVN MW4 02,							
HVN MW5 02,	HVN MW6 02							
EA025: Suspended Solids								
Clear Plastic Bottle - Natural (EA025H)								
HVN MW1 02,	HVN MW2 02,	18-JUN-2013		25-JUN-2013		21-JUN-2013	25-JUN-2013	✓
HVN MW3 02,	HVN MW4 02,							
HVN MW5 02,	HVN MW6 02							
EA045: Turbidity								
Clear Plastic Bottle - Natural (EA045)								
HVN MW1 02,	HVN MW2 02,	18-JUN-2013				19-JUN-2013	20-JUN-2013	✓
HVN MW3 02,	HVN MW4 02,							
HVN MW5 02,	HVN MW6 02							
ED037P: Alkalinity by PC Titrator								
Clear Plastic Bottle - Natural (ED037-P)								
HVN MW1 02,	HVN MW2 02,	18-JUN-2013		02-JUL-2013		19-JUN-2013	02-JUL-2013	<ul> <li>✓</li> </ul>
HVN MW3 02,	HVN MW4 02,							
HVN MW5 02,	HVN MW6 02							

Page	: 3 of 12
Work Order	: EP1304590
Client	: MOBILE DEWATERING
Project	E2011-109



Matrix: WATER					Evaluation	× = Holding time	breach ; ✓ = Within	n holding time.
Method		Sample Date	Extraction / Preparation			Analysis		
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
ED038A: Acidity		·						
Clear Plastic Bottle - Natural (ED038)								
HVN MW1 02,	HVN MW2 02,	18-JUN-2013				24-JUN-2013	02-JUL-2013	✓
HVN MW3 02,	HVN MW4 02,							
HVN MW5 02,	HVN MW6 02							
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA								
Clear Plastic Bottle - Natural (ED041G)								
HVN MW1 02,	HVN MW2 02,	18-JUN-2013		16-JUL-2013		18-JUN-2013	16-JUL-2013	✓
HVN MW3 02,	HVN MW4 02,							
HVN MW5 02,	HVN MW6 02							
ED045G: Chloride Discrete analyser								
Clear Plastic Bottle - Natural (ED045G)								
HVN MW1 02,	HVN MW2 02,	18-JUN-2013		16-JUL-2013		18-JUN-2013	16-JUL-2013	✓
HVN MW3 02,	HVN MW4 02,							
HVN MW5 02,	HVN MW6 02							
EG020F: Dissolved Metals by ICP-MS								
Clear Plastic Bottle - Filtered; Lab-acidified (EG020A-F)								
HVN MW1 02,	HVN MW2 02,	18-JUN-2013		15-DEC-2013		20-JUN-2013	15-DEC-2013	✓
HVN MW3 02,	HVN MW4 02,							
HVN MW5 02,	HVN MW6 02							
EG020T: Total Metals by ICP-MS								
Clear Plastic Bottle - Unfiltered; Lab-acidified (EG020A-T)								
HVN MW1 02,	HVN MW2 02,	18-JUN-2013	20-JUN-2013	15-DEC-2013	~	20-JUN-2013	15-DEC-2013	✓
HVN MW3 02,	HVN MW4 02,							
HVN MW5 02,	HVN MW6 02							
EG020T: Total Metals by ICP-MS								
Clear Plastic Bottle - Unfiltered; Lab-acidified (EG020B-T)								
HVN MW1 02,	HVN MW2 02,	18-JUN-2013	20-JUN-2013	15-DEC-2013	-	20-JUN-2013	15-DEC-2013	✓
HVN MW3 02,	HVN MW4 02,							
HVN MW5 02,	HVN MW6 02							
EG035T: Total Recoverable Mercury by FIMS								
Clear Plastic Bottle - Unfiltered; Lab-acidified (EG035T)								
HVN MW1 02,	HVN MW2 02,	18-JUN-2013				21-JUN-2013	16-JUL-2013	✓
HVN MW3 02,	HVN MW4 02,							
HVN MW5 02,	HVN MW6 02							
EG050F: Dissolved Hexavalent Chromium								
Clear Plastic Bottle - NaOH (EG050G-F)							40.000	
HVN MW1 02,	HVN MW2 02,	18-JUN-2013				24-JUN-2013	16-JUL-2013	<ul> <li>✓</li> </ul>
HVN MW3 02,	HVN MW4 02,							
HVN MW5 02,	HVN MW6 02							

Page	: 4 of 12
Work Order	: EP1304590
Client	: MOBILE DEWATERING
Project	: E2011-109



Matrix: WATER					Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time.	
Method		Sample Date	• E	Extraction / Preparation			Analysis		
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation	
EG051G: Ferrous Iron by Discrete Analyser									
Clear Plastic Bottle - HCI - Filtered (EG051G)									
HVN MW1 02,	HVN MW2 02,	18-JUN-201	3			18-JUN-2013	25-JUN-2013	<ul> <li>✓</li> </ul>	
HVN MW3 02,	HVN MW4 02,								
HVN MW5 02,	HVN MW6 02								
EK055G: Ammonia as N by Discrete Analyser									
Clear Plastic Bottle - Sulphuric Acid (EK055G)									
HVN MW1 02,	HVN MW2 02,	18-JUN-201	3	16-JUL-2013		18-JUN-2013	16-JUL-2013	✓	
HVN MW3 02,	HVN MW4 02,								
HVN MW5 02,	HVN MW6 02								
EK057G: Nitrite as N by Discrete Analyser									
Clear Plastic Bottle - Natural (EK057G)									
HVN MW1 02,	HVN MW2 02,	18-JUN-201	3	20-JUN-2013		18-JUN-2013	20-JUN-2013	<ul> <li>✓</li> </ul>	
HVN MW3 02,	HVN MW4 02,								
HVN MW5 02,	HVN MW6 02								
EK059G: Nitrite plus Nitrate as N (NOx) by Disc	crete Analyser								
Clear Plastic Bottle - Sulphuric Acid (EK059G)									
HVN MW1 02,	HVN MW2 02,	18-JUN-201	3	16-JUL-2013		18-JUN-2013	16-JUL-2013	✓	
HVN MW3 02,	HVN MW4 02,								
HVN MW5 02,	HVN MW6 02								
EK061G: Total Kjeldahl Nitrogen By Discrete An	alyser								
Clear Plastic Bottle - Sulphuric Acid (EK061G)									
HVN MW1 02,	HVN MW2 02,	18-JUN-201	3 21-JUN-2013	16-JUL-2013	1	21-JUN-2013	16-JUL-2013	<ul> <li>✓</li> </ul>	
HVN MW3 02,	HVN MW4 02,								
HVN MW5 02,	HVN MW6 02								
EK067G: Total Phosphorus as P by Discrete Ana	alyser								
Clear Plastic Bottle - Sulphuric Acid (EK067G)									
HVN MW1 02,	HVN MW2 02,	18-JUN-201	3 21-JUN-2013	16-JUL-2013	1	21-JUN-2013	16-JUL-2013	<ul> <li>✓</li> </ul>	
HVN MW3 02,	HVN MW4 02,								
HVN MW5 02,	HVN MW6 02								
EK071G: Reactive Phosphorus as P by discrete	analyser								
Clear Plastic Bottle - Natural (EK071G)									
HVN MW1 02,	HVN MW2 02,	18-JUN-201	3	20-JUN-2013		18-JUN-2013	20-JUN-2013	<ul> <li>✓</li> </ul>	
HVN MW3 02,	HVN MW4 02,								
HVN MW5 02,	HVN MW6 02								
EK085M: Sulfide as S2-									
Clear Plastic Bottle - Zinc Acetate/NaOH (EK085)									
HVN MW1 02,	HVN MW2 02,	18-JUN-201	3			25-JUN-2013	25-JUN-2013	<ul> <li>✓</li> </ul>	
HVN MW3 02,	HVN MW4 02,								
HVN MW5 02,	HVN MW6 02								

Page	5 of 12
Work Order	: EP1304590
Client	: MOBILE DEWATERING
Project	E2011-109



Matrix: WATER					Evaluation:	× = Holding time	breach ; 🗸 = Withir	n holding time.
Method		Sample Date	Extraction / Preparation			Analysis		
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP030: Biochemical Oxygen Demand	I (BOD)							
Clear Plastic Bottle - Natural (EP030)								
HVN MW1 02,	HVN MW2 02,	18-JUN-2013				20-JUN-2013	20-JUN-2013	✓
HVN MW3 02,	HVN MW4 02,							
HVN MW5 02,	HVN MW6 02							



# **Quality Control Parameter Frequency Compliance**

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(where) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: WATER Evaluation: × = Quality Control frequency						ntrol frequency n	ot within specification ; $\checkmark$ = Quality Control frequency within specification.
Quality Control Sample Type		С	ount		Rate (%)		Quality Control Specification
Analvtical Methods	Method	00	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Acidity as Calcium Carbonate	ED038	2	12	16.7	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Alkalinity by PC Titrator	ED037-P	2	20	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Ammonia as N by Discrete analyser	EK055G	4	39	10.3	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Biochemical Oxygen Demand (BOD)	EP030	2	18	11.1	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Chloride by Discrete Analyser	ED045G	2	20	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Conductivity by PC Titrator	EA010-P	2	20	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Metals by ICP-MS - Suite A	EG020A-F	2	20	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Ferrous Iron by Discrete Analyser	EG051G	2	11	18.2	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Hexavalent Chromium by Discrete Analyser - Dissolved	EG050G-F	2	17	11.8	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	4	36	11.1	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Nitrite as N by Discrete Analyser	EK057G	4	40	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
pH by PC Titrator	EA005-P	2	20	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Reactive Phosphorus as P-By Discrete Analyser	EK071G	2	20	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	2	20	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Sulfide as S2-	EK085	2	20	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Suspended Solids (High Level)	EA025H	4	32	12.5	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Dissolved Solids (High Level)	EA015H	4	32	12.5	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	2	20	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Mercury by FIMS	EG035T	2	16	12.5	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Metals by ICP-MS - Suite A	EG020A-T	1	6	16.7	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Metals by ICP-MS - Suite B	EG020B-T	1	6	16.7	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Phosphorus as P By Discrete Analyser	EK067G	2	20	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Turbidity	EA045	2	12	16.7	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Laboratory Control Samples (LCS)							
Acidity as Calcium Carbonate	ED038	1	12	8.3	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Alkalinity by PC Titrator	ED037-P	2	20	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Ammonia as N by Discrete analyser	EK055G	2	39	5.1	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Biochemical Oxygen Demand (BOD)	EP030	1	18	5.6	5.0	√	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Chloride by Discrete Analyser	ED045G	2	20	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Conductivity by PC Titrator	EA010-P	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Ferrous Iron by Discrete Analyser	EG051G	1	11	9.1	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Hexavalent Chromium by Discrete Analyser - Dissolved	EG050G-F	1	17	5.9	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	2	36	5.6	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Nitrite as N by Discrete Analyser	EK057G	2	40	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
pH by PC Titrator	EA005-P	2	20	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement

Page	: 7 of 12
Work Order	: EP1304590
Client	: MOBILE DEWATERING
Project	; E2011-109



Matrix: WATER	Evaluation: 😕 = Quality Control frequency not within specification ; 🖌 = Quality Control frequency within specific								
Quality Control Sample Type		Count			Rate (%)		Quality Control Specification		
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation			
Laboratory Control Samples (LCS) - Continued									
Reactive Phosphorus as P-By Discrete Analyser	EK071G	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	2	20	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Sulfide as S2-	EK085	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Suspended Solids (High Level)	EA025H	4	32	12.5	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Total Dissolved Solids (High Level)	EA015H	4	32	12.5	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	2	20	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Total Mercury by FIMS	EG035T	1	16	6.3	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Total Metals by ICP-MS - Suite A	EG020A-T	1	6	16.7	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Total Metals by ICP-MS - Suite B	EG020B-T	1	6	16.7	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Total Phosphorus as P By Discrete Analyser	EK067G	2	20	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Turbidity	EA045	1	12	8.3	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Method Blanks (MB)									
Alkalinity by PC Titrator	ED037-P	1	20	5.0	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Ammonia as N by Discrete analyser	EK055G	2	39	5.1	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Biochemical Oxygen Demand (BOD)	EP030	1	18	5.6	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Chloride by Discrete Analyser	ED045G	1	20	5.0	5.0	<u>ا</u>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Conductivity by PC Titrator	EA010-P	1	20	5.0	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	20	5.0	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Ferrous Iron by Discrete Analyser	EG051G	1	11	9.1	5.0		NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Hexavalent Chromium by Discrete Analyser - Dissolved	EG050G-F	1	17	5.9	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	2	36	5.6	5.0	~	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Nitrite as N by Discrete Analyser	EK057G	2	40	5.0	5.0	~	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Reactive Phosphorus as P-By Discrete Analyser	EK071G	1	20	5.0	5.0	~	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	1	20	5.0	5.0	~	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Sulfide as S2-	EK085	1	20	5.0	5.0	~	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Suspended Solids (High Level)	EA025H	2	32	6.3	5.0	~	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Total Dissolved Solids (High Level)	EA015H	2	32	6.3	5.0	~	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Total Mercury by FIMS	EG035T	1	16	6.3	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Total Metals by ICP-MS - Suite A	EG020A-T	1	6	16.7	5.0	~	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Total Metals by ICP-MS - Suite B	EG020B-T	1	6	16.7	5.0	~	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Total Phosphorus as P By Discrete Analyser	EK067G	1	20	5.0	5.0	~	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Turbidity	EA045	1	12	8.3	5.0	~	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Matrix Snikes (MS)						-			
Ammonia as N by Discrete analyser	EK055G	2	39	5.1	5.0	4	ALS QCS3 requirement		
Chloride by Discrete Analyser	ED045G	1	20	5.0	5.0		ALS QCS3 requirement		
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	20	5.0	5.0		ALS QCS3 requirement		
Ferrous Iron by Discrete Analyser	EG051G	1	11	9.1	5.0		ALS QCS3 requirement		
Hexavalent Chromium by Discrete Analyser - Dissolved	EG050G-F	1	17	5.9	5.0	· · ·	ALS QCS3 requirement		
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	2	36	5.6	5.0	<u>√</u>	ALS QCS3 requirement		

