

Biologic Environmental Survey Report to BHP Western Australian Iron Ore March 2021

		Document Status					
	Revision	ion Author	Review / Approved for Issue	Approved for Issue to			
	No.			Name	Date		
	1	C. Whyte	C. van den Bergh	T. Carroll & B. Menezies	17/11/2020		
	2	C. Whyte	C. van den Bergh	T. Carroll & B. Menezies	30/12/2020		
	3	D. Reith, C. Whyte	C. van den Bergh	T. Carroll & B. Menezies	29/03/2021		

"IMPORTANT NOTE"

Apart from fair dealing for the purposes of private study, research, criticism, or review as permitted under the Copyright Act, no part of this report, its attachments or appendices may be reproduced by any process without the written consent of Biologic Environmental Survey Pty Ltd ("Biologic"). All enquiries should be directed to Biologic.

We have prepared this report for the sole purposes of BHP Western Australian Iron Ore (WAIO) ("Client") for the specific purpose only for which it is supplied. This report is strictly limited to the Purpose and the facts and matters stated in it and does not apply directly or indirectly and will not be used for any other application, purpose, use or matter.

In preparing this report we have made certain assumptions. We have assumed that all information and documents provided to us by the Client or as a result of a specific request or enquiry were complete, accurate and up-to-date. Where we have obtained information from a government register or database, we have assumed that the information is accurate. Where an assumption has been made, we have not made any independent investigations with respect to the matters the subject of that assumption. We are not aware of any reason why any of the assumptions are incorrect.

This report is presented without the assumption of a duty of care to any other person (other than the Client) ("Third Party"). The report may not contain sufficient information for the purposes of a Third Party or for other uses. Without the prior written consent of Biologic:

- a) This report may not be relied on by a Third Party; and
- b) Biologic will not be liable to a Third Party for any loss, damage, liability or claim arising out of or incidental to a Third-Party publishing, using or relying on the facts, content, opinions or subject matter contained in this report.

If a Third Party uses or relies on the facts, content, opinions or subject matter contained in this report with or without the consent of Biologic, Biologic disclaims all risk and the Third Party assumes all risk and releases and indemnifies and agrees to keep indemnified Biologic from any loss, damage, claim or liability arising directly or indirectly from the use of or reliance on this report.

In this note, a reference to loss and damage includes past and prospective economic loss, loss of profits, damage to property, injury to any person (including death) costs and expenses incurred in taking measures to prevent, mitigate or rectify any harm, loss of opportunity, legal costs, compensation, interest and any other direct, indirect, consequential or financial or other loss.

TABLE OF CONTENTS

E	Executive Summary5				
1	Introduction6				
	1.1	Bad	ckground	. 6	
	1.2 Survey objectives			. 6	
	1.3	Со	mpliance	. 8	
	1.4	Bad	ckground and taxonomy of <i>Eremophila capricornica</i>	. 8	
2	Ме	tho	dology	11	
	2.1	Des	sktop assessment	11	
	2.1	.1	Literature review	11	
	2.1	.2	Database searches	11	
	2.1	.3	Study Area determination	12	
	2.2	Sur	rvey type, timing and weather	13	
	2.3	Sar	npling techniques	15	
	2.3	.1	Targeted searching	15	
	2.3	.2	Specimen identification and vouchering	18	
	2.4	Ere	emophila capricornica targeted flora genomic analysis	19	
3	Re	sult	S	20	
	3.1	Des	sktop assessment	20	
	3.1	.1	Literature review	20	
	3.1	.2	Database searches	22	
	3.2	Spe	ecimen identification results	22	
	3.2	.1	Identification based on morphology	22	
	3.2	.2	Identification using genetic tools	23	
	3.3	Ere	emophila capricornica field observations	23	
	3.4	Up	dated known occurrence of <i>Eremophila capricornica</i>	28	
	3.5	Sur	rvey constraints and limitations	29	
4	Su	mm	ary	32	
5	References				
6	Appendices				

LIST OF FIGURES

Figure 1.1: Study Area and Regional Location	7
	•

Figure 1.2: <i>Eremophila capricornica</i> . A – plant <i>in situ</i> ; B – flowers and leaves. Photographs by B. Buirchell (Buirchell & Brown, 2016)	9
Figure 2.1: Study Area produced from MaxENT modelling	14
Figure 2.2: Monthly rainfall and long-term average (LTA) rainfall for Newman Airport (Station ID 007176) (BoM, 2020). Survey period indicated by orange bar.	15
Figure 2.3: Sampling intensity – Helicopter drop points	16
Figure 2.4: Sampling intensity – track logs (foot traverses)	17
Figure 3.1: Known occurrences of Eremophila capricornica	21
Figure 3.2: Eremophila capricornica locations recorded by the Survey	24

biolog

LIST OF TABLES

Table 1.1: Characters that differentiate Eremophila capricornica from similar Eremophila species	
from Sect. Eriocalyx (adapted from Buirchell & Brown, 2016; Chinnock, 2007)	.10
Table 2.1: Literature sources which identified the presence of <i>Eremophila capricornica</i>	.11
Table 2.2: Details of database searches conducted	. 12
Table 3.1: Summary of known DBCA records for Eremophila capricornica (Priority 1) (DBCA,	
2020c; WAH, 1998-)	.22
Table 3.2: Previously mapped vegetation units where Eremophila capricornica was located during	
the current targeted survey (adapted from Biologic, 2019; Onshore, 2014)	.25
Table 3.3: Botanical survey limitations and constraints	. 30

LIST OF PLATES

Plate 3.1: Examples of habitat across the Study Area with Eremophila capricornica individuals	
present as scattered shrubs to low open shrubland	27
Plate 3.2: Close up of Eremophila capricornica flowering and fruiting specimens identified from the	
Study Area. Biologic photos taken during the field survey	28

APPENDICES

Appendix A: Eremophila capricornica Genomic Sequencing Report	.34
Appendix B: State Flora Conservation Listings	.56
Appendix C: Eremophila capricornica location coordinates	.59

EXECUTIVE SUMMARY

BHP Western Australia Iron Ore (BHP WAIO) commissioned Biologic Environmental Survey (Biologic) to undertake a targeted flora survey for *Eremophila capricornica* (Priority 1) in the areas surrounding Jimblebar and Caramulla. Recent flora and vegetation surveys have identified numerous populations of *Eremophila capricornica* (Priority 1) within, and adjacent, BHP WAIO tenure. The objective of the targeted flora survey was to fill knowledge gaps surrounding the occurrence, distribution, and habitat of the conservation significant flora taxon *Eremophila capricornica* within and around BHP WAIO tenure at Jimblebar and Caramulla.