Page	: 8 of 12
Work Order	: EP1304590
Client	: MOBILE DEWATERING
Project	: E2011-109



Matrix: WATER			Evaluation: × = Quality Control frequency not within specification ; ✓ = Quality Control frequency within specification					
Quality Control Sample Type		Count		Rate (%)			Quality Control Specification	
Analytical Methods	Method	OC	Reaular	Actual Expected Evaluation		Evaluation		
Matrix Spikes (MS) - Continued								
Nitrite as N by Discrete Analyser	EK057G	2	40	5.0	5.0	✓	ALS QCS3 requirement	
Reactive Phosphorus as P-By Discrete Analyser	EK071G	1	20	5.0	5.0	✓	ALS QCS3 requirement	
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	1	20	5.0	5.0	✓	ALS QCS3 requirement	
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	20	5.0	5.0	✓	ALS QCS3 requirement	
Total Mercury by FIMS	EG035T	1	16	6.3	5.0	✓	ALS QCS3 requirement	
Total Metals by ICP-MS - Suite A	EG020A-T	1	6	16.7	5.0	✓	ALS QCS3 requirement	
Total Phosphorus as P By Discrete Analyser	EK067G	1	20	5.0	5.0	✓	ALS QCS3 requirement	



#### **Brief Method Summaries**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
pH by PC Titrator	EA005-P	WATER	APHA 21st ed. 4500 H+ B. This procedure determines pH of water samples by automated ISE. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Conductivity by PC Titrator	EA010-P	WATER	APHA 21st ed., 2510 B This procedure determines conductivity by automated ISE. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Total Dissolved Solids (High Level)	EA015H	WATER	In-House, APHA 21st ed., 2540C A gravimetric procedure that determines the amount of `filterable` residue in an aqueous sample. A well-mixed sample is filtered through a glass fibre filter (1.2um). The filtrate is evaporated to dryness and dried to constant weight at 180+/-5C. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Suspended Solids (High Level)	EA025H	WATER	In-House, APHA 21st ed., 2540D A gravimetric procedure employed to determine the amount of `non-filterable` residue in a aqueous sample. The prescribed GFC (1.2um) filter is rinsed with deionised water, oven dried and weighed prior to analysis. A well-mixed sample is filtered through a glass fibre filter (1.2um). The residue on the filter paper is dried at 104+/-2C. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Turbidity	EA045	WATER	APHA 21st ed., 2130 B. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Alkalinity by PC Titrator	ED037-P	WATER	APHA 21st ed., 2320 B This procedure determines alkalinity by automated measurement (e.g. PC Titrate) using pH 4.5 for indicating the total alkalinity end-point. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Acidity as Calcium Carbonate	ED038	WATER	APHA 21st ed., 2310 B Acidity is determined by titration with a standardised alkali to an end-point pH of 8.3. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	WATER	APHA 21st ed., 4500-SO4 Dissolved sulfate is determined in a 0.45um filtered sample. Sulfate ions are converted to a barium sulfate suspension in an acetic acid medium with barium chloride. Light absorbance of the BaSO4 suspension is measured by a photometer and the SO4-2 concentration is determined by comparison of the reading with a standard curve. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Chloride by Discrete Analyser	ED045G	WATER	APHA 21st ed., 4500 CI - G.The thiocyanate ion is liberated from mercuric thiocyanate through sequestration of mercury by the chloride ion to form non-ionised mercuric chloride.in the presence of ferric ions the librated thiocynate forms highly-coloured ferric thiocynate which is measured at 480 nm APHA 21st edition seal method 2 017-1-L april 2003
Dissolved Metals by ICP-MS - Suite A	EG020A-F	WATER	(APHA 21st ed., 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020): Samples are 0.45 um filtered prior to analysis. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Total Metals by ICP-MS - Suite A	EG020A-T	WATER	(APHA 21st ed., 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020): The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.



Analytical Methods	Method	Matrix	Method Descriptions
Total Metals by ICP-MS - Suite B	EG020B-T	WATER	(APHA 21st ed., 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020): The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Total Mercury by FIMS	EG035T	WATER	AS 3550, APHA 21st ed. 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. A bromate/bromide reagent is used to oxidise any organic mercury compounds in the unfiltered sample. The ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Hexavalent Chromium by Discrete Analyser - Dissolved	EG050G-F	WATER	APHA 21st ed., 3500 Cr-A & B. Samples are 0.45 um filtered prior to analysis. Hexavalent chromium is determined directly on water sample by Descrete Analyser as received by pH adjustment and colour development using dephenylcarbazide. Each run of samples is measured against a five-point calibration curve. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Ferrous Iron by Discrete Analyser	EG051G	WATER	APHA 21st ed., 3500 Fe-B. A colorimetric determination based on the reaction between phenanthroline and ferrous iron at pH 3.2-3.3 to form an orange-red complex that is measured against a five-point calibration curve. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Ammonia as N by Discrete analyser	EK055G	WATER	APHA 21st ed., 4500-NH3 G Ammonia is determined by direct colorimetry by Discrete Analyser. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Nitrite as N by Discrete Analyser	EK057G	WATER	APHA 21st ed., 4500-NO2- B. Nitrite is determined by direct colourimetry by Discrete Analyser. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Nitrate as N by Discrete Analyser	EK058G	WATER	APHA 21st ed., 4500-NO3- F. Nitrate is reduced to nitrite by way of a chemical reduction followed by quantification by Discrete Analyser. Nitrite is determined seperately by direct colourimetry and result for Nitrate calculated as the difference between the two results. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	WATER	APHA 21st ed., 4500-NO3- F. Combined oxidised Nitrogen (NO2+NO3) is determined by Chemical Reduction and direct colourimetry by Discrete Analyser. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	WATER	APHA 21st ed., 4500-Norg D. 25mL water samples are digested using a traditional Kjeldahl digestion followed by determination by Discrete Analyser. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Total Nitrogen as N (TKN + Nox) By Discrete Analyser	EK062G	WATER	APHA 21st ed., 4500-Norg / 4500-NO3 This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Total Phosphorus as P By Discrete Analyser	EK067G	WATER	APHA 21st ed., 4500-P B&F This procedure involves sulphuric acid digestion of a 100mL sample to break phosphorus down to orthophosphate. The orthophosphate reacts with ammonium molybdate and antimony potassium tartrate to form a complex which is then reduced and its concentration measured at 880nm using Discrete Analyser. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Reactive Phosphorus as P-By Discrete Analyser	EK071G	WATER	APHA 21st ed., 4500-P F Ammonium molybdate and potassium antimonyl tartrate reacts in acid medium with othophosphate to form a heteropoly acid -phosphomolybdic acid - which is reduced to intensely coloured molybdenum blue by ascorbic acid. Quantification is by Discrete Analyser. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)

Page	: 11 of 12
Work Order	: EP1304590
Client	: MOBILE DEWATERING
Project	: E2011-109



Analytical Methods	Method	Matrix	Method Descriptions
Sulfide as S2-	EK085	WATER	APHA 21st ed., 4500-S2- D Sulfide species present in water samples are immediately precipitated when collected in pretreated caustic/zinc acetate preserved sample containers. After the supernatant is discarded, the resultant precipitate is then coloured using methylene blue indicator and measured using UV-VIS detection at 664nm. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Biochemical Oxygen Demand (BOD)	EP030	WATER	APHA 21st ed., 5210 B The 5-Day BOD test provides an empirical measure of the oxygen consumption capacity of a given water. A portion of the sample is diluted into oxygenated, nutrient rich water, and a seed added to begin biological decay. The initial dissolved oxygen content is measured, then the bottle is sealed and incubated for five days. The remaining dissolved oxygen is measured, and from the difference, the demand for oxygen, by biological decay, is determined. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Preparation Methods	Method	Matrix	Method Descriptions
Digestion for Total Recoverable Metals	EN25	WATER	USEPA SW846-3005 Method 3005 is a Nitric/Hydrochloric acid digestion procedure used to prepare surface and ground water samples for analysis by ICPAES or ICPMS. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)



#### Summary of Outliers

#### **Outliers : Quality Control Samples**

The following report highlights outliers flagged in the Quality Control (QC) Report. Surrogate recovery limits are static and based on USEPA SW846 or ALS-QWI/EN/38 (in the absence of specific USEPA limits). This report displays QC Outliers (breaches) only.

#### Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

#### Matrix: WATER

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Matrix Spike (MS) Recoveries							
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Ar	r EP1304578-001	Anonymous	Nitrite + Nitrate as N		Not		MS recovery not determined,
					Determined		background level greater than or
							equal to 4x spike level.
EK061G: Total Kjeldahl Nitrogen By Discrete Analyser	EP1304563-001	Anonymous	Total Kjeldahl Nitrogen as N		Not		MS recovery not determined,
					Determined		background level greater than or
							equal to 4x spike level.
EK067G: Total Phosphorus as P by Discrete Analyser	EP1304563-001	Anonymous	Total Phosphorus as P		Not		MS recovery not determined,
					Determined		background level greater than or
							equal to 4x spike level.

- For all matrices, no Method Blank value outliers occur.
- For all matrices, no Duplicate outliers occur.
- For all matrices, no Laboratory Control outliers occur.

#### **Regular Sample Surrogates**

• For all regular sample matrices, no surrogate recovery outliers occur.

#### **Outliers : Analysis Holding Time Compliance**

This report displays Holding Time breaches only. Only the respective Extraction / Preparation and/or Analysis component is/are displayed.

#### Matrix: WATER

Method		Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Days	Date analysed	Due for analysis	Days
				overdue			overdue
EA005P: pH by PC Titrator							
Clear Plastic Bottle - Natural							
HVN MW1 02,	HVN MW2 02,				19-JUN-2013	18-JUN-2013	1
HVN MW3 02,	HVN MW4 02,						
HVN MW5 02,	HVN MW6 02						

#### **Outliers : Frequency of Quality Control Samples**

The following report highlights breaches in the Frequency of Quality Control Samples.

• No Quality Control Sample Frequency Outliers exist.



# **Appendix E – August Laboratory Documentation**
2. Se					0874				
Site: HOPEV	ALLE	1 NUR	LSERY						
Job #: ごこう	1- 109		l						
Sampler: J									
CoC #: ELo	11-109	~03			ENVIRONMENTAL SERVICES				
Quote #: Eや	1667	113			Mobile Dewatering Environmental Services           8 Loton Avenue           Midland WA 6056				
Laboratory: A	-5	t							
Date and time de	livered: 20	18/13 162	-2		P: 08 9250 6960 F: 08 9250 8269				
Received by: $\mathcal{N}$	1 West	~ "			E: info@environmentalservices.com.au				
Comments:					ysis Detection Limits				
PLS FILLTER MW54603									
for METALS & Fetz									
				50					
PLS FILTER HUNMW403 for									
Somple ID	SSOLVE	D Fel.	2	50	Environmental Division				
Sample ID		туре	Date Time	\$ s	Perth				
HUNMUI 03		<u> </u>	20 8 0730	4 -	Work Order				
121			0750		EP 1306367				
3			0815						
4			0840						
5			0900						
1 6		L	0930	1					
·			· · · · · · · · · · · · · · · · · · ·						
			<u> </u>	<u> </u>					
			J	· L					

.

÷

,

Condition of Sample: Cool / Ambient / Warm Relinquished by:





## SAMPLE RECEIPT NOTIFICATION (SRN)

Comprehensive Report

Client Contact Address	<ul> <li>MOBILE DEWATERING</li> <li>INFO</li> <li>PO BOX 239</li> <li>MIDLAND WA, AUSTRALIA 6939</li> </ul>	Laboratory Contact Address	<ul> <li>Environmental Division Perth</li> <li>Scott James</li> <li>10 Hod Way Malaga WA Australia 6090</li> </ul>
E-mail Telephone Facsimile	info@environmentalservices.com.au +61 08 9250 4995 :	E-mail Telephone Facsimile	<ul> <li>perth.enviro.services@alsglobal.com</li> <li>+61-8-9209 7655</li> <li>+61-8-9209 7600</li> </ul>
Project Order number C-O-C number	: E2011-109 : : E2011-109-03	Page Quote number	: 1 of 3 : EP2013MOBDEW0138 (EP/667/13)
Site Sampler	: HOPEVALLEY NURSERY : J.T.	QC Level	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Dates			
Date Samples Rec Client Requested D	eived : 20-AUG-2013 Due Date : 27-AUG-2013	Issue Date Scheduled Reporting E	: 20-AUG-2013 19:46 Date : 27-AUG-2013
Delivery Deta	ails		

Delivery Details			
Mode of Delivery	Carrier	Temperature	: 3.1 - Ice present
No. of coolers/boxes	: 1 Medium Hard Esky	No. of samples received	: 6
Security Seal	: Intact.	No. of samples analysed	: 6

#### **General Comments**

- This report contains the following information:
  - Sample Container(s)/Preservation Non-Compliances
  - Summary of Sample(s) and Requested Analysis
  - Proactive Holding Time Report
  - Requested Deliverables
- Sample containers do not comply to pretreatment / preservation standards (AS, APHA, USEPA). Please refer to the Sample Container(s)/Preservation Non-Compliance Log at the end of this report for details.
- Please see scanned COC for sample discrepencies: extra samples , samples not received etc.
- Sample containers do not comply to pretreatment / preservation standards (AS, APHA, USEPA). Please refer to the Sample Container(s)/Preservation Non-Compliance Log at the end of this report for details.
- pH analysis should be conducted within 6 hours of sampling.
- Analytical work for this work order will be conducted at ALS Environmental Perth.
- Please direct any turnaround / technical queries to the laboratory contact designated above.
- Please direct any queries related to sample condition / numbering / breakages to Sample Receipt (SamplesPerth@alsenviro.com)
- Sample Disposal Aqueous (14 days), Solid (60 days) from date of completion of Work Order.