The species is listed as Priority 1 by the Department of Biodiversity, Conservation and Attractions (DBCA), as it does not qualify for listing as threatened under the *Biodiversity Conservation Act 2016* (BC Act). It is noted to have a very restricted distribution; however, it is locally abundant at most known locations. The DBCA currently have five populations documented, while BHP WAIO have location information for additional occurrences in the Pilbara.

BHP WAIO requested that Biologic propose a Study Area based upon a species distribution assessment and modelling utilising broad land system mapping, soil mapping and bedrock mapping with the known occurrences of *Eremophila capricornica*. Following the development of the Study Area, a targeted flora survey was undertaken across seven days from the 9th to the 15th of July 2020, by two Biologic botanists. Targeted searching was undertaken for *Eremophila capricornica* within the Study Area in suitable habitat as identified prior to, and during, the field survey. Where habitat was deemed unsuitable for the target species, searching intensity was limited or ceased to maximise field survey efficiency in suitable habitat.

Specimens collected in the field as *Eremophila capricornica*, were identified based on morphological characters as either *Eremophila capricornica*, *Eremophila jucunda* subsp. *pulcherrima*, or *Eremophila* sp. (Sect. Eriocalyx). However, genomic analysis subsequently revealed all of these specimens form a single unique lineage and it is most likely that they represent the taxon *Eremophila capricornica*.

Eremophila capricornica was recorded from 1,047 point locations and 21 separate populations within the Study Area, with an estimated combined plant count of 28,898 individuals. The locations of *Eremophila capricornica* were recorded from a range of soil types and topography such as red sand, sandy loam, clay loams, on sandy/ stony plains and slopes, undulating low hills, drainage areas and floodplains. The vegetation consisted primarily of *Acacia*/ mulga shrubland and woodland and *Triodia* hummock grassland.

The targeted survey increased the known occurrences of *Eremophila capricornica* in the local region, extending its known distribution further to the east by approximately 11 km. Whilst *Eremophila capricornica* is still only known from a relatively restricted area along boundary of the Pilbara and Gascoyne bioregions, it has been found growing in varied habitats, including broad drainage areas, stony plains, undulating slopes and hillcrests. It is thought that with additional survey effort the distribution of *Eremophila capricornica* could be further expanded to the south and east of the current known distribution.

1 INTRODUCTION

1.1 Background

BHP Western Australia Iron Ore (BHP WAIO) commissioned Biologic Environmental Survey (Biologic) to undertake a targeted flora survey of *Eremophila capricornica* (Priority 1) in the local region surrounding BHP WAIO Jimblebar and Caramulla project areas, as well as targeting a more regional extent in potential habitat. The Jimblebar iron ore operation is located within the Jimblebar and Caramulla project areas and is located approximately 40 km east of Newman (Figure 1.1).

Following recent flora and vegetation surveys surrounding the Jimblebar iron ore operation, including surveys within North Jimblebar, East Jimblebar and Caramulla project areas, populations of *Eremophila capricornica* (Priority 1) have been recorded on BHP WAIO tenure. As there are potential impacts to this species from future proposed operations within the Jimblebar area (associated with the Jimblebar iron ore operation), additional targeted surveying of areas, including off tenure, surrounding Jimblebar and Caramulla was required to record further occurrences and map habitat outside of potential impact areas.

1.2 Survey objectives

The overarching objective of the targeted flora survey was to fill knowledge gaps surrounding the occurrence, distribution, and habitat of the conservation significant flora taxon *Eremophila capricornica* (Priority 1) within and around BHP WAIO tenure at Jimblebar and Caramulla, specifically to:

- Complete a comprehensive database and literature review for *Eremophila capricornica*;
- Determine and map suitable habitat prior to field survey (identifying the "Study Area");
- Conduct targeted searches for *Eremophila capricornica* within the Study Area to determine its distribution and establish population sizes; and
- Use genomic methods to sequence the chloroplast genomes of *Eremophila capricornica* and other *Eremophila* species (that share similarities to *Eremophila capricornica*) from the Jimblebar and Caramulla project areas, in order to determine suitability and success of identifying individuals that are sterile (separate report included as Appendix A).

— Major Road

Chichester

Hamersley

Ν

20 **__** km

Coordinate System: GDA 1994 MGA Zone 51 Projection: Transverse Mercator Datum: GDA 1994 Size A3. Created 11/03/2021

Figure 1.1: Study Area and regional location

1.3 Compliance

This targeted survey was conducted and delivered in line with relevant state and BHP WAIO guidelines. Where guidelines differ between BHP WAIO standards and state standards, the most stringent guidelines were applied. Specifically, the assessment was undertaken with consideration of the following guidelines:

- Environmental Protection Authority's (EPA) Statement of Environmental Principles, Factors and Objectives (EPA, 2020);
- EPA's Environmental Factor Guideline, Flora and Vegetation (EPA, 2016a);
- EPA's Technical Guidance: Flora and Vegetation Surveys for Environmental Impact Assessment (EPA, 2016b);
- BHP WAIO's Biological Survey Spatial Data Requirements Procedure (SPR-IEN-EMS-015) (BHP, 2020b); and
- BHP WAIO's Vegetation and Flora Survey Procedure (0124627) (BHP, 2018).

1.4 Background and taxonomy of *Eremophila capricornica*

Eremophila capricornica (Priority 1) was formally described in 2016 (Buirchell & Brown, 2016). Prior to the formal naming it was phrase named *Eremophila* sp. Jigalong (B. Buirchell BB 204) (Brown & Buirchell, 2011; WAH, 1998-). The species is endemic to the Western Australian Pilbara and Gascoyne biogeographic regions and is found from east of Newman across to the Aboriginal community of Jigalong. The species is listed as Priority 1 by the Department of Biodiversity, Conservation and Attractions (DBCA) (WAH, 1998-), as it does not qualify for listing as threatened under the *Biodiversity Conservation Act 2016* (BC Act). Priority 1 taxa are species that are known from one or a few locations (generally five or less) which are potentially at risk (Appendix B). It is noted to have a very restricted distribution; however, some populations have been noted as being locally abundant (WAH, 1998-). *Eremophila capricornica* has been found to grow in sandy clay loams and open stony areas in open mulga shrubland with an understorey of *Triodia* species and other grasses (Buirchell & Brown, 2016).

Eremophila capricornica is a small shrub to 75 centimetres (cm) in height with terete branches with dendritic hairs and old leaf scars. Leaves are alternate, sessile, oblanceolate, and grey, and are clustered towards the ends of branches. Leaves are covered with dendritic hairs on both upper and lower surfaces and are acute with a prominent ridge and entire margins. *Eremophila capricornica* produces one flower per leaf axil with five dark green to grey hairy sepals. The petals form in a tube shape 15-20 millimetres (mm) in length, coloured mauve to lilac with a glabrous outer surface and glandular hairs on the inside of the tube. Flowers predominantly appear between June to August, but may also flower at other times of the year in response to rainfall (paragraph adapted from Buirchell & Brown, 2016) (Figure 1.2).

Eremophila capricornica appears closely related to *Eremophila margarethae* and *Eremophila demissa*. *Eremophila demissa* is listed as a Priority 1 species and not known to occur in the Pilbara, occurring in the Gascoyne and Murchison regions (WAH, 1998-). It is separated from *Eremophila capricornica* by at least 170 km. A specimen identified as *Eremophila demissa*' at the time of the survey was collected by

Onshore Environmental from the Jimblebar region in 2014 (Onshore, 2018b). Following the taxonomic review of *Eremophila* taxa, this specimen has since been determined to be *Eremophila capricornica*. *Eremophila margarethae* is known from the Pilbara and has been collected by Biologic within the Study Area (Biologic, 2019). *Eremophila margarethae* has obovate to elliptic leaves compared to the oblanceolate leaves of *Eremophila capricornica* as well as having longer leaves and pedicels (Buirchell & Brown, 2016) (Table 1.1). *Eremophila capricornica* can also superficially resemble *Eremophila jucunda, Eremophila forrestii* and *Eremophila pilosa* when sterile, however, leaf shape, size and hair presence can assist in separating sterile individuals (Table 1.1).

Figure 1.2: *Eremophila capricornica*. A – plant *in situ*; B – flowers and leaves. Photographs by B. Buirchell (Buirchell & Brown, 2016).

Table 1.1: Characters that differentiate Eremophila capricornica from similar Eremophila species from Sect. Eriocalyx (adapted from Buirchell & Brown, 2016; Chinnock, 2007)

Character	E. capricornica	E. demissa	E. margarethae	E. jucunda	E. forrestii	E. pilosa
Height	50 - 75 cm	25 - 90 cm	25 - 40 cm	25 - 100 (180) cm	50 - 200 cm	50 - 150 cm
Leaf	8 - 12 × 3 - 4	12 - 42 × 2 - 5 mm	5.5 - 13 × 2 - 4 mm	(6.5) 8.5 - 20 (22.5) ×	(6) 11 - 30 (35) × (4.2)	(10) 14 - 25 (35) ×
dimensions	mm			(1.6) 2.5 - 5.5 (7) mm	6.5 - 16 (20) mm	(3.7) 4-9 (10.5) mm
Loof shano	ablancealata	linear to linear-	abovata alliptia	obovate to	oblanceolate, ovate,	obovate to
Lear Shape	obianceolate	oblanceolate	obovate-emptic	oblanceolate	obovate to orbicular	oblanceolate
Pedicel length	2 - 3 mm	3.5 - 7.5 mm	3 - 7 mm	3 - 9 (11) mm	(2) 4 - 24 mm	6 - 9 mm
Sepal	6 - 9 × 1.5 - 3	7.5 - 13 × 0.5 - 1.7	0 14 + 2 5 mm	(8) 9.5 - 17 (21.5) × 1 -	(7.5) 9 - 19 (24) × 2 -	8 - 13.5 × 1.6 - 3.2
dimensions	mm	mm	9 - 14 x 2 - 5 mm	2.5 mm	7.5 (9) mm	mm
Sepal shape	lanceolate	linear-triangular to lanceolate	lanceolate to elliptic	linear to lanceolate	lanceolate, oblanceolate to obovate	lanceolate
Sepal hairs (on inner surface)	scattered glandular	dense glandular	dense glandular	dense long dendritic in basal half, more scattered above	stellate or dendritic- tomentose	branched eglandular in basal half, glandular-pubescent in distal half
Corolla hairs (on outer surface)	absent or fine dendritic	substellate	glandular	absent or obscurely to prominently glandular/ eglandular pubescent	glandular and/ or dendritic	absent or eglandular- pubescent
Style hairs	absent	absent or with scattered simple eglandular or branched hairs	simple eglandular in basal half	simple eglandular	absent or sparsely eglandular, simple or branched	absent

2 METHODOLOGY

2.1 Desktop assessment

2.1.1 Literature review

A review of all available literature on *Eremophila capricornica* (Priority 1), including previous flora and vegetation surveys, was undertaken to document information on known localities, preferred habitat/ landforms, similar species, flowering times, and soil types. Detailed taxonomic information on *Eremophila capricornica* was reviewed so that the field botanists were aware of the differences between similar species (Table 1.1) (Brown & Buirchell, 2011; Buirchell & Brown, 2016; Chinnock, 2007). The literature review consisted of numerous survey reports of relevance to the Study Area, with previous reviews completed by Biologic (Biologic, 2019) forming the basis of the review as this was the most relevant and recent work in the local region. The previous field surveys that were considered were provided by BHP WAIO and were located within a radius of 20 km from the Study Area. In addition to the taxonomic reports, four assessment reports reviewed included information on *Eremophila capricornica* (Table 2.1).

The Index of Biological Surveys for Assessments (IBSA) online portal was reviewed to identify additional projects that have been conducted in close proximity to the Study Area. No additional surveys were identified from the IBSA. However, it is plausible that further information is available that is currently not in the public domain or held by BHP WAIO.

Title	Location
Biologic (2019). BHP WAIO East Jimblebar & Caramulla Detailed Flora and Vegetation Assessment.	East Jimblebar and a portion of Caramulla Creek
Onshore (2019). Jimblebar North Reconnaissance Flora and Vegetation Survey.	Jimblebar North
Onshore (2018a). Reconnaissance Flora and Vegetation Survey Caramulla.	East Jimblebar and a portion of Caramulla Creek
Onshore (2018b). Vegetation Survey and Desktop Assessment Caramulla Creek.	Caramulla Creek and a portion of East Jimblebar
Buirchell and Brown (2016). New species of <i>Eremophila</i> (Scrophulariaceae): thirteen geographically restricted species from Western Australia	Alongside Jigalong Mission Road (~14 km southeast of Jimblebar)
Brown and Buirchell (2011). A field guide to the Eremophilas of Western Australia	East of Newman across to Jigalong (~14 km southeast of Jimblebar)

Table 2.1: Literature sources which identified the presence of Eremophila capricornica

2.1.2 Database searches

Four flora databases were searched (Table 2.2), two to obtain general information on *Eremophila capricornica* (NatureMap and Atlas of Living Australia) and two to identify locality information on *Eremophila capricornica* (DBCA Threatened Flora Database and Western Australian Herbarium Specimen Database). The BHP WAIO database was also consulted to capture additional records of *Eremophila capricornica* found by previous surveys but not yet databased by the Western Australian Herbarium Herbarium (WAH) and DBCA (BHP, 2020a).