Address 10 Hod Way Malaga WA Australia 6090 PHONE +61-8-9209 7655 Facsimile +61-8-9209 7600

Environmental Division Perth ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company



PMS

#### Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

Method Client sample ID	Sample Container Received	Preferred Sample Container for Analysis
EG051G : Ferrous Iron by Discrete Analyser		
HVNMW4 03	- Clear Plastic Bottle - Natural	- Clear Plastic Bottle - HCI - Filtered
HVNMW5 03	- Clear Plastic Bottle - Natural	- Clear Plastic Bottle - HCl - Filtered
HVNMW6 03	- Clear Plastic Bottle - Natural	- Clear Plastic Bottle - HCl - Filtered

evel

#### Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process neccessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package.

If no sampling time is provided, the sampling time will default to 15:00 on the date of sampling. If no sampling date is provided, the sampling date will be assumed by the laboratory for processing purposes and will be shown bracketed without a time component.

laboratory for p bracketed without	a time component.	s and will be show	EA005P	EA010P ity (PC)	EA015H olved Solids - High I	EA025H d Solids (High Level)	EA045	ED038 CaCO3	EG020F Metals by ICPMS	EG020T overable Metals by IC
Laboratory sample ID	Client sampling date / time	Client sample ID	WATER - pH (PC)	WATER - Conductiv	WATER - Total Diss	WATER - Suspende	WATER - Turbidity	WATER - Acidity as	WATER - Dissolved	WATER - Total Rec
EP1306367-001	20-AUG-2013 07:30	HVNMW1 03	<ul> <li>✓</li> </ul>	✓	✓	✓	✓	1	✓	✓
EP1306367-002	20-AUG-2013 07:50	HVNMW2 03	1	1	✓	1	1	1	✓	✓
EP1306367-003	20-AUG-2013 08:15	HVNMW3 03	1	1	✓	✓	1	1	✓	✓
EP1306367-004	20-AUG-2013 08:40	HVNMW4 03	1	1	✓	1	1	1	✓	✓
EP1306367-005	20-AUG-2013 09:00	HVNMW5 03	✓	1	1	1	1	1	✓	✓
EP1306367-006	20-AUG-2013 09:30	HVNMW6 03	✓	1	1	1	1	1	✓	✓
Matrix: <b>WATER</b> Laboratory sample ID	Client sampling date / time	Client sample ID	WATER - EG035T Trotal Mercury by FIMS	WATER - EG050G-F Hexavalent Chromium by Discrete Analyser - Filtered	WATER - EG051G Ferrous Iron by Discrete Analyser	WATER - EK085M Sulfide as S 2-	WATER - EP030 BOD	WATER - NT-02 Major Anions (Chloride, Sulphate, Alkalinity)	WATER - NT-08A Total Nitrogen + NO2 + NO3 + NH3 + Total P +	
EP1306367-001	20-AUG-2013 07:30	HVNMW1 03	✓	✓	✓	✓	✓	✓	✓	
EP1306367-002	20-AUG-2013 07:50	HVNMW2 03	✓	✓	✓	✓	✓	✓	✓	
EP1306367-003	20-AUG-2013 08:15	HVNMW3 03	✓	✓	✓	✓	✓	✓	✓	
EP1306367-004	20-AUG-2013 08:40	HVNMW4 03	✓	✓	✓	✓	✓	✓	✓	
EP1306367-005	20-AUG-2013 09:00	HVNMW5 03	✓	✓	✓	✓	✓	✓	✓	
EP1306367-006	20-AUG-2013 09:30	HVNMW6 03	1	1	1	1	✓	1	1	

#### Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.



#### **Requested Deliverables**

#### ACCOUNTS PAYABLE (WA)

- A4 - AU Tax Invoice ( INV )	Email	deb@mobiledewatering.com.au
INFO		
<ul> <li>*AU Certificate of Analysis - NATA (COA)</li> </ul>	Email	info@environmentalservices.com.au
<ul> <li>*AU Interpretive QC Report - DEFAULT (Anon QCI Rep) ( QCI )</li> </ul>	Email	info@environmentalservices.com.au
<ul> <li>*AU QC Report - DEFAULT (Anon QC Rep) - NATA ( QC )</li> </ul>	Email	info@environmentalservices.com.au
<ul> <li>A4 - AU Sample Receipt Notification - Environmental HT (SRN)</li> </ul>	Email	info@environmentalservices.com.au
- Chain of Custody (CoC) ( COC )	Email	info@environmentalservices.com.au
- EDI Format - ENMRG (ENMRG)	Email	info@environmentalservices.com.au
- EDI Format - ESDAT ( ESDAT )	Email	info@environmentalservices.com.au

Email

- EDI Format - XTab (XTAB)

info@environmentalservices.com.au info@environmentalservices.com.au





**Environmental Division** 

CERTIFICATE OF ANALYSIS									
Work Order	EP1306367	Page	: 1 of 8						
Client		Laboratory	: Environmental Division Perth						
Contact	: INFO	Contact	: Scott James						
Address	: PO BOX 239	Address	: 10 Hod Way Malaga WA Australia 6090						
	MIDLAND WA, AUSTRALIA 6939								
E-mail	: info@environmentalservices.com.au	E-mail	: perth.enviro.services@alsglobal.com						
Telephone	: +61 08 9250 4995	Telephone	: +61-8-9209 7655						
Facsimile		Facsimile	: +61-8-9209 7600						
Project	: E2011-109	QC Level	: NEPM 2013 Schedule B(3) and ALS QCS3 requirement						
Order number	:								
C-O-C number	: E2011-109-03	Date Samples Received	: 20-AUG-2013						
Sampler	: J.T.	Issue Date	: 27-AUG-2013						
Site	: HOPEVALLEY NURSERY								
		No. of samples received	: 6						
Quote number	: EP/667/13	No. of samples analysed	: 6						

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

Accredited for compliance with

ISO/IEC 17025.

- General Comments
- Analytical Results



NATA Accredited Laboratory 825	Signatories
--------------------------------	-------------

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Benjamin Nicholson	Metals Chemist	Perth Inorganics
Chas Tucker	Inorganic Chemist	Perth Inorganics
Chas Tucker	Inorganic Chemist	Perth Inorganics
Chas Tucker	Inorganic Chemist	Perth Inorganics
Efua Wilson	ICP-CHEMIST	Perth Inorganics

Address 10 Hod Way Malaga WA Australia 6090 PHONE +61-8-9209 7655 Facsimile +61-8-9209 7600 Environmental Division Perth ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company



www.alsglobal.com

**RIGHT SOLUTIONS RIGHT PARTNER** 



#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

- EG020:It has been confirmed by re-digestion and re-analysis that some total analyte concentration is less than dissolved
- EK058G/EK059G: LOR raised for sample 'HVNMW3 03' due to possible sample matrix interference.
- EK061G/EK067G: LOR raised on various samples due to possible sample matrix interference.
- It has been noted that Reactive Phosphorus (EK071G) is greater than Total Phosphorus (EK067G) for sample 'HVNMW6 03', however this difference is within the limits of experimental variation.
- TDS by method EA-015 may bias high due to the presence of fine particulate matter, which may pass through the prescribed GF/C paper.



Sub-Matrix: WATER (Matrix: WATER)	Client sample ID		HVNMW1 03	HVNMW2 03	HVNMW3 03	HVNMW4 03	HVNMW5 03	
	Cl	ient samplii	ng date / time	20-AUG-2013 07:30	20-AUG-2013 07:50	20-AUG-2013 08:15	20-AUG-2013 08:40	20-AUG-2013 09:00
Compound	CAS Number	LOR	Unit	EP1306367-001	EP1306367-002	EP1306367-003	EP1306367-004	EP1306367-005
EA005P: pH by PC Titrator	or to Humbor							
pH Value		0.01	pH Unit	6.13	6.46	4.58	6.19	5.99
EA010P: Conductivity by PC Titrator								
Electrical Conductivity @ 25°C		1	µS/cm	440	159	435	300	157
EA015: Total Dissolved Solids								
Total Dissolved Solids @180°C		10	mg/L	685	116	820	1200	139
EA025: Suspended Solids								
Suspended Solids (SS)		5	mg/L	2530	72	620	152	38
EA045: Turbidity								
Turbidity		0.1	NTU	1690	56.8	1860	1390	46.8
ED037P: Alkalinity by PC Titrator								
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	<1	<1
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1	<1	<1
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	12	10	<1	27	10
Total Alkalinity as CaCO3		1	mg/L	12	10	<1	27	10
ED038A: Acidity								
Acidity as CaCO3		1	mg/L	10	6	47	21	20
ED041G: Sulfate (Turbidimetric) as SO4 2	2- by DA							
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	36	11	18	29	22
ED045G: Chloride Discrete analyser								
Chloride	16887-00-6	1	mg/L	97	17	107	50	28
EG020F: Dissolved Metals by ICP-MS								
Aluminium	7429-90-5	0.01	mg/L	0.14	0.33	2.84	1.12	0.26
Arsenic	7440-38-2	0.001	mg/L	0.002	<0.001	0.005	0.002	0.001
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.0002	0.0001	<0.0001
Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.009	0.023	0.001
Manganese	7439-96-5	0.001	mg/L	0.012	0.007	0.026	0.154	0.296
Nickel	7440-02-0	0.001	mg/L	0.001	0.001	0.019	0.044	0.002
Selenium	7782-49-2	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Zinc	7440-66-6	0.005	mg/L	0.017	0.009	0.079	0.050	0.014
Iron	7439-89-6	0.05	mg/L	0.30	0.07	1.02	2.00	3.52
EG020T: Total Metals by ICP-MS								
Aluminium	7429-90-5	0.01	mg/L	15.0	1.35	12.9	8.99	0.40
Arsenic	7440-38-2	0.001	mg/L	0.006	<0.001	0.006	0.005	0.002

# Page : 4 of 8 Work Order : EP1306367 Client : MOBILE DEWATERING Project : E2011-109



Sub-Matrix: WATER (Matrix: WATER)		Client sample ID		HVNMW1 03	HVNMW2 03	HVNMW3 03	HVNMW4 03	HVNMW5 03
	Cl	lient samplir	g date / time	20-AUG-2013 07:30	20-AUG-2013 07:50	20-AUG-2013 08:15	20-AUG-2013 08:40	20-AUG-2013 09:00
Compound	CAS Number	LOR	Unit	EP1306367-001	EP1306367-002	EP1306367-003	EP1306367-004	EP1306367-005
EG020T: Total Metals by ICP-MS - Contin	ued							
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Chromium	7440-47-3	0.001	mg/L	0.038	<0.001	0.010	0.008	0.002
Copper	7440-50-8	0.001	mg/L	0.020	0.001	0.007	0.004	0.004
Lead	7439-92-1	0.001	mg/L	0.035	<0.001	0.020	0.004	<0.001
Manganese	7439-96-5	0.001	mg/L	0.044	0.006	0.015	0.317	0.308
Molybdenum	7439-98-7	0.001	mg/L	0.002	0.001	<0.001	<0.001	0.002
Nickel	7440-02-0	0.001	mg/L	0.002	<0.001	0.004	0.001	0.002
Selenium	7782-49-2	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Silver	7440-22-4	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Zinc	7440-66-6	0.005	mg/L	0.028	<0.005	0.016	0.023	0.013
Iron	7439-89-6	0.05	mg/L	4.93	0.36	1.29	39.9	4.42
EG035T: Total Recoverable Mercury by	FIMS							
Mercury	7439-97-6	0.0001	mg/L	0.0002	<0.0001	<0.0001	0.0001	<0.0001
EG050F: Dissolved Hexavalent Chromiu	m							
Hexavalent Chromium	18540-29-9	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01
EG051G: Ferrous Iron by Discrete Analy	vser							
Ferrous Iron		0.05	mg/L	0.32	<0.05	0.88	1.36	2.40
EK055G: Ammonia as N by Discrete Ana	alyser							
Ammonia as N	7664-41-7	0.01	mg/L	0.02	0.02	0.12	0.19	0.08
EK057G: Nitrite as N by Discrete Analys	ser							
Nitrite as N		0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01
EK058G: Nitrate as N by Discrete Analy	ser							
Nitrate as N	14797-55-8	0.01	mg/L	<0.01	7.81	<0.05	3.12	1.00
EK059G: Nitrite plus Nitrate as N (NOx)	by Discrete Ana	lyser						
Nitrite + Nitrate as N		0.01	mg/L	<0.01	7.81	<0.05	3.12	1.00
EK061G: Total Kjeldahl Nitrogen By Disc	crete Analyser							
Total Kjeldahl Nitrogen as N		0.1	mg/L	0.2	<0.5	3.2	2.3	1.4
EK062G: Total Nitrogen as N (TKN + NO	x) by Discrete Ar	nalyser						
Total Nitrogen as N		0.1	mg/L	0.2	7.8	3.2	5.4	2.4
EK067G: Total Phosphorus as P by Disc	crete Analyser	0.01			0.05			
Total Phosphorus as P		0.01	mg/L	0.18	<0.05	0.10	0.05	0.04
EK071G: Reactive Phosphorus as P by o	discrete analyser	0.01			0.01		0.04	
Reactive Phosphorus as P	14265-44-2	0.01	mg/L	<0.01	<0.01	0.03	<0.01	0.02