Table 2.2: Details of database se	arches conducted
-----------------------------------	------------------

Provider	Reference	Database	Parameters	
Department of Biodiversity, Conservation and Attractions (DBCA)	DBCA (2020a)	NatureMap. Accessed throughout 2020	Species Search	
Department of Biodiversity,	(DBCA,	Threatened and Priority Flora Database. Received 9 July 2020	Cracico Occurrence Cocceh	
Attractions (DBCA)	2020c)	Western Australian Herbarium specimen database. Received 9 July 2020	Species Occurrence Search	
Atlas of Living Australia (ALA)	ALA (2020)	Species Occurrence Search. Accessed throughout 2020	Species Search	
BHP WA Iron Ore	BHP (2020a)	BHP Internal Database. Accessed 2 July 2020	Custom Species Search	

2.1.3 Study Area determination

BHP WAIO requested Biologic propose a Study Area based on existing locations of *Eremophila capricornica* and other known environmental information. Maximum entropy modelling (MaxENT) was used within the R Statistical Package to map species distribution (R Core Team, 2020) by Biologic's senior statistician Lisa King. MaxENT is a type of species distribution model which uses a set of environmental variables and species presence locations to express a probability distribution where each area or grid has a predicted suitability of conditions for the species in question (CBC, 2020). Species distribution models can be used to map suitable habitat, helping to make field searches more targeted and efficient. Species presence locations for *Eremophila capricornica* were provided by BHP WAIO from their internal database, and the environmental variables used were:

- Land system mapping (van Vreeswyk et al., 2004)
- 1:500,000 scale soil landscape mapping (CSIRO, 2013)
- 1:500,000 scale State interpreted bedrock geology mapping (GSWA, 2016).

Additional *Eremophila capricornica* locations were not utilised in the MaxENT modelling as it was determined that the data held by BHP WAIO was the most comprehensive, while the remaining locations for *Eremophila capricornica* (i.e., DBCA database locations) were limited and widespread. The addition of the DBCA records may have potentially created a "murkier study area" that would have required further aerial imagery review and in-field refinement.

The variables used in the MaxENT analysis was limited to a broader dataset to capture a wider area for searching. The use of more detailed datasets for variables was not considered as the extent for the MaxENT assessment would be restricted to the smallest dataset extent, thus reducing the ability to search further afield (for example, the analysis may not have incorporated locations from near Jigalong). The MaxENT modelling produced a Core Study Area that was used to guide survey effort and sampling

(Figure 2.1). The final Study Area consisted of a 20 km buffer of the Core Study Area, enabling a broader area to be surveyed (Figure 2.1). The 'Study Area' referred to in this report refers to the 20 km buffer area.

In addition to utilising MaxENT, the field botanists undertook a review of aerial imagery to determine additional areas of suitable habitat that was not captured within the MaxENT analysis. These additional areas concentrated on suitable habitat outside of Core Study Area (Figure 2.1) that was remote and difficult to access via vehicle. Suitable habitat was based upon site descriptions for WAH records and local knowledge held by Biologic botanists, and was considered to be open stony plains with scattered *Acacia*/ mulga shrubs and an understorey of *Triodia* and other grasses. Low slopes and undulating stony plains adjacent to larger ironstone (and other geologies) hills were thought to provide suitable habitat based on previous experience of Biologic botanists.

2.2 Survey type, timing and weather

A targeted flora survey was deemed the most appropriate survey method and was undertaken across seven days from the 9th to the 15th of July 2020, equivalent to approximately 120-person hours. The targeted survey was undertaken by Biologic's botanists Clinton van den Bergh and Samuel Coultas. Both Clinton and Samuel have previously located individuals of *Eremophila capricornica* from the East Jimblebar and Caramulla project areas in 2019 (Biologic, 2019). Collectively, Clinton and Samuel have over 20 years' experience, with direct and relevant experience in the region. Clinton and Samuel both meet the minimum 5 years' experience to lead a flora survey in the Pilbara bioregion as detailed by the EPA (2016b).

The field survey was undertaken following above average rainfall for January 2020; however, this was mostly due to a single rainfall event on the 9th of January recording a total of 142.8 mm (BoM, 2020). The months of February to June 2020 preceding the survey all received below average rainfall (88 mm compared to 167.5 mm; Figure 2.2), in particular March through to June which only received 26.2 mm of rain (BoM, 2020). Although rainfall preceding the survey was below average, *Eremophila capricornica* flowers through June to August, so the field survey was completed within the known flowering period.

The weather conditions at the time of the survey were considered suitable to complete the targeted searches. The daytime temperatures were mild (ranging from 22°C to 28°C; BoM, 2020) with some cloud cover. The absence of rain preceding the survey meant access to tracks was unimpeded.

Size A3. Created 21/12/2020

Figure 2.2: Monthly rainfall and long-term average (LTA) rainfall for Newman Airport (Station ID 007176) (BoM, 2020). Survey period indicated by orange bar.

2.3 Sampling techniques

The targeted searching and sampling techniques were designed and implemented following the EPA's technical guidance (page 5; EPA, 2016b). A targeted survey was used to gather comprehensive information on *Eremophila capricornica*, with the aim to determine the size and extent of all populations in the Study Area and to place any potential future impacts into context (EPA, 2016b).

2.3.1 Targeted searching

Targeted searching was undertaken for *Eremophila capricornica* in suitable habitat within the Study Area as identified prior to, and during, the field survey (Figure 2.1). Most areas were traversed by road and tracks; however, a helicopter was used for the more remote and inaccessible areas of the Study Area. Eighteen helicopter landing sites were visited across three days (11th to the 13th of July 2020) and the surrounding suitable or potentially suitable habitat traversed by foot (Figure 2.3; Figure 2.4). Known DBCA occurrences were visited to determine persistence and extent of the populations.

Where habitat was deemed unsuitable for the target species, searching intensity was limited or ceased to maximise field survey efficiency in suitable habitat. Additional habitats in the Study Area that were not deemed suitable habitat included the higher elevations consisting of exposed bedrock (generally ironstone), steep slopes, quartz ridges and areas of lower elevation like claypans, and major riverine or creek systems. Representatives of these areas were visited; however, they were not as intensively targeted as areas within the Study Area that were deemed to be suitable habitat.

Core Study Area 20km Core Study Area

Rail

— Major Road

Helicopter Drop Points Jigalong Aboriginal Reserve

Hydrology

20 ____ km

Eremophila capricornica Targeted Flora Survey Figure 2.3: Sampling intensity – Helicopter drop points

Coordinate System: GDA 1994 MGA Zone 51 Projection: Transverse Mercator Datum: GDA 1994 Size A Size A3. Created 21/12/2020

10

linglong	Aboriginal	Decemica
Jidalond	Aboridinal	Reserve
 organorig	/ woonginan	1.000110

Coordinate System: GDA 1994 MGA Zone 51 Projection: Transverse Mercator Datum: GDA 1994 Size A Size A3. Created 17/11/2020

When an individual was identified, a GPS coordinate of the individual was taken, when occurring in isolation, or a central coordinate for a small population was taken (central coordinate with an approximate 20 m radius). Once an individual/ population was located, the surrounding area was searched to define the population extent.