Page	5 of 8
Work Order	: EP1306367
Client	: MOBILE DEWATERING
Project	: E2011-109



Sub-Matrix: WATER (Matrix: WATER)	Client sample ID		HVNMW1 03	HVNMW2 03	HVNMW3 03	HVNMW4 03	HVNMW5 03	
	Client sampling date / time			20-AUG-2013 07:30	20-AUG-2013 07:50	20-AUG-2013 08:15	20-AUG-2013 08:40	20-AUG-2013 09:00
Compound	CAS Number	LOR	Unit	EP1306367-001	EP1306367-002	EP1306367-003	EP1306367-004	EP1306367-005
EK085M: Sulfide as S2-								
Sulfide as S2-	18496-25-8	0.1	mg/L	<0.1	<0.1	0.2	<0.1	<0.1
EP030: Biochemical Oxygen Demand (BOD)								
Biochemical Oxygen Demand		2	mg/L	<2	6	<2	3	2



Sub-Matrix: WATER (Matrix: WATER)	Client sample ID		HVNMW6 03	 	 	
	Client sampling date / time		20-AUG-2013 09:30	 	 	
Compound	CAS Number	LOR	Unit	EP1306367-006	 	 
EA005P: pH by PC Titrator						
pH Value		0.01	pH Unit	4.51	 	 
EA010P: Conductivity by PC Titrator						
Electrical Conductivity @ 25°C		1	µS/cm	500	 	 
EA015: Total Dissolved Solids						
Total Dissolved Solids @180°C		10	mg/L	518	 	 
EA025: Suspended Solids						
Suspended Solids (SS)		5	mg/L	136	 	 
EA045: Turbidity						
Turbidity		0.1	NTU	505	 	 
ED037P: Alkalinity by PC Titrator						
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	 	 
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	 	 
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	<1	 	 
Total Alkalinity as CaCO3		1	mg/L	<1	 	 
ED038A: Acidity						
Acidity as CaCO3		1	mg/L	36	 	 
ED041G: Sulfate (Turbidimetric) as SO4 2	2- by DA					
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	17	 	 
ED045G: Chloride Discrete analyser						
Chloride	16887-00-6	1	mg/L	119	 	 
EG020F: Dissolved Metals by ICP-MS						
Aluminium	7429-90-5	0.01	mg/L	0.68	 	 
Arsenic	7440-38-2	0.001	mg/L	0.008	 	 
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	 	 
Chromium	7440-47-3	0.001	mg/L	0.004	 	 
Manganese	7439-96-5	0.001	mg/L	0.012	 	 
Nickel	7440-02-0	0.001	mg/L	<0.001	 	 
Selenium	7782-49-2	0.01	mg/L	<0.01	 	 
Zinc	7440-66-6	0.005	mg/L	0.034	 	 
Iron	7439-89-6	0.05	mg/L	0.62	 	 
EG020T: Total Metals by ICP-MS						
Aluminium	7429-90-5	0.01	mg/L	4.41	 	 
Arsenic	7440-38-2	0.001	mg/L	0.008	 	 

# Page : 7 of 8 Work Order : EP1306367 Client : MOBILE DEWATERING Project : E2011-109



Sub-Matrix: WATER (Matrix: WATER)	TER) Client sample ID		HVNMW6 03			 	
	Client sampling date / time		20-AUG-2013 09:30			 	
Compound	CAS Number	I OR	Unit	EP1306367-006			 
EG020T: Total Motals by ICB-MS Contin	und		<b>U</b>				
Cadmium	7440-43-9	0.0001	mg/L	<0.0001			 
Chromium	7440-47-3	0.001	mg/L	0.007			 
Copper	7440-50-8	0.001	mg/L	0.033			 
Lead	7439-92-1	0.001	mg/L	0.007			 
Manganese	7439-96-5	0.001	mg/L	0.014			 
Molybdenum	7439-98-7	0.001	mg/L	<0.001			 
Nickel	7440-02-0	0.001	mg/L	0.002			 
Selenium	7782-49-2	0.01	mg/L	<0.01			 
Silver	7440-22-4	0.001	mg/L	<0.001			 
Zinc	7440-66-6	0.005	mg/L	0.023			 
Iron	7439-89-6	0.05	mg/L	0.80			 
EG035T: Total Recoverable Mercury by FIMS							
Mercury	7439-97-6	0.0001	mg/L	<0.0001			 
EG050F: Dissolved Hexavalent Chromiu	m						
Hexavalent Chromium	18540-29-9	0.01	mg/L	<0.01			 
EG051G: Ferrous Iron by Discrete Analy	vser						
Ferrous Iron		0.05	mg/L	0.66			 
EK055G: Ammonia as N by Discrete Ana	alyser						
Ammonia as N	7664-41-7	0.01	mg/L	0.16			 
EK057G: Nitrite as N by Discrete Analys	ser						
Nitrite as N		0.01	mg/L	<0.01			 
EK058G: Nitrate as N by Discrete Analy	ser						
Nitrate as N	14797-55-8	0.01	mg/L	5.98			 
EK059G: Nitrite plus Nitrate as N (NOx)	by Discrete Ana	lyser					
Nitrite + Nitrate as N		0.01	mg/L	5.98			 
EK061G: Total Kjeldahl Nitrogen By Dis	crete Analyser						
Total Kjeldahl Nitrogen as N		0.1	mg/L	2.8			 
EK062G: Total Nitrogen as N (TKN + NO	x) by Discrete Ar	nalyser					
Total Nitrogen as N		0.1	mg/L	8.8			 
EK067G: Total Phosphorus as P by Disc	crete Analyser	0.04					
Total Phosphorus as P		0.01	mg/L	0.52			 
EK071G: Reactive Phosphorus as P by	discrete analyser	0.61		- F=			
Reactive Phosphorus as P	14265-44-2	0.01	mg/L	0.57			 

Page	: 8 of 8
Work Order	: EP1306367
Client	: MOBILE DEWATERING
Project	: E2011-109



Sub-Matrix: WATER (Matrix: WATER)	Client sample ID		HVNMW6 03			 	
	Client sampling date / time			20-AUG-2013 09:30			 
Compound	CAS Number	LOR	Unit	EP1306367-006			 
EK085M: Sulfide as S2-							
Sulfide as S2-	18496-25-8	0.1	mg/L	<0.1			 
EP030: Biochemical Oxygen Demand (BOD)							
Biochemical Oxygen Demand		2	mg/L	<2			 





**Environmental Division** 

## **QUALITY CONTROL REPORT**

Work Order	: EP1306367	Page	: 1 of 11
Client	: MOBILE DEWATERING	Laboratory	: Environmental Division Perth
Contact	: INFO	Contact	: Scott James
Address	: PO BOX 239	Address	: 10 Hod Way Malaga WA Australia 6090
	MIDLAND WA, AUSTRALIA 6939		
E-mail	: info@environmentalservices.com.au	E-mail	: perth.enviro.services@alsglobal.com
Telephone	: +61 08 9250 4995	Telephone	: +61-8-9209 7655
Facsimile	:	Facsimile	: +61-8-9209 7600
Project	: E2011-109	QC Level	: NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Site	: HOPEVALLEY NURSERY		
C-O-C number	: E2011-109-03	Date Samples Received	: 20-AUG-2013
Sampler	: J.T.	Issue Date	: 27-AUG-2013
Order number	:		
		No. of samples received	: 6
Quote number	: EP/667/13	No. of samples analysed	: 6

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Accredited for compliance with ISO/IEC 17025.



#### NATA Accredited Laboratory 825 Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

ition	Accreditation Category
als Chemist	Perth Inorganics
ganic Chemist	Perth Inorganics
ganic Chemist	Perth Inorganics
ganic Chemist	Perth Inorganics
CHEMIST	Perth Inorganics
	tion Ils Chemist ganic Chemist ganic Chemist GHEMIST

Address 10 Hod Way Malaga WA Australia 6090 PHONE +61-8-9209 7655 Facsimile +61-8-9209 7600 Environmental Division Perth ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company



www.alsglobal.com

**RIGHT SOLUTIONS RIGHT PARTNER** 

Page	: 2 of 11
Work Order	: EP1306367
Client	: MOBILE DEWATERING
Project	: E2011-109



#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

 Key :
 Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

 CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

 LOR = Limit of reporting

 RPD = Relative Percentage Difference

# = Indicates failed QC

Page	: 3 of 11
Work Order	: EP1306367
Client	: MOBILE DEWATERING
Project	: E2011-109



#### Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR:-No Limit; Result between 10 and 20 times LOR:-0% - 50%; Result > 20 times LOR:-0% - 20%.

Sub-Matrix: WATER						Laboratory L	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EA005P: pH by PC	Titrator (QC Lot: 3022038)								
EP1306326-001	Anonymous	EA005-P: pH Value		0.01	pH Unit	5.98	5.96	0.3	0% - 20%
EP1306339-008	Anonymous	EA005-P: pH Value		0.01	pH Unit	6.87	6.86	0.1	0% - 20%
EA005P: pH by PC	Titrator (QC Lot: 3022041)								
EP1306367-002	HVNMW2 03	EA005-P: pH Value		0.01	pH Unit	6.46	6.24	3.5	0% - 20%
EA010P: Conductiv	ity by PC Titrator (QC Lot: 30	022037)							
EP1306326-001	Anonymous	EA010-P: Electrical Conductivity @ 25°C		1	µS/cm	1760	1760	0.0	0% - 20%
EP1306339-008	Anonymous	EA010-P: Electrical Conductivity @ 25°C		1	µS/cm	413	410	0.5	0% - 20%
EA010P: Conductiv	ity by PC Titrator (QC Lot: 30	)22040)							
EP1306367-002	HVNMW2 03	EA010-P: Electrical Conductivity @ 25°C		1	µS/cm	159	154	2.7	0% - 20%
EA015: Total Dissol	ved Solids (QC Lot: 3024207	')							
EP1306367-001	HVNMW1 03	EA015H: Total Dissolved Solids @180°C		10	mg/L	685	663	3.3	0% - 20%
EA025: Suspended	Solids (QC Lot: 3024208)								
EP1306367-001	HVNMW1 03	EA025H: Suspended Solids (SS)		5	mg/L	2530	2570	1.3	0% - 20%
EA045: Turbidity (C	C Lot: 3022474)								
EP1306325-001	Anonymous	EA045: Turbidity		0.1	NTU	3.1	3.1	0.0	0% - 20%
EP1306339-006	Anonymous	EA045: Turbidity		0.1	NTU	602	601	0.2	0% - 20%
EA045: Turbidity (C	EA045: Turbidity (QC Lot: 3022475)								
EP1306367-006	HVNMW6 03	EA045: Turbidity		0.1	NTU	505	504	0.2	0% - 20%
EP1306370-008	Anonymous	EA045: Turbidity		0.1	NTU	20.0	19.7	1.5	0% - 20%
ED037P: Alkalinity I	oy PC Titrator (QC Lot: 30220	036)							
EP1306326-001	Anonymous	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	54	55	2.1	0% - 20%
		ED037-P: Total Alkalinity as CaCO3		1	mg/L	54	55	2.1	0% - 20%
EP1306339-008	Anonymous	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	113	113	0.0	0% - 20%
		ED037-P: Total Alkalinity as CaCO3		1	mg/L	113	113	0.0	0% - 20%
ED037P: Alkalinity I	by PC Titrator (QC Lot: 30220	039)							
EP1306367-002	HVNMW2 03	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	10	7	40.8	0% - 50%
		ED037-P: Total Alkalinity as CaCO3		1	mg/L	10	7	40.8	0% - 50%
ED038A: Acidity (Q	C Lot: 3021983)								

Page	: 4 of 11
Work Order	: EP1306367
Client	: MOBILE DEWATERING
Project	: E2011-109



Sub-Matrix: WATER						Laboratory	Duplicate (DUP) Repor	t	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
ED038A: Acidity (Q	C Lot: 3021983) - co	ontinued							
EP1306304-001	Anonymous	ED038: Acidity as CaCO3		1	mg/L	6	7	15.4	No Limit
EP1306367-002	HVNMW2 03	ED038: Acidity as CaCO3		1	mg/L	6	8	28.6	No Limit
ED041G: Sulfate (Tr	urbidimetric) as SO4	2- by DA (QC Lot: 3021386)			_			1	
EP1306362-001	Anonymous	ED0/1G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	ma/l	16	16	0.0	0% - 50%
ED045G: Chlorido D	)iscrete analyser. (O(			•				0.0	0,0 00,0
ED1206262 001			16997 00 6	1	mg/l	202	205	1 1	0% 20%
EP 1300302-001	Anonymous	ED045G: Chionde	10007-00-0	I	IIIg/L	292	295	1.1	076 - 2076
EG020F: Dissolved	Metals by ICP-MS (C	JC Lot: 3026523)							
EP1306367-001	HVNMW1 03	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	< 0.0001	0.0	No Limit
		EG020A-F: Arsenic	7440-38-2	0.001	mg/L	0.002	0.002	0.0	No Limit
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Manganese	7439-96-5	0.001	mg/L	0.012	0.012	0.0	0% - 50%
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	0.001	0.001	0.0	No Limit
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	0.017	0.017	0.0	No Limit
		EG020A-F: Aluminium	7429-90-5	0.01	mg/L	0.14	0.14	0.0	0% - 50%
		EG020A-F: Selenium	7782-49-2	0.01	mg/L	<0.01	<0.01	0.0	No Limit
		EG020A-F: Iron	7439-89-6	0.05	mg/L	0.30	0.30	0.0	No Limit
EP1306370-005	Anonymous	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit
		EG020A-F: Arsenic	7440-38-2	0.001	mg/L	0.001	<0.001	0.0	No Limit
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Manganese	7439-96-5	0.001	mg/L	0.030	0.030	0.0	0% - 20%
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	0.009	0.009	0.0	No Limit
		EG020A-F: Aluminium	7429-90-5	0.01	mg/L	<0.01	<0.01	0.0	No Limit
		EG020A-F: Selenium	7782-49-2	0.01	mg/L	<0.01	<0.01	0.0	No Limit
		EG020A-F: Iron	7439-89-6	0.05	mg/L	5.49	5.91	7.4	0% - 20%
EG020T: Total Meta	is by ICP-MS (QC Lo	ot: 3026511)							
EP1306355-001	Anonymous	EG020A-T: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit
	,	EG020A-T [·] Arsenic	7440-38-2	0.001	mg/L	0.001	0.001	0.0	No Limit
		EG020A-T: Chromium	7440-47-3	0.001	mg/L	< 0.001	< 0.001	0.0	No Limit
		EG020A-T: Conper	7440-50-8	0.001	mg/l	0.936	0.948	12	0% - 20%
		EG020A-T: Lead	7439-92-1	0.001	mg/l	<0.001	<0.001	0.0	No Limit
		EG020A T: Manganese	7439-96-5	0.001	mg/L	0.012	0.012	0.0	0% - 50%
		EG020A-T: Molybdenum	7439-98-7	0.001	mg/L	0.002	0.001	0.0	No Limit
			7440-02-0	0.001	mg/L	<0.002	<0.001	0.0	No Limit
			7440-66-6	0.005	mg/L	0.106	0 106	0.0	0% - 20%
			7429_00_5	0.000	mg/L	<0.01	<0.01	0.0	No Limit
			7782.40.2	0.01	mg/L	<0.01	<0.01	0.0	No Limit
			7/20 80 6	0.01	mg/L	0.14	0.14	0.0	No Limit
EP1306374 001	Δησηγραφικ		740 42 0	0.00	mg/L	<0.001	<0.001	0.0	No Limit
	Anonymous		7440.38.2	0.0001	mg/L	<0.0001		0.0	No Limit
		EG020A-1: Arsenic	/440-30-2	0.001	mg/L	<0.001	<0.001	0.0	INO LITTIL

Page	5 of 11
Work Order	: EP1306367
Client	: MOBILE DEWATERING
Project	: E2011-109



Sub-Matrix: WATER						Laboratory D	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EG020T: Total Metals	by ICP-MS (QC Lot: 302651	1) - continued							
EP1306374-001	Anonymous	EG020A-T: Chromium	7440-47-3	0.001	mg/L	0.002	0.002	0.0	No Limit
		EG020A-T: Copper	7440-50-8	0.001	mg/L	0.002	0.001	0.0	No Limit
		EG020A-T: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-T: Manganese	7439-96-5	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-T: Molybdenum	7439-98-7	0.001	mg/L	0.004	0.004	0.0	No Limit
		EG020A-T: Nickel	7440-02-0	0.001	mg/L	0.003	0.003	0.0	No Limit
		EG020A-T: Zinc	7440-66-6	0.005	mg/L	<0.005	<0.005	0.0	No Limit
		EG020A-T: Aluminium	7429-90-5	0.01	mg/L	<0.01	<0.01	0.0	No Limit
		EG020A-T: Selenium	7782-49-2	0.01	mg/L	<0.01	<0.01	0.0	No Limit
		EG020A-T: Iron	7439-89-6	0.05	mg/L	0.08	0.08	0.0	No Limit
EG020T: Total Metals	by ICP-MS (QC Lot: 302651	12)							
EP1306355-001	Anonymous	EG020B-T: Silver	7440-22-4	0.001	mg/L	<0.001	<0.001	0.0	No Limit
EG035T: Total Recov	verable Mercury by FIMS (Q	C Lot: 3024696)							
EP1306280-001	Anonymous	EG035T: Mercury	7439-97-6	0.0001	mg/L	<0.0100	<0.0100	0.0	No Limit
EP1306367-006	HVNMW6 03	EG035T: Mercury	7439-97-6	0.0001	mg/L	<0.0001	0.0001	0.0	No Limit
EG050F: Dissolved H	exavalent Chromium (QC L	ot: 3023208)							
EP1306304-001	Anonymous	EG050G-F: Hexavalent Chromium	18540-29-9	0.01	mg/L	<0.01	<0.01	0.0	No Limit
EP1306367-002	HVNMW2 03	EG050G-F: Hexavalent Chromium	18540-29-9	0.01	mg/L	<0.01	<0.01	0.0	No Limit
EG051G: Ferrous Iron	n by Discrete Analyser (QC	Lot: 3023100)							
EP1306336-018	Anonymous	EG051G: Ferrous Iron		0.05	mg/L	0.17	0.17	0.0	No Limit
EP1306367-002	HVNMW2 03	EG051G: Ferrous Iron		0.05	mg/L	<0.05	<0.05	0.0	No Limit
EK055G: Ammonia as	s N by Discrete Analyser (Q	C Lot: 3023549)							
EP1306366-021	Anonymous	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	1.84	1.85	0.5	0% - 20%
EK057G: Nitrite as N	by Discrete Analyser (QC L	.ot: 3021378)							
EP1306337-001	Anonymous	EK057G: Nitrite as N		0.01	mg/L	0.01	0.01	0.0	No Limit
EP1306339-008	Anonymous	EK057G: Nitrite as N		0.01	mg/L	<0.01	<0.01	0.0	No Limit
EK057G: Nitrite as N	by Discrete Analyser (QC L	.ot: 3021387)							
EP1306362-001	Anonymous	EK057G: Nitrite as N		0.01	mg/L	<0.01	<0.01	0.0	No Limit
EK059G: Nitrite plus	Nitrate as N (NOx) by Discr	ete Analyser (QC Lot: 3023548)							
EP1306366-021	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	<0.05	<0.05	0.0	No Limit
EP1306359-020	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	3.97	3.92	1.3	0% - 20%
EK061G: Total Kjelda	hl Nitrogen By Discrete Ana	lyser (QC Lot: 3026727)			_				
EP1306351-001	Anonymous	EK061G: Total Kieldahl Nitrogen as N		0.1	ma/L	0.5	0.5	0.0	No Limit
EP1306367-004	HVNMW4 03	EK061G: Total Kieldahl Nitrogen as N		0.1	mg/L	2.3	2.3	0.0	0% - 50%
EK067G: Total Phosp	horus as P b <u>y Discrete Ana</u>	lyser (QC Lot: 3026728)							
EP1306351-001	Anonymous	EK067G: Total Phosphorus as P		0.01	mg/L	0.26	0.25	0.0	0% - 20%
EP1306367-004	HVNMW4 03	EK067G: Total Phosphorus as P		0.01	mg/L	0.05	<0.02	79.2	No Limit
EK071G: Reactive Ph	osphorus as P by di <u>screte a</u>	nalyser (QC Lot: 3021384)							

Page	: 6 of 11
Work Order	: EP1306367
Client	: MOBILE DEWATERING
Project	: E2011-109



Sub-Matrix: WATER	ub-Matrix: WATER			Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)		
EK071G: Reactive Ph	osphorus as P by discrete a	analyser (QC Lot: 3021384) - continued									
EP1306362-001	Anonymous	EK071G: Reactive Phosphorus as P	14265-44-2	0.01	mg/L	0.02	0.02	0.0	No Limit		
EP1306369-001	Anonymous	EK071G: Reactive Phosphorus as P	14265-44-2	0.01	mg/L	<0.01	<0.01	0.0	No Limit		
EK085M: Sulfide as S	2- (QC Lot: 3028642)										
EP1306367-001	HVNMW1 03	EK085: Sulfide as S2-	18496-25-8	0.1	mg/L	<0.1	<0.1	0.0	No Limit		
EP030: Biochemical	Oxygen Demand (BOD) (QC	Lot: 3024826)									
EP1306311-014	Anonymous	EP030: Biochemical Oxygen Demand		2	mg/L	880	960	8.7	0% - 20%		
EP1306367-006	HVNMW6 03	EP030: Biochemical Oxygen Demand		2	mg/L	<2	5	91.9	No Limit		



#### Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EA005P: pH by PC Titrator (QCLot: 3022038)									
EA005-P: pH Value		0.01	pH Unit		7.00 pH Unit	100	98.5	101.5	
EA005P: pH by PC Titrator (QCLot: 3022041)									
EA005-P: pH Value		0.01	pH Unit		7.00 pH Unit	100	98.5	101.5	
EA010P: Conductivity by PC Titrator (QCLot: 3022037)									
EA010-P: Electrical Conductivity @ 25°C		1	µS/cm	<1	24800 µS/cm	96.3	95	105	
EA010P: Conductivity by PC Titrator (QCLot: 3022040)									
EA010-P: Electrical Conductivity @ 25°C		1	µS/cm	<1	24800 µS/cm	97.9	95	105	
EA015: Total Dissolved Solids (QCLot: 3024207)									
EA015H: Total Dissolved Solids @180°C		10	mg/L	<10	293 mg/L	102	83	130	
EA025: Suspended Solids (QCLot: 3024208)									
EA025H: Suspended Solids (SS)		5	mg/L	<5	150 mg/L	99.8	70	130	
EA045: Turbidity (QCLot: 3022474)									
EA045: Turbidity		0.1	NTU	<0.1	40 NTU	98.8	91	107	
EA045: Turbidity (QCLot: 3022475)									
EA045: Turbidity		0.1	NTU	<0.1	40 NTU	98.8	91	107	
ED037P: Alkalinity by PC Titrator (QCLot: 3022036)									
ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-00	1	mg/L	<1					
	1								
ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1					
ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	<1					
ED037-P: Total Alkalinity as CaCO3		1	mg/L	<1	200 mg/L	102	87	121	
ED037P: Alkalinity by PC Titrator (QCLot: 3022039)									
ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-00	1	mg/L	<1					
	1								
ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1					
ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	<1					
ED037-P: Total Alkalinity as CaCO3		1	mg/L	<1	200 mg/L	104	87	121	
ED038A: Acidity (QCLot: 3021983)									
ED038: Acidity as CaCO3		1	mg/L		20 mg/L	100	85	119	
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA (QCLo	t: 3021386)								
ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	<1	25 mg/L	94.4	88	121	
ED045G: Chloride Discrete analyser (QCLot: 3021383)									
ED045G: Chloride	16887-00-6	1	mg/L	<1	1000 mg/L	96.0	84	120	

Page	: 8 of 11
Work Order	: EP1306367
Client	: MOBILE DEWATERING
Project	; E2011-109