Generalised information was collected for each occurrence or population identified in the Study Area. The generalised information collected included an estimate on the number of individuals present (within 20 m of a central coordinate), the reproductive status of the individual/ population (i.e., flowering and/ or fruiting), the condition and health of the individual/ population, landform, soil type, and a broad description and condition of the vegetation community.

Where possible, a specimen was collected from every potential population, however this was not always possible due to the presence of sterile individuals. Four known populations of *Eremophila capricornica* within BHP WAIO tenure were visited to collect additional flowering material and confirm previous tentative identifications.

As stated above, specimens were not collected from every population due to sterile individuals. No specimens were collected from six locations identified during the field survey, while one specimen each was collected from ten locations identified during the field survey. Multiple specimens were collected from six locations identified in the field.

During the field survey all records of *Eremophila capricornica* held by the DBCA were visited to ascertain persistence and extent of the population. This included the collection of a specimen from the vicinity of accession number 8527601 (the holotype used for description of the species). DBCA record with accession number 9151079 was submitted to the WAH by Biologic as part of their 2019 survey (Biologic, 2019). However, upon review of the data, it was discovered that the GPS coordinate held by the DBCA/ WAH is incorrect, and therefore the correct location was not visited. The correct GPS coordinate has been supplied to the WAH. The original (incorrect) location was revisited as part of the current targeted survey and a specimen taken from the population. It should be mentioned that every attempt was made to locate the original plant or plants in close proximity; however, locating the exact location of the record was not always possible due to GPS error and presence of flowering individuals.

2.3.2 Specimen identification and vouchering

Plant specimens collected during the field survey were assigned a unique number for tracking purposes and pressed for subsequent identification. Identifications were initially carried out by Biologic's taxonomist, Dr Rachel Meissner, utilising the Western Australian Herbarium's reference collection, taxonomic keys, and reference material. Specimens of *Eremophila capricornica* were subsequently submitted to the WAH for further taxonomic identification and clarification.

Twenty specimens of *Eremophila capricornica* (and 11 specimens identified morphologically as *Eremophila jucunda* subsp. *pulcherrima*) collected from the Study Area were vouchered with the Western Australia Herbarium (accession numbers ACC/8536/E).

Threatened and Priority Flora Report Forms for a subset of the individuals recorded were submitted to Parks and Wildlife Service of DBCA, as required under the flora collecting permits. The remainder of the known locations was also provided as an accompaniment to the report forms.

2.4 *Eremophila capricornica* targeted flora genomic analysis

In conjunction with the targeted *Eremophila capricornica* flora survey, Biologic's molecular systematics team completed an analysis of *Eremophila* specimens collected during the targeted field survey. The aims and objectives of the molecular systematics analysis were to:

- Perform genome skimming of 24 *Eremophila* specimens collected from the Study Area;
- Reconstruct plastomes from genome skimming data using standard bioinformatic methods;
- Use phylogenomic analyses to investigate the relationships among sequences from the Study Area and to compare to existing sequence data (from GenBank and "Plastids of the Pilbara" (DBCA, 2020b));
- Compare phylogenomic results to morphological identifications to infer the species identification of the 24 *Eremophila* specimens;
- If required, reconstruct the nrDNA gene region using standard bioinformatic methods, undertake phylogenomic analyses, and compare nrDNA phylogenomic results to plastome and morphological identifications; and
- Explore whether phylogenomic analyses can be used to reliably distinguish *Eremophila* species and identify sterile specimens of *E. capricornica*.

Details on the molecular systematics methods and analysis is provided in Appendix A. The results of the genomic analysis are discussed in this document where relevant.

3 RESULTS

3.1 Desktop assessment

3.1.1 Literature review

Since *Eremophila capricornica* (Priority 1) was formally described in 2016 it has been found by a number of flora and vegetation surveys in the Jimblebar and Caramulla project areas, as outlined in Table 2.1. These records are all included within the BHP WAIO database (BHP, 2020a) and are presented in Figure 3.1.

Eremophila capricornica was recorded from 38 locations within the eastern portion of the Caramulla exploration mining lease by Onshore Environmental in February 2018. Number of individuals ranged from one to 150 with a total of 1,384 individuals across the study area. It occurred on hill slopes, undulating low hills, stony plains, and hardpan plains where it provided up to five percent ground cover in certain populations. Vegetation descriptions recorded across the 38 locations were largely comprised of *Triodia* hummock grassland, *Acacia* low woodland, and *Acacia* low open woodland. Other genera within these associated vegetation units included *Senna*, *Sida*, *Dodonaea*, *Grevillea*, *Psydrax* as well as other *Eremophila* species (Onshore, 2018a).

A reconnaissance survey of Caramulla Creek conducted by Onshore Environmental in June 2018 located *Eremophila capricornica* in two locations. One location had a count of 10 individuals and the other location had an estimate of 200 plants. The plants were found within broad vegetation types of *Triodia* hummock grassland, very open tussock grassland, low open *Acacia* woodland, and high *Acacia* open shrubland (Onshore, 2018b).

Onshore Environmental conducted a survey of the Jimblebar North project area covering the Crowes Nest and Lasseter deposits in September 2018. This survey recorded *Eremophila capricornica* from 70 locations scattered throughout the study area from sandy/ stony plains and hill slopes. Records ranged from a few scattered individuals through to approximately 150 individuals, with a total of 3802 individuals. Plants were recorded from similar broad vegetation types of *Triodia* hummock grassland, *Acacia* high shrubland, and *Acacia* low open woodland (Onshore, 2019).

Additional populations of *Eremophila capricornica* were found within the East Jimblebar and Caramulla project areas during a recent detailed flora and vegetation survey by Biologic (Biologic, 2019). A total of 175 individuals were recorded from 11 locations. *Eremophila capricornica* was found in various vegetation units including low *Acacia* woodland, *Acacia* and *Corymbia hamersleyana* low open woodland, *Acacia* and *Hakea* high open shrubland, high *Acacia* shrubland, *Acacia* and *Senna* open shrubland, Open *Triodia* hummock grassland and *Triodia* hummock grassland. These locations were on a range of soil types and topography such as red or brown sand, sandy loams, silty/ clayey loams, on stony/ hardpan plains, hill slopes, hillcrests, drainage areas and floodplains (Biologic, 2019).