Sub-Matrix: WATER				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EG020F: Dissolved Metals by ICP-MS (QCLot: 3026523)									
EG020A-F: Aluminium	7429-90-5	0.01	mg/L	<0.01	0.50 mg/L	101	77	113	
EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	0.100 mg/L	95.4	89	109	
EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	0.1000 mg/L	94.6	89	109	
EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	0.100 mg/L	93.8	88	106	
EG020A-F: Manganese	7439-96-5	0.001	mg/L	<0.001	0.100 mg/L	94.8	87	107	
EG020A-F: Nickel	7440-02-0	0.001	mg/L	<0.001	0.100 mg/L	93.3	87	109	
EG020A-F: Selenium	7782-49-2	0.01	mg/L	<0.01	0.10 mg/L	102	93	117	
EG020A-F: Zinc	7440-66-6	0.005	mg/L	<0.005	0.100 mg/L	97.2	89	115	
EG020A-F: Iron	7439-89-6	0.05	mg/L	<0.05	0.50 mg/L	91.9	83	109	
EG020T: Total Metals by ICP-MS (QCLot: 3026511)									
EG020A-T: Aluminium	7429-90-5	0.01	mg/L	<0.01	0.5 mg/L	105	78	116	
EG020A-T: Arsenic	7440-38-2	0.001	mg/L	<0.001	0.1 mg/L	90.7	77	109	
EG020A-T: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	0.1 mg/L	91.5	78	108	
EG020A-T: Chromium	7440-47-3	0.001	mg/L	<0.001	0.1 mg/L	97.4	80	112	
EG020A-T: Copper	7440-50-8	0.001	mg/L	<0.001	0.1 mg/L	94.1	79	111	
EG020A-T: Lead	7439-92-1	0.001	mg/L	<0.001	0.1 mg/L	96.4	81	109	
EG020A-T: Manganese	7439-96-5	0.001	mg/L	<0.001	0.1 mg/L	97.9	80	112	
EG020A-T: Molybdenum	7439-98-7	0.001	mg/L	<0.001	0.1 mg/L	107	86	118	
EG020A-T: Nickel	7440-02-0	0.001	mg/L	<0.001	0.1 mg/L	96.2	80	112	
EG020A-T: Selenium	7782-49-2	0.01	mg/L	<0.01	0.1 mg/L	91.7	75	107	
EG020A-T: Zinc	7440-66-6	0.005	mg/L	<0.005	0.1 mg/L	88.4	74	108	
EG020A-T: Iron	7439-89-6	0.05	mg/L	<0.05	0.5 mg/L	97.5	75	115	
EG020T: Total Metals by ICP-MS (QCLot: 3026512)									
EG020B-T: Silver	7440-22-4	0.001	mg/L	<0.001	0.01 mg/L	93.5	70	130	
EG035T: Total Recoverable Mercury by FIMS (QCL	ot: 3024696)								
EG035T: Mercury	7439-97-6	0.0001	mg/L	<0.0001	0.0100 mg/L	100	82.3	118	
EG050F: Dissolved Hexavalent Chromium (QCLot:	3023208)								
EG050G-F: Hexavalent Chromium	18540-29-9	0.01	mg/L	<0.01	0.5 mg/L	100	91	115	
EG051G: Ferrous Iron by Discrete Analyser (QCLot	: 3023100)								
EG051G: Ferrous Iron		0.05	mg/L	<0.05	2.00 mg/L	102	89	113	
EK055G: Ammonia as N by Discrete Analyser (QCL	.ot: 3023549)								
EK055G: Ammonia as N	7664-41-7	0.01	mg/L	<0.01	1 mg/L	98.0	87	115	
EK057G: Nitrite as N by Discrete Analyser (QCLot:	3021378)								
EK057G: Nitrite as N		0.01	mg/L	<0.01	0.5 mg/L	99.7	86	112	
EK057G: Nitrite as N by Discrete Analyser (QCLot:	3021387)								
EK057G: Nitrite as N		0.01	mg/L	<0.01	0.5 mg/L	98.6	86	112	
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete	Analyser (QCLot: 302	23548)							
EK059G: Nitrite + Nitrate as N		0.01	mg/L	<0.01	0.5 mg/L	98.0	92	112	

Page	: 9 of 11
Work Order	: EP1306367
Client	: MOBILE DEWATERING
Project	; E2011-109



Sub-Matrix: WATER	Method Blank (MB)	Laboratory Control Spike (LCS) Report						
		Report		Spike	Spike Recovery (%)	Recovery Limits (%)		
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EK061G: Total Kjeldahl Nitrogen By Discrete Analyser	(QCLot: 3026727)							
EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	<0.1	10 mg/L	93.5	74	130
EK067G: Total Phosphorus as P by Discrete Analyser	(QCLot: 3026728)							
EK067G: Total Phosphorus as P		0.01	mg/L	<0.01	4.42 mg/L	98.9	70	130
EK071G: Reactive Phosphorus as P by discrete analy	ser (QCLot: 302138	34)						
EK071G: Reactive Phosphorus as P	14265-44-2	0.01	mg/L	<0.01	0.5 mg/L	104	87	115
EK085M: Sulfide as S2- (QCLot: 3028642)								
EK085: Sulfide as S2-	18496-25-8	0.10	mg/L	<0.1	0.50 mg/L	96.2	82	116
EP030: Biochemical Oxygen Demand (BOD) (QCLot:	3024826)							
EP030: Biochemical Oxygen Demand		2	mg/L	<2	198 mg/L	84.6	84	114

#### Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: WATER				Ма	trix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Recovery Li	mits (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
ED041G: Sulfate (1	Furbidimetric) as SO4 2- by DA (QCLot: 3021386)						
EP1306362-001	Anonymous	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	100 mg/L	100	70	130
ED045G: Chloride	Discrete analyser (QCLot: 3021383)						
EP1306362-001	Anonymous	ED045G: Chloride	16887-00-6	1000 mg/L	93.1	70	130
EG020F: Dissolved	I Metals by ICP-MS (QCLot: 3026523)						
EP1306367-002	HVNMW2 03	EG020A-F: Arsenic	7440-38-2	0.200 mg/L	93.1	70	130
		EG020A-F: Cadmium	7440-43-9	0.0500 mg/L	102	70	130
		EG020A-F: Chromium	7440-47-3	0.200 mg/L	87.3	70	130
		EG020A-F: Manganese	7439-96-5	0.200 mg/L	91.0	70	130
		EG020A-F: Nickel	7440-02-0	0.200 mg/L	87.6	70	130
		EG020A-F: Zinc	7440-66-6	0.200 mg/L	96.6	70	130
EG020T: Total Met	als by ICP-MS (QCLot: 3026511)						
EP1306367-001	HVNMW1 03	EG020A-T: Arsenic	7440-38-2	1.00 mg/L	90.4	70	130
		EG020A-T: Cadmium	7440-43-9	0.25 mg/L	95.6	70	130
		EG020A-T: Chromium	7440-47-3	1.00 mg/L	78.8	70	130
		EG020A-T: Copper	7440-50-8	1.00 mg/L	93.7	70	130
		EG020A-T: Lead	7439-92-1	1.00 mg/L	96.0	70	130
		EG020A-T: Manganese	7439-96-5	1.00 mg/L	81.0	70	130
		EG020A-T: Nickel	7440-02-0	1.00 mg/L	93.2	70	130
		EG020A-T: Zinc	7440-66-6	1.00 mg/L	89.1	70	130

Page	: 10 of 11
Work Order	: EP1306367
Client	: MOBILE DEWATERING
Project	: E2011-109



Sub-Matrix: WATER			[	Ма	trix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Recovery Li	mits (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EG035T: Total Red	coverable Mercury by FIMS (QCLot: 3024696)						
EP1306311-001	Anonymous	EG035T: Mercury	7439-97-6	0.0100 mg/L	100	70	130
EG050F: Dissolved	Hexavalent Chromium (QCLot: 3023208)						
EP1306304-001	Anonymous	EG050G-F: Hexavalent Chromium	18540-29-9	0.5 mg/L	93.5	70	130
EG051G: Ferrous I	ron by Discrete Analyser (QCLot: 3023100)						
EP1306336-018	Anonymous	EG051G: Ferrous Iron		2.5 mg/L	100	70	130
EK055G: Ammonia	as N by Discrete Analyser (QCLot: 3023549)						
EP1306366-021	Anonymous	EK055G: Ammonia as N	7664-41-7	1.00 mg/L	103	70	130
EK057G: Nitrite as N by Discrete Analyser (QCLot: 3021378)							
EP1306337-001	Anonymous	EK057G: Nitrite as N		0.6 mg/L	83.4	70	130
EK057G: Nitrite as	N by Discrete Analyser (QCLot: 3021387)						
EP1306362-001	Anonymous	EK057G: Nitrite as N		0.6 mg/L	84.6	70	130
EK059G: Nitrite pl	us Nitrate as N (NOx) by Discrete Analyser(QCLot: 302	3548)					
EP1306366-021	Anonymous	EK059G: Nitrite + Nitrate as N		0.5 mg/L	89.0	70	130
EK061G: Total Kjel	dahl Nitrogen By Discrete Analyser (QCLot: 3026727)						
EP1306351-001	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		5.0 mg/L	89.3	70	130
EK067G: Total Pho	sphorus as P by Discrete Analyser (QCLot: 3026728)						
EP1306351-001	Anonymous	EK067G: Total Phosphorus as P		1 mg/L	80.2	70	130
EK071G: Reactive	Phosphorus as P by discrete analyser (QCLot: 3021384						
EP1306362-001	Anonymous	EK071G: Reactive Phosphorus as P	14265-44-2	0.5 mg/L	106	70	130

#### Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

The quality control term Matrix Spike (MS) and Matrix Spike Duplicate (MSD) refers to intralaboratory split samples spiked with a representative set of target analytes. The purpose of these QC parameters are to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: WATER	ub-Matrix: WATER		Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report							
				Spike	Spike Recovery (%)		Recovery Limits (%)		RPDs (%)	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Control Limit
EK057G: Nitrite as	N by Discrete Analyser (QCLot: 3021378	)								
EP1306337-001	Anonymous	EK057G: Nitrite as N		0.6 mg/L	83.4		70	130		
ED045G: Chloride Discrete analyser (QCLot: 3021383)										
EP1306362-001	Anonymous	ED045G: Chloride	16887-00-6	1000 mg/L	93.1		70	130		
EK071G: Reactive P	Phosphorus as P by discrete analyser (Q	CLot: 3021384)								
EP1306362-001	Anonymous	EK071G: Reactive Phosphorus as P	14265-44-2	0.5 mg/L	106		70	130		
ED041G: Sulfate (Tu	urbidimetric) as SO4 2- by DA(QCLot: 30	21386)								
EP1306362-001	Anonymous	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	100 mg/L	100		70	130		

Page	: 11 of 11
Work Order	: EP1306367
Client	: MOBILE DEWATERING
Project	: E2011-109



Sub-Matrix: WATER				Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report						
				Spike	Spike Red	covery (%)	Recovery	Limits (%)	RPD	)s (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Control Limit
EK057G: Nitrite as	N by Discrete Analyser (QCLot: 302	1387)								
EP1306362-001	Anonymous	EK057G: Nitrite as N		0.6 mg/L	84.6		70	130		
EG051G: Ferrous I	ron by Discrete Analyser (QCLot: 302	23100)								
EP1306336-018	Anonymous	EG051G: Ferrous Iron		2.5 mg/L	100		70	130		
EG050F: Dissolved	Hexavalent Chromium (QCLot: 3023	208)								
EP1306304-001	Anonymous	EG050G-F: Hexavalent Chromium	18540-29-9	0.5 mg/L	93.5		70	130		
EK059G: Nitrite pl	us Nitrate as N (NOx) by Discrete Ana	alyser (QCLot: 3023548)								
EP1306366-021	Anonymous	EK059G: Nitrite + Nitrate as N		0.5 mg/L	89.0		70	130		
EK055G: Ammonia	as N by Discrete Analyser (QCLot: 3	023549)								
EP1306366-021	Anonymous	EK055G: Ammonia as N	7664-41-7	1.00 mg/L	103		70	130		
EG035T: Total Rec	coverable Mercurv by FIMS (QCLot: 3	024696)								
EP1306311-001	Anonymous	EG035T: Mercury	7439-97-6	0.0100 mg/L	100		70	130		
EG020T: Total Meta	als by ICP-MS (QCLot: 3026511)									
EP1306367-001	HVNMW1 03	EG020A-T: Arsenic	7440-38-2	1.00 mg/L	90.4		70	130		
		EG020A-T: Cadmium	7440-43-9	0.25 mg/L	95.6		70	130		
		EG020A-T: Chromium	7440-47-3	1.00 mg/L	78.8		70	130		
		EG020A-T: Copper	7440-50-8	1.00 mg/L	93.7		70	130		
		EG020A-T: Lead	7439-92-1	1.00 mg/L	96.0		70	130		
		EG020A-T: Manganese	7439-96-5	1.00 mg/L	81.0		70	130		
		EG020A-T: Nickel	7440-02-0	1.00 mg/L	93.2		70	130		
		EG020A-T: Zinc	7440-66-6	1.00 mg/L	89.1		70	130		
EG020F: Dissolved	Metals by ICP-MS (QCLot: 3026523)									
EP1306367-002	HVNMW2 03	EG020A-F: Arsenic	7440-38-2	0.200 mg/L	93.1		70	130		
		EG020A-F: Cadmium	7440-43-9	0.0500 mg/L	102		70	130		
		EG020A-F: Chromium	7440-47-3	0.200 mg/L	87.3		70	130		
		EG020A-F: Manganese	7439-96-5	0.200 mg/L	91.0		70	130		
		EG020A-F: Nickel	7440-02-0	0.200 mg/L	87.6		70	130		
		EG020A-F: Zinc	7440-66-6	0.200 mg/L	96.6		70	130		
EK061G: Total Kjel	dahl Nitrogen By Discrete Analyser(	QCLot: 3026727)								
EP1306351-001	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		5.0 mg/L	89.3		70	130		
EK067G: Total Pho	sphorus as P by Discrete Analyser(	QCLot: 3026728)								
EP1306351-001	Anonymous	EK067G: Total Phosphorus as P		1 mg/L	80.2		70	130		





**Environmental Division** 

## **INTERPRETIVE QUALITY CONTROL REPORT**

Work Order	: EP1306367	Page	: 1 of 12
Client	: MOBILE DEWATERING	Laboratory	: Environmental Division Perth
Contact	: INFO	Contact	: Scott James
Address	: PO BOX 239	Address	: 10 Hod Way Malaga WA Australia 6090
	MIDLAND WA, AUSTRALIA 6939		
E-mail	: info@environmentalservices.com.au	E-mail	: perth.enviro.services@alsglobal.com
Telephone	: +61 08 9250 4995	Telephone	: +61-8-9209 7655
Facsimile	:	Facsimile	: +61-8-9209 7600
Project	: E2011-109	QC Level	: NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Site	: HOPEVALLEY NURSERY		
C-O-C number	: E2011-109-03	Date Samples Received	: 20-AUG-2013
Sampler	: J.T.	Issue Date	: 27-AUG-2013
Order number	:		
		No. of samples received	: 6
Quote number	: EP/667/13	No. of samples analysed	: 6

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Interpretive Quality Control Report contains the following information:

- Analysis Holding Time Compliance
- Quality Control Parameter Frequency Compliance
- Brief Method Summaries
- Summary of Outliers

Address 10 Hod Way Malaga WA Australia 6090 PHONE +61-8-9209 7655 Facsimile +61-8-9209 7600 Environmental Division Perth ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company



www.alsglobal.com

**RIGHT SOLUTIONS RIGHT PARTNER** 

Matrix: WATER



#### Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with recommended holding times (USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Evaluation: * = Holding time breach ;  $\checkmark$  = Within holding time.

								,	J J J J
Method		Si	Sample Date	Extraction / Preparation			Analysis		
Container / Client Sample ID(s)				Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA005P: pH by PC Titrator									
Clear Plastic Bottle - Natural (EA005-P)									
HVNMW1 03,	HVNMW2 03,	20-	)-AUG-2013		20-AUG-2013		21-AUG-2013	20-AUG-2013	×
HVNMW3 03,	HVNMW4 03,								
HVNMW5 03,	HVNMW6 03								
EA010P: Conductivity by PC Titrator									
Clear Plastic Bottle - Natural (EA010-P)									
HVNMW1 03,	HVNMW2 03,	20-	)-AUG-2013		17-SEP-2013		21-AUG-2013	17-SEP-2013	✓
HVNMW3 03,	HVNMW4 03,								
HVNMW5 03,	HVNMW6 03								
EA015: Total Dissolved Solids									
Clear Plastic Bottle - Natural (EA015H)									
HVNMW1 03,	HVNMW2 03,	20-	)-AUG-2013		27-AUG-2013		22-AUG-2013	27-AUG-2013	✓
HVNMW3 03,	HVNMW4 03,								
HVNMW5 03,	HVNMW6 03								
EA025: Suspended Solids									
Clear Plastic Bottle - Natural (EA025H)									
HVNMW1 03,	HVNMW2 03,	20-	)-AUG-2013		27-AUG-2013		22-AUG-2013	27-AUG-2013	✓
HVNMW3 03,	HVNMW4 03,								
HVNMW5 03,	HVNMW6 03								
EA045: Turbidity									
Clear Plastic Bottle - Natural (EA045)									
HVNMW1 03,	HVNMW2 03,	20-	)-AUG-2013				21-AUG-2013	22-AUG-2013	✓
HVNMW3 03,	HVNMW4 03,								
HVNMW5 03,	HVNMW6 03								
ED037P: Alkalinity by PC Titrator									
Clear Plastic Bottle - Natural (ED037-P)									
HVNMW1 03,	HVNMW2 03,	20-	)-AUG-2013		03-SEP-2013		21-AUG-2013	03-SEP-2013	✓
HVNMW3 03,	HVNMW4 03,								
HVNMW5 03,	HVNMW6 03								

Page	: 3 of 12
Work Order	: EP1306367
Client	: MOBILE DEWATERING
Project	: E2011-109



Matrix: WATER			Evaluation: ★ = Holding time breach ; ✓ = Within holding time						
Method		Sample Date	Extraction / Preparation				Analysis		
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation	
ED038A: Acidity									
Clear Plastic Bottle - Natural (ED038)									
HVNMW1 03,	HVNMW2 03,	20-AUG-2013				21-AUG-2013	03-SEP-2013	✓	
HVNMW3 03,	HVNMW4 03,								
HVNMW5 03,	HVNMW6 03								
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA									
Clear Plastic Bottle - Natural (ED041G)									
HVNMW1 03,	HVNMW2 03,	20-AUG-2013		17-SEP-2013		20-AUG-2013	17-SEP-2013	<ul> <li>✓</li> </ul>	
HVNMW3 03,	HVNMW4 03,								
HVNMW5 03,	HVNMW6 03								
ED045G: Chloride Discrete analyser									
Clear Plastic Bottle - Natural (ED045G)									
HVNMW1 03,	HVNMW2 03,	20-AUG-2013		17-SEP-2013		20-AUG-2013	17-SEP-2013	<ul> <li>✓</li> </ul>	
HVNMW3 03,	HVNMW4 03,								
HVNMW5 03,	HVNMW6 03								
EG020F: Dissolved Metals by ICP-MS									
Clear Plastic Bottle - Filtered; Lab-acidified (EG020A-F)									
HVNMW1 03,	HVNMW2 03,	20-AUG-2013		16-FEB-2014		23-AUG-2013	16-FEB-2014	✓	
HVNMW3 03,	HVNMW4 03,								
HVNMW5 03,	HVNMW6 03								
EG020T: Total Metals by ICP-MS									
Clear Plastic Bottle - Unfiltered; Lab-acidified (EG020A-T	)								
HVNMW1 03,	HVNMW2 03,	20-AUG-2013	23-AUG-2013	16-FEB-2014	-	23-AUG-2013	16-FEB-2014	✓	
HVNMW3 03,	HVNMW4 03,								
HVNMW5 03,	HVNMW6 03								
EG020T: Total Metals by ICP-MS									
Clear Plastic Bottle - Unfiltered; Lab-acidified (EG020B-T	)								
HVNMW1 03,	HVNMW2 03,	20-AUG-2013	23-AUG-2013	16-FEB-2014	-	23-AUG-2013	16-FEB-2014	✓	
HVNMW3 03,	HVNMW4 03,								
HVNMW5 03,	HVNMW6 03								
EG035T: Total Recoverable Mercury by FIMS									
Clear Plastic Bottle - Unfiltered; Lab-acidified (EG035T)									
HVNMW1 03,	HVNMW2 03,	20-AUG-2013				22-AUG-2013	17-SEP-2013	✓	
HVNMW3 03,	HVNMW4 03,								
HVNMW5 03,	HVNMW6 03								
EG050F: Dissolved Hexavalent Chromium									
Clear Plastic Bottle - NaOH (EG050G-F)									
HVNMW1 03,	HVNMW2 03,	20-AUG-2013				22-AUG-2013	17-SEP-2013	<ul> <li>✓</li> </ul>	
HVNMW3 03,	HVNMW4 03,								
HVNMW5 03,	HVNMW6 03								

Page	: 4 of 12
Work Order	: EP1306367
Client	: MOBILE DEWATERING
Project	: E2011-109



Matrix: WATER					Evaluation	× = Holding time	breach ; ✓ = Withir	n holding time.
Method		Sample Date	Extraction / Preparation			Analysis		
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EG051G: Ferrous Iron by Discrete Analyser								
Clear Plastic Bottle - HCl - Filtered (EG051G) HVNMW1 03, HVNMW2 02	HVNMW2 03,	20-AUG-2013				20-AUG-2013	27-AUG-2013	~
Clear Plastic Bottle - Natural (EG051G) HVNMW4 03,	HVNMW5 03,	20-AUG-2013				20-AUG-2013	21-AUG-2013	~
EK055G: Ammonia as N by Discrete Analyser Clear Plastic Bottle - Sulphuric Acid (EK055G) HVNMW1 03, HVNMW3 03, HVNMW5 03,	HVNMW2 03, HVNMW4 03, HVNMW6 03	20-AUG-2013		17-SEP-2013		20-AUG-2013	17-SEP-2013	~
EK057G: Nitrite as N by Discrete Analyser								
Clear Plastic Bottle - Natural (EK057G) HVNMW1 03, HVNMW3 03, HVNMW5 03,	HVNMW2 03, HVNMW4 03, HVNMW6 03	20-AUG-2013		22-AUG-2013		20-AUG-2013	22-AUG-2013	~
EK059G: Nitrite plus Nitrate as N (NOx) by Discr	rete Analyser							
Clear Plastic Bottle - Sulphuric Acid (EK059G) HVNMW1 03, HVNMW3 03, HVNMW5 03,	HVNMW2 03, HVNMW4 03, HVNMW6 03	20-AUG-2013		17-SEP-2013		20-AUG-2013	17-SEP-2013	1
EK061G: Total Kjeldahl Nitrogen By Discrete Ana	alyser							
Clear Plastic Bottle - Sulphuric Acid (EK061G) HVNMW1 03, HVNMW3 03, HVNMW5 03,	HVNMW2 03, HVNMW4 03, HVNMW6 03	20-AUG-2013	26-AUG-2013	17-SEP-2013	~	26-AUG-2013	17-SEP-2013	~
EK067G: Total Phosphorus as P by Discrete Ana	lyser							
Clear Plastic Bottle - Sulphuric Acid (EK067G) HVNMW1 03, HVNMW3 03, HVNMW5 03,	HVNMW2 03, HVNMW4 03, HVNMW6 03	20-AUG-2013	26-AUG-2013	17-SEP-2013	1	26-AUG-2013	17-SEP-2013	~
EK071G: Reactive Phosphorus as P by discrete a	analyser							
Clear Plastic Bottle - Natural (EK071G) HVNMW1 03, HVNMW3 03, HVNMW5 03,	HVNMW2 03, HVNMW4 03, HVNMW6 03	20-AUG-2013		22-AUG-2013		20-AUG-2013	22-AUG-2013	~
EK085M: Sulfide as S2-								
Clear Plastic Bottle - Zinc Acetate/NaOH (EK085) HVNMW1 03, HVNMW3 03, HVNMW5 03,	HVNMW2 03, HVNMW4 03, HVNMW6 03	20-AUG-2013				26-AUG-2013	27-AUG-2013	~

Page	: 5 of 12
Work Order	: EP1306367
Client	: MOBILE DEWATERING
Project	: E2011-109



Matrix: WATER					Evaluation:	× = Holding time	breach ; 🗸 = Withir	n holding time.
Method		Sample Date	Extraction / Preparation			Analysis		
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP030: Biochemical Oxygen Deman	d (BOD)							
Clear Plastic Bottle - Natural (EP030)								
HVNMW1 03,	HVNMW2 03,	20-AUG-2013				22-AUG-2013	22-AUG-2013	✓
HVNMW3 03,	HVNMW4 03,							
HVNMW5 03,	HVNMW6 03							



## **Quality Control Parameter Frequency Compliance**

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(where) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: WATER	not within specification ; $\checkmark$ = Quality Control frequency within specification.						
Quality Control Sample Type			Count		Rate (%)		Quality Control Specification
Analvtical Methods	Method	00	OC Reaular		Expected	Evaluation	
Laboratory Duplicates (DUP)							
Acidity as Calcium Carbonate	ED038	2	14	14.3	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Alkalinity by PC Titrator	ED037-P	3	25	12.0	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Ammonia as N by Discrete analyser	EK055G	1	10	10.0	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Biochemical Oxygen Demand (BOD)	EP030	2	20	10.0	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Chloride by Discrete Analyser	ED045G	1	10	10.0	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Conductivity by PC Titrator	EA010-P	3	25	12.0	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Dissolved Metals by ICP-MS - Suite A	EG020A-F	2	20	10.0	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Ferrous Iron by Discrete Analyser	EG051G	2	16	12.5	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Hexavalent Chromium by Discrete Analyser - Dissolved	EG050G-F	2	14	14.3	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	2	13	15.4	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Nitrite as N by Discrete Analyser	EK057G	3	20	15.0	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
pH by PC Titrator	EA005-P	3	30	10.0	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Reactive Phosphorus as P-By Discrete Analyser	EK071G	2	11	18.2	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	1	8	12.5	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Sulfide as S2-	EK085	1	6	16.7	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Suspended Solids (High Level)	EA025H	1	8	12.5	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Total Dissolved Solids (High Level)	EA015H	1	8	12.5	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	2	20	10.0	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Total Mercury by FIMS	EG035T	2	13	15.4	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Total Metals by ICP-MS - Suite A	EG020A-T	2	13	15.4	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Total Metals by ICP-MS - Suite B	EG020B-T	1	7	14.3	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Total Phosphorus as P By Discrete Analyser	EK067G	2	20	10.0	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Turbidity	EA045	4	40	10.0	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Laboratory Control Samples (LCS)							
Acidity as Calcium Carbonate	ED038	1	14	7.1	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Alkalinity by PC Titrator	ED037-P	4	25	16.0	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Ammonia as N by Discrete analyser	EK055G	1	10	10.0	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Biochemical Oxygen Demand (BOD)	EP030	1	20	5.0	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Chloride by Discrete Analyser	ED045G	2	10	20.0	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Conductivity by PC Titrator	EA010-P	2	25	8.0	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	20	5.0	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Ferrous Iron by Discrete Analyser	EG051G	1	16	6.3	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Hexavalent Chromium by Discrete Analyser - Dissolved	EG050G-F	1	14	7.1	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	13	7.7	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Nitrite as N by Discrete Analyser	EK057G	2	20	10.0	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
pH by PC Titrator	EA005-P	4	30	13.3	10.0	1	NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Page	: 7 of 12
Work Order	: EP1306367
Client	: MOBILE DEWATERING
Project	; E2011-109