Legend

Core Study Area — Major Road
20km Core Study Area
Jigalong Aboriginal Reserve
Hydrology
Rail

Eremophila capricornica Records

- ▲ DBCA, showing accession number
- O Biologic (2019)
- Onshore (2018a)
- Onshore (2018b)
- Onshore (2019)

Coordinate System: GDA 1994 MGA Zone 51 Projection: Transverse Mercator Datum: GDA 1994 Size A3. Created 11/03/2021

BHP WAIO *Eremophila capricornica* Targeted Flora Survey Figure 3.1: Known occurrences of *Eremophila capricornica*

3.1.2 Database searches

The DBCA currently have five populations documented, all of which are located within the Study Area (DBCA, 2020c) (Figure 3.1). An additional specimen was collected by Bevan Buirchell and lodged with University of Melbourne, located 80 km east of Marble Bar and approximately 250 km north of the Study Area (ALA, 2020). The location for this record was not visited, so the validity of this record is not known. As discussed in Section 2.3.1, the original location held by WAH for Accession No. 9151079 is incorrect and has since been updated with WAH. The correct location for Accession no. 9151079 is shown on Figure 3.1.

Specimen	No. of individuals / Frequency	Habitat	
Accession no. 9151079	20 plants	Stony rise within mulga hardpan plain area. Low woodland of <i>Acacia pteraneura</i> over high open shrubland of <i>A. wanyu</i> and <i>A. synchronicia</i> over mid open shrubland of <i>Senna glutinosa</i> subsp. <i>x</i> <i>luerssenii</i> .	
Accession no. 8527601	Over 50 plants	Plain in rangeland with brown/red loam soil. Grassland with spinifex and <i>Acacia</i> .	
Accession no. 4570669	Infrequent	Shallow soiled hardpan plain. Open mulga woodland.	
Accession no. 4598393	Abundant	Hardpan plain over granite. <i>Acacia aneura</i> and this species.	
Accession no. 8822026	Not stated	Not stated.	

Table 3.1: Summary of known DBCA records for *Eremophila capricornica* (Priority 1) (DBCA, 2020c; WAH, 1998-)

3.2 Specimen identification results

3.2.1 Identification based on morphology

A total of 23 specimens were collected from the field and submitted to the WAH for paid taxonomic identification based on morphological characters. The specimens were submitted to the WAH to ensure there is a clear and transparent process of taxonomic identification associated with the genomic assessment. The specimens were originally reviewed by Michael Hislop, who then sought assistance from Andrew Brown and Dr Bevan Buirchell. *Eremophila capricornica* was formally described by Andrew and Bevan, so their opinions were valuable in determining accurate taxonomic identifications.

Specimen identifications from the WAH gave some unexpected results with over half of the submissions returning as *Eremophila jucunda* subsp. *pulcherrima*. Upon further review of the specimens collected, a clear geographical divide was present. The specimens collected from east of Caramulla Creek were identified as *Eremophila capricornica*, while the specimens collected from the west of Caramulla Creek were identified as *Eremophila jucunda* subsp. *pulcherrima*. As a result, it was decided to call all point

locations to the east of Caramulla Creek *Eremophila capricornica*, while all point locations west of Caramulla Creek were identified *Eremophila jucunda* subsp. *pulcherrima*.

A subset of *Eremophila capricornica* was identified as "*Eremophila capricornica* – narrow sepals", having slightly narrower sepals than other confirmed specimens of *Eremophila capricornica*. Two other species from Sect. Eriocalyx were collected during this survey (*Eremophila forrestii subsp. forrestii* and *Eremophila latrobei* subsp. *glabra*), as well as four specimens which could not be identified down to species level; three of these belonged to Sect. Eriocalyx (*Eremophila* sp. (Sect. Eriocalyx)), of which includes *Eremophila capricornica*, *Eremophila jucunda* subsp. *pulcherrima* and other species with a sparse to dense pubescence or tomentum of stellate to dendritic glandular and/ or eglandular hairs (Chinnock, 2007). The remaining specimen belonged to a different section within the *Eremophila* genus (*Eremophila* sp. indet).

3.2.2 Identification using genetic tools

Genetic sequencing has subsequently confirmed that all specimens morphologically identified as *Eremophila capricornica*, *Eremophila capricornica* – narrow sepals, *Eremophila jucunda* subsp. *pulcherrima* and *Eremophila* sp. (Sect. Eriocalyx) form a single unique lineage (Appendix A). This unique lineage likely represents *Eremophila capricornica*, however this would need to be confirmed by genetic sequencing of the type specimen (WAH accession no. 8527601). Moreover, specimens morphologically identified as *Eremophila forrestii* subsp. *forrestii*, *Eremophila latrobei* subsp. *glabra* and *Eremophila* sp. indet, did not fall within the *Eremophila capricornica* clade.

For the purposes of this report, it has been assumed that all records morphologically identified as *Eremophila capricornica* (including the 'narrow sepals' form), *Eremophila jucunda* subsp. *pulcherrima*, and *Eremophila* sp. (Sect. Eriocalyx), as well as all records identified in the field as *Eremophila capricornica* (i.e., where no specimen was taken), represent the taxon *Eremophila capricornica*.

3.3 Eremophila capricornica field observations

Eremophila capricornica (Priority 1) was recorded from 1,047 locations within the Study Area, with an estimated combined plant count of 28,898 individuals (Figure 3.2 and Appendix C).

Where available, vegetation units where *Eremophila capricornica* was recorded are provided in Table 3.2. Vegetation units for Jimblebar East and Caramulla project areas were mapped by Biologic in 2019 (Biologic, 2019). Consolidated vegetation mapping has been conducted for BHP tenements by Onshore Environmental, including an area to the east of Caramulla Creek (Onshore, 2014). Vegetation for the remainder of the areas surveyed has not been determined beyond a broader regional scale.

Within unmapped areas of the Study Area, *Eremophila capricornica* (Priority 1) was noted to occur in low open *Acacia*/ mulga woodland, tall shrubland and tall open shrubland with a mixture of *Acacia*, mulga (*Acacia aneura* and close relatives), and *Hakea lorea*, over *Acacia* spp. and *Eremophila fraseri* open shrubland over *Triodia* hummock grassland or tussock grassland (Plate 3.1). *Eremophila capricornica* was primarily found on mid-low rocky slopes and plains in sand, sandy loams, and clay loams.

Legend

— Hydrology

Core Study Area — Major Road **BHP** Tenements 20km Core Study Area Jigalong Aboriginal Reserve

Rail

Eremophila Sect. Eriocalyx Records

- Eremophila capricornica
- Eremophila forrestii subsp. forrestii \diamond
- Eremophila latrobei var. glabra \diamond
- Eremophila sp. indet

BHP WAIO Eremophila capricornica Targeted Flora Survey Figure 3.2: *Eremophila capricornica* locations recorded by the Survey

Coordinate System: GDA 1994 MGA Zone 51 Projection: Transverse Mercator Datum: GDA 1994 Size A3. Created 11/03/2021

Table 3.2: Previously mapped vegetation units where Eremophila capricornica was located during the current targeted survey (adapted from Biologic, 2019; Onshore, 2014)

Broad vegetation formation	Vegetation association
<i>Acacia</i> high open shrubland	High open shrubland of Acacia sclerosperma subsp. sclerosperma, Acacia wanyu and Acacia aptaneura over low open shrubland of Senna glaucifolia, Senna artemisioides subsp. oligophylla and Senna artemisioides subsp. helmsii over very open tussock grassland of Eulalia aurea, Aristida inaequiglumis and Chrysopogon fallax on brown loamy sands on sand plains, hardpan plains and drainage areas/ floodplains
	High open shrubland of Acacia wanyu over open shrubland of Senna glutinosa subsp. luerssenii and Senna stricta over low open shrubland of Eremophila cuneifolia, Maireana triptera and Frankenia setosa on brown silty loams on foot slopes and stony plains
Acacia high shrubland	High shrubland of Acacia balsamea, Acacia wanyu and Eremophila fraseri over open hummock grassland of Triodia vanleeuwenii with low scattered trees of Acacia aptaneura and Acacia catenulata subsp. occidentalis on red sandy loams on hill slopes and undulating low hills
Acacia low woodland	Low woodland of Acacia aptaneura, Corymbia hamersleyana and Acacia pruinocarpa over mid open shrubland of Dodonaea petiolaris, Eremophila forrestii and Senna artemisioides subsp. helmsii over very open tussock grassland of Themeda triandra, Chrysopogon fallax and Aristida inaequiglumis on red clayey loams on hardpan plains, drainage areas and floodplains
	Low woodland of Acacia aptaneura, Acacia catenulata subsp. occidentalis and Acacia ayersiana over high shrubland of Acacia subcontorta over open hummock grassland of Triodia basedowii on orange silty clay loam on stony plains
<i>Corymbia</i> low open woodland	Low open woodland of Corymbia hamersleyana, Eucalyptus odontocarpa and Corymbia deserticola subsp. deserticola over open shrubland of Acacia ancistrocarpa, Acacia pachyacra and Acacia adsurgens over open hummock grassland of Triodia basedowii, Triodia schinzii and Triodia vanleeuwenii on red brown sandy loam on footslopes and stony plains
<i>Eremophila</i> low shrubland	Low shrubland of Eremophila compacta, Eremophila cuneifolia and Lepidium platypetalum with low open woodland of Acacia aptaneura and Acacia paraneura and high open shrubland of Acacia wanyu and Senna glutinosa subsp. x luerssenii on clay loam on low hills
<i>Eucalyptus</i> woodland	Woodland of Eucalyptus victrix, Acacia citrinoviridis and Eucalyptus camaldulensis subsp. refulgens over low open shrubland of Tephrosia rosea var. clementii, Corchorus crozophorifolius and Acacia pyrifolia var. pyrifolia over very open tussock grassland of *Cenchrus ciliaris, Eulalia aurea and Themeda triandra on brown loamy sand on channels of major drainage lines

Broad vegetation formation	Vegetation association
<i>Frankenia</i> low open shrubland	Low open shrubland of Frankenia setosa with scattered tussock grasses of *Cenchrus ciliaris on red brown clay loam on saline flats
<i>Triodia</i> hummock grassland	Hummock grassland of Triodia basedowii with low open woodland of Acacia aptaneura, Acacia pruinocarpa and Acacia pteraneura over low open shrubland of Eremophila forrestii on red sandy loam on floodplains and drainage areas
	Hummock grassland of Triodia vanleeuwenii with high open shrubland of Acacia pruinocarpa, Grevillea wickhamii subsp. hispidula and Hakea lorea subsp. lorea over low open shrubland of Acacia hilliana, Calytrix carinata and Eremophila exilifolia on red sandy loam on hill slopes and undulating low hills
	Hummock grassland of Triodia basedowii with low open woodland of Acacia aptaneura and Acacia pruinocarpa over open shrubland of Eremophila forrestii subsp. forrestii on red sandy loam on floodplains
	Hummock grassland of Triodia vanleeuwenii on red brown sandy loam on hill slopes
	Hummock grassland of Triodia vanleeuwenii with high open shrubland of Grevillea wickhamii subsp. hispidula, Acacia ancistrocarpa and Acacia marramamba over open shrubland of Senna artemisioides subsp. helmsii, Senna glutinosa subsp. luerssenii and Ptilotus rotundifolius on red sandy loams on hill slopes and undulating low hills
Triodia open hummock grassland	Open hummock grassland of Triodia basedowii with high open shrubland of Acacia aptaneura and Hakea lorea subsp. lorea over open shrubland of Eremophila fraseri, Senna sp. Meekatharra (E. Bailey 1-26) and Eremophila ?capricornica on red loamy sand on sandy/ stony plains
	Open hummock grassland of Triodia vanleeuwenii, Triodia pungens and Triodia basedowii with low open woodland of Acacia aptaneura, Acacia pruinocarpa and Acacia wanyu and open shrubland of Acacia tetragonophylla, Eremophila exilifolia and Eremophila latrobei subsp. latrobei on red sandy loam on hill slopes

Plate 3.1: Examples of habitat across the Study Area with *Eremophila capricornica* individuals present as scattered shrubs to low open shrubland

The individuals observed in the field ranged in condition from healthy flowering and fruiting individuals to sterile, dry looking individuals (Plate 3.2). Broadly, individuals to the west were generally in better condition than individuals to the east. This may be a result of reduced rainfall further to the east of Newman, which is difficult to determine due to a lack of reliable rainfall gauges east of Newman (BoM, 2020). The field observations, including observations of the vegetation broadly, noted that the landscape was notably drier further towards Jigalong, compared to the Jimblebar area. Flowering specimens were available from most populations located in the field, however, most of the individuals were sterile with only occasional flowering or fruiting specimens present.

The vegetation types supporting the populations of *Eremophila capricornica* were generally in very good condition with little to no disturbance. Most disturbances were noted from sporadic cattle activity, grazing, informal tracks and mining/ exploration activities. The presence of weeds was low across the populations, with most weed locations associated with exploration activities (i.e., weeds along tracks) or drainage/ wet areas. There was limited evidence of recent fire across the area, which was not observed to impact on any individuals identified.

Eremophila capricornica was locally abundant and widespread at most locations with approximately 55% of locations consisting of 20 or more individuals and 6% of locations having 100 or more individuals.

Plate 3.2: Close up of *Eremophila capricornica* flowering and fruiting specimens identified from the Study Area. Biologic photos taken during the field survey

3.4 Updated known occurrence of *Eremophila capricornica*

Following the review of available information for *Eremophila capricornica* (Priority 1) and the inclusion of information collected by Biologic during the current targeted survey, it is evident that *Eremophila capricornica* is more widespread and abundant than previously thought (Figure 3.2).