Matrix: WATER				Evaluation	n: × = Quality Co	ntrol frequency n	ot within specification ; $\checkmark$ = Quality Control frequency within specification.
Quality Control Sample Type		С	ount	Rate (%)			Quality Control Specification
Analytical Methods	Method	00	QC Reaular	Actual	Expected	Evaluation	
Laboratory Control Samples (LCS) - Continued							
Reactive Phosphorus as P-By Discrete Analyser	EK071G	1	11	9.1	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	2	8	25.0	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Sulfide as S2-	EK085	1	6	16.7	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Suspended Solids (High Level)	EA025H	2	8	25.0	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Total Dissolved Solids (High Level)	EA015H	2	8	25.0	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	2	20	10.0	10.0	~	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Total Mercury by FIMS	EG035T	1	13	7.7	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Total Metals by ICP-MS - Suite A	EG020A-T	1	13	7.7	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Total Metals by ICP-MS - Suite B	EG020B-T	1	7	14.3	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Total Phosphorus as P By Discrete Analyser	EK067G	2	20	10.0	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Turbidity	EA045	2	40	5.0	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Method Blanks (MB)							
Alkalinity by PC Titrator	ED037-P	2	25	8.0	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Ammonia as N by Discrete analyser	EK055G	1	10	10.0	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Biochemical Oxygen Demand (BOD)	EP030	1	20	5.0	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Chloride by Discrete Analyser	ED045G	1	10	10.0	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Conductivity by PC Titrator	EA010-P	2	25	8.0	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	20	5.0	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Ferrous Iron by Discrete Analyser	EG051G	1	16	6.3	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Hexavalent Chromium by Discrete Analyser - Dissolved	EG050G-F	1	14	7.1	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	13	7.7	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Nitrite as N by Discrete Analyser	EK057G	2	20	10.0	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Reactive Phosphorus as P-By Discrete Analyser	EK071G	1	11	9.1	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	1	8	12.5	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Sulfide as S2-	EK085	1	6	16.7	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Suspended Solids (High Level)	EA025H	1	8	12.5	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Total Dissolved Solids (High Level)	EA015H	1	8	12.5	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	20	5.0	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Total Mercury by FIMS	EG035T	1	13	7.7	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Total Metals by ICP-MS - Suite A	EG020A-T	1	13	7.7	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Total Metals by ICP-MS - Suite B	EG020B-T	1	7	14.3	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Total Phosphorus as P By Discrete Analyser	EK067G	1	20	5.0	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Turbidity	EA045	2	40	5.0	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Matrix Spikes (MS)							
Ammonia as N by Discrete analyser	EK055G	1	10	10.0	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Chloride by Discrete Analyser	ED045G	1	10	10.0	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	20	5.0	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Ferrous Iron by Discrete Analyser	EG051G	1	16	6.3	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Hexavalent Chromium by Discrete Analyser - Dissolved	EG050G-F	1	14	7.1	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	13	7.7	5.0	~	NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Page	: 8 of 12
Work Order	: EP1306367
Client	: MOBILE DEWATERING
Project	: E2011-109



Matrix: WATER			Evaluation: × = Quality Control frequency not within specification ; ✓ = Quality Control frequency within specification						
Quality Control Sample Type			Count		Rate (%)		Quality Control Specification		
Analytical Methods	Method	00	Reaular	Actual	Expected	Evaluation			
Matrix Spikes (MS) - Continued									
Nitrite as N by Discrete Analyser	EK057G	2	20	10.0	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement		
Reactive Phosphorus as P-By Discrete Analyser	EK071G	1	11	9.1	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement		
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	1	8	12.5	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement		
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	20	5.0	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement		
Total Mercury by FIMS	EG035T	1	13	7.7	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement		
Total Metals by ICP-MS - Suite A	EG020A-T	1	13	7.7	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement		
Total Phosphorus as P By Discrete Analyser	EK067G	1	20	5.0	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement		



#### **Brief Method Summaries**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
pH by PC Titrator	EA005-P	WATER	APHA 21st ed. 4500 H+ B. This procedure determines pH of water samples by automated ISE. This method is compliant with NEPM (2013) Schedule B(3) (Appdx. 2)
Conductivity by PC Titrator	EA010-P	WATER	APHA 21st ed., 2510 B This procedure determines conductivity by automated ISE. This method is compliant with NEPM (2013) Schedule B(3) (Appdx. 2)
Total Dissolved Solids (High Level)	EA015H	WATER	In-House, APHA 21st ed., 2540C A gravimetric procedure that determines the amount of `filterable` residue in an aqueous sample. A well-mixed sample is filtered through a glass fibre filter (1.2um). The filtrate is evaporated to dryness and dried to constant weight at 180+/-5C. This method is compliant with NEPM (2013) Schedule B(3) (Appdx. 2)
Suspended Solids (High Level)	EA025H	WATER	In-House, APHA 21st ed., 2540D A gravimetric procedure employed to determine the amount of `non-filterable` residue in a aqueous sample. The prescribed GFC (1.2um) filter is rinsed with deionised water, oven dried and weighed prior to analysis. A well-mixed sample is filtered through a glass fibre filter (1.2um). The residue on the filter paper is dried at 104+/-2C. This method is compliant with NEPM (2013) Schedule B(3) (Appdx. 2)
Turbidity	EA045	WATER	APHA 21st ed., 2130 B. This method is compliant with NEPM (2013) Schedule B(3) (Appdx. 2)
Alkalinity by PC Titrator	ED037-P	WATER	APHA 21st ed., 2320 B This procedure determines alkalinity by automated measurement (e.g. PC Titrate) using pH 4.5 for indicating the total alkalinity end-point. This method is compliant with NEPM (2013) Schedule B(3) (Appdx. 2)
Acidity as Calcium Carbonate	ED038	WATER	APHA 21st ed., 2310 B Acidity is determined by titration with a standardised alkali to an end-point pH of 8.3. This method is compliant with NEPM (2013) Schedule B(3) (Appdx. 2)
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	WATER	APHA 21st ed., 4500-SO4 Dissolved sulfate is determined in a 0.45um filtered sample. Sulfate ions are converted to a barium sulfate suspension in an acetic acid medium with barium chloride. Light absorbance of the BaSO4 suspension is measured by a photometer and the SO4-2 concentration is determined by comparison of the reading with a standard curve. This method is compliant with NEPM (2013) Schedule B(3) (Appdx. 2)
Chloride by Discrete Analyser	ED045G	WATER	APHA 21st ed., 4500 CI - G.The thiocyanate ion is liberated from mercuric thiocyanate through sequestration of mercury by the chloride ion to form non-ionised mercuric chloride.in the presence of ferric ions the librated thiocynate forms highly-coloured ferric thiocynate which is measured at 480 nm APHA 21st edition seal method 2 017-1-L april 2003
Dissolved Metals by ICP-MS - Suite A	EG020A-F	WATER	(APHA 21st ed., 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020): Samples are 0.45 um filtered prior to analysis. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Total Metals by ICP-MS - Suite A	EG020A-T	WATER	(APHA 21st ed., 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020): The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.



Analytical Methods	Method	Matrix	Method Descriptions
Total Metals by ICP-MS - Suite B	EG020B-T	WATER	(APHA 21st ed., 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020): The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Total Mercury by FIMS	EG035T	WATER	AS 3550, APHA 21st ed. 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. A bromate/bromide reagent is used to oxidise any organic mercury compounds in the unfiltered sample. The ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM (2013) Schedule B(3) (Appdx. 2)
Hexavalent Chromium by Discrete Analyser - Dissolved	EG050G-F	WATER	APHA 21st ed., 3500 Cr-A & B. Samples are 0.45 um filtered prior to analysis. Hexavalent chromium is determined directly on water sample by Descrete Analyser as received by pH adjustment and colour development using dephenylcarbazide. Each run of samples is measured against a five-point calibration curve. This method is compliant with NEPM (2013) Schedule B(3) (Appdx. 2)
Ferrous Iron by Discrete Analyser	EG051G	WATER	APHA 21st ed., 3500 Fe-B. A colorimetric determination based on the reaction between phenanthroline and ferrous iron at pH 3.2-3.3 to form an orange-red complex that is measured against a five-point calibration curve. This method is compliant with NEPM (2013) Schedule B(3) (Appdx. 2)
Ammonia as N by Discrete analyser	EK055G	WATER	APHA 21st ed., 4500-NH3 G Ammonia is determined by direct colorimetry by Discrete Analyser. This method is compliant with NEPM (2013) Schedule B(3) (Appdx. 2)
Nitrite as N by Discrete Analyser	EK057G	WATER	APHA 21st ed., 4500-NO2- B. Nitrite is determined by direct colourimetry by Discrete Analyser. This method is compliant with NEPM (2013) Schedule B(3) (Appdx. 2)
Nitrate as N by Discrete Analyser	EK058G	WATER	APHA 21st ed., 4500-NO3- F. Nitrate is reduced to nitrite by way of a chemical reduction followed by quantification by Discrete Analyser. Nitrite is determined seperately by direct colourimetry and result for Nitrate calculated as the difference between the two results. This method is compliant with NEPM (2013) Schedule B(3) (Appdx. 2)
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	WATER	APHA 21st ed., 4500-NO3- F. Combined oxidised Nitrogen (NO2+NO3) is determined by Chemical Reduction and direct colourimetry by Discrete Analyser. This method is compliant with NEPM (2013) Schedule B(3) (Appdx. 2)
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	WATER	APHA 21st ed., 4500-Norg D. 25mL water samples are digested using a traditional Kjeldahl digestion followed by determination by Discrete Analyser. This method is compliant with NEPM (2013) Schedule B(3) (Appdx. 2)
Total Nitrogen as N (TKN + Nox) By Discrete Analyser	EK062G	WATER	APHA 21st ed., 4500-Norg / 4500-NO3 This method is compliant with NEPM (2013) Schedule B(3) (Appdx. 2)
Total Phosphorus as P By Discrete Analyser	EK067G	WATER	APHA 21st ed., 4500-P B&F This procedure involves sulphuric acid digestion of a 100mL sample to break phosphorus down to orthophosphate. The orthophosphate reacts with ammonium molybdate and antimony potassium tartrate to form a complex which is then reduced and its concentration measured at 880nm using Discrete Analyser. This method is compliant with NEPM (2013) Schedule B(3) (Appdx. 2)
Reactive Phosphorus as P-By Discrete Analyser	EK071G	WATER	APHA 21st ed., 4500-P F Ammonium molybdate and potassium antimonyl tartrate reacts in acid medium with othophosphate to form a heteropoly acid -phosphomolybdic acid - which is reduced to intensely coloured molybdenum blue by ascorbic acid. Quantification is by Discrete Analyser. This method is compliant with NEPM (2013) Schedule B(3) (Appdx. 2)

Page	: 11 of 12
Work Order	: EP1306367
Client	: MOBILE DEWATERING
Project	: E2011-109



Analytical Methods	Method	Matrix	Method Descriptions
Sulfide as S2-	EK085	WATER	APHA 21st ed., 4500-S2- D Sulfide species present in water samples are immediately precipitated when collected in pretreated caustic/zinc acetate preserved sample containers. After the supernatant is discarded, the resultant precipitate is then coloured using methylene blue indicator and measured using UV-VIS detection at 664nm. This method is compliant with NEPM (2013) Schedule B(3) (Appdx. 2)
Biochemical Oxygen Demand (BOD)	EP030	WATER	APHA 21st ed., 5210 B The 5-Day BOD test provides an empirical measure of the oxygen consumption capacity of a given water. A portion of the sample is diluted into oxygenated, nutrient rich water, and a seed added to begin biological decay. The initial dissolved oxygen content is measured, then the bottle is sealed and incubated for five days. The remaining dissolved oxygen is measured, and from the difference, the demand for oxygen, by biological decay, is determined. This method is compliant with NEPM (2013) Schedule B(3) (Appdx. 2)
Preparation Methods	Method	Matrix	Method Descriptions
Digestion for Total Recoverable Metals	EN25	WATER	USEPA SW846-3005 Method 3005 is a Nitric/Hydrochloric acid digestion procedure used to prepare surface and ground water samples for analysis by ICPAES or ICPMS. This method is compliant with NEPM (2013) Schedule B(3) (Appdx. 2)



#### Summary of Outliers

#### **Outliers : Quality Control Samples**

The following report highlights outliers flagged in the Quality Control (QC) Report. Surrogate recovery limits are static and based on USEPA SW846 or ALS-QWI/EN/38 (in the absence of specific USEPA limits). This report displays QC Outliers (breaches) only.

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

- For all matrices, no Method Blank value outliers occur.
- For all matrices, no Duplicate outliers occur.
- For all matrices, no Laboratory Control outliers occur.
- For all matrices, no Matrix Spike outliers occur.

#### **Regular Sample Surrogates**

• For all regular sample matrices, no surrogate recovery outliers occur.

#### **Outliers : Analysis Holding Time Compliance**

This report displays Holding Time breaches only. Only the respective Extraction / Preparation and/or Analysis component is/are displayed.

Aatrix:	WATER	

Method		Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Days	Date analysed	Due for analysis	Days
				overdue			overdue
EA005P: pH by PC Titrator							
Clear Plastic Bottle - Natural							
HVNMW1 03,	HVNMW2 03,				21-AUG-2013	20-AUG-2013	1
HVNMW3 03,	HVNMW4 03,						
HVNMW5 03,	HVNMW6 03						

#### **Outliers : Frequency of Quality Control Samples**

The following report highlights breaches in the Frequency of Quality Control Samples.

• No Quality Control Sample Frequency Outliers exist.



## Appendix F – Contour and Feature Survey (Midland Survey Services)