For the purposes of this report, it has been assumed that all coordinates are accurate, except for the ALA record from 250 km north of Jimblebar which has not been confirmed (ALA, 2020). The specimen from the original (incorrect) location of accession no. 9151079 was confirmed as *Eremophila capricornica* by WAH (DBCA, 2020c; WAH, 1998-). Some records of *Eremophila capricornica* held by the DBCA use

descriptive words like 'abundant' and 'infrequent' so it is difficult to determine an accurate total number of individuals for these locations (WAH, 1998-). The BHP WAIO internal database combines all previous survey data to give a combined population estimate of 5,571 individuals (BHP, 2020a). During the current targeted survey, it was observed that a number of the populations of *Eremophila capricornica* extended further than the area traversed (see section 3.5 for explanation of time constraints). For example, the individuals recorded along Jigalong Mission Road (south of the Caramulla project area; Figure 3.2) extended further from the road (to the north and south). Given that the current survey found 28,898 individuals throughout the Study Area, it can be concluded that the combined number of known individuals is at least 34,469, and likely in excess of 35,000 individuals.

Separate populations of *Eremophila capricornica* were defined as being more than 500 m apart, in line with guidelines in the DBCA's *Threatened and Priority Flora Report Form – Field Manual* (Stack, 2017). A review of the point-locations recorded during this survey has identified 21 separate populations in the Study Area. BHP database records indicate a further eight populations across the North Jimblebar, East Jimblebar and Caramulla project areas. When all location records are combined (including WAH and TPFL specimens) there is a total of 22 distinct populations. Given the abundance and frequency at which plants occurred, it is likely that several of the populations identified during current and previous surveys form part of a larger, broader contiguous population.

3.5 Survey constraints and limitations

There are a number of possible constraints and limitations that can impinge on the adequacy of targeted flora surveys (EPA, 2016b). The limitations of the current assessment are presented in accordance with the Technical Guidance (EPA, 2016b) (Table 3.3).

The survey was undertaken during the known flowering period for *Eremophila capricornica* (June to August) and therefore the survey timing was considered optimal for the target species, in line with EPA guidance for targeted surveys (EPA, 2016b).

Although there was significant rainfall in the preceding wet season, this was followed by several months of below average rainfall. A large proportion of *Eremophila capricornica* individuals did not bear flowers or fruit; this was particularly evident in the eastern part of the survey area where it was observed to be drier. Plants were still able to be identified relatively easily in the field as botanists were aware of key differences between *Eremophila capricornica* and similar species. Where plants could not be confidently identified in the field or flowering specimens were present and available, specimens were taken.

Table 3.3: Botanical survey li	imitations and constraints
--------------------------------	----------------------------

Limitation	Constraint	Comment	
Availability of contextual information at a regional and local scale	No	Sufficient contextual information was available for the Study Area, including broad information on land systems and vegetation associations. The Study Area surrounds BHP's Jimblebar iron ore operation. An extensive amount of biological survey work has occurred across the Jimblebar project area and surrounds; the data and reports of which were all available for this assessment.	
Competency/experience of the team carrying out the survey, including experience in the bioregion surveyed	No	The survey was led by an experienced botanist with over 14 years' experience. The lead botanist met the minimum requirements to manage a flora and vegetation field survey in the Pilbara bioregion (EPA, 2016b). The lead botanist was assisted by a botanist with seven years' experience. Both botanists were involved in a recent flora and vegetation survey of the Jimblebar project area and were familiar with <i>Eremophila capricornica</i> and its potential habitat / landform requirements.	
Proportion of targeted individuals recorded and/or collected, any identification issues	No	The survey intensity (targeted) is designed to capture a specific flora taxon within the Study Area. Although the seasonal conditions prior to the survey was considered below optimal (i.e., following below average rainfall preceding the survey), there were still many individuals flowering at the time, and where confident identification was not possible, specimens were taken for further taxonomic identification.	
		The survey team collected in excess of 20 specimens for further taxonomic review. Genetic material was also obtained from the specimens collected in the field. This genetic material was successfully used to determine similarities across the species present within Sect. Eriocalyx of the <i>Eremophila</i> genus.	
Was the appropriate area fully surveyed (effort and extent)	No	As the survey intensity was set as a targeted survey, only areas deemed suitable were required to be surveyed. Species distribution mapping was used to determine a Study Area with potential habitat for <i>Eremophila capricornica</i> .	
		The Study Area was traversed and surveyed on foot and by vehicle/ helicopter with all prospective habitats visited. A helicopter was used to access more remote areas.	

Limitation	Constraint	Comment	
	No	The Study Area was accessed via mining, exploration, and pastoral tracks, while a helicopter was utilised to access the more remote and inaccessible areas.	
		The track running north-south along Caramulla Creek (on the western side) was blocked by hydrologists working in the area, which restricted access to the southern parts of the study area. Furthermore, access was not granted to several third-party tenements.	
Access restrictions within the survey area		It should be noted that the field botanists attempted to record the extent of all populations located, however time and access constraints did not make this achievable. For example, the individuals of <i>Eremophila capricornica</i> recorded along Jigalong Mission Road (south of Caramulla project area) extended beyond the track verge. Due to time constraints, the population extent could not be fully determined.	
		In consideration of the large, remote, and inaccessible Study Area, a substantial area was still able to be covered and additional populations identified, and therefore access is not considered a constraint.	
Survey timing, rainfall, season of survey	No	<i>Eremophila capricornica</i> flowers predominantly between June and August and therefore survey timing was considered optimal for this species. Rainfall in the months preceding the survey was lower than average. Vegetation was observed to be in a dry state, especially further to the east. As a result of the drier conditions, flowering and fruiting specimens were scattered throughout the populations, with most individuals considered to be sterile.	
		Sterile material was collected from some populations to assist in the next generation sequencing and for "proof of concept" (i.e., accurately identify sterile plants during surveys completed out of season).	
		Although flowering and fruiting individuals of <i>Eremophila capricornica</i> were limited in some locations, the timing and seasonality of the survey was not considered to be a limiting factor in survey.	
Disturbance that may have affected the results of survey such as fire, flood or clearing	No	Disturbances recorded during the survey included fire, grazing and weeds. These disturbances were minor and were not considered to be a constraint of this survey.	

4 SUMMARY

A targeted flora survey for *Eremophila capricornica* (Priority 1) was completed over seven days across the Study Area, with the majority of the Study Area traversed on foot by both roads and helicopter drop points, with all suitable habitat visited and sampled. The targeted survey recorded:

- 28,898 individuals of *Eremophila capricornica* from 1,047 locations, and 21 separate populations;
- Individuals were generally observed to be in good condition with flowering and fruiting individuals present. A portion of the individuals observed were in a poorer condition due to perceived lower rainfall totals in the east of the Study Area;
- Individuals and populations were observed from a variety of habitats, ranging from low rocky slopes, plains and hardpans;
- Broad vegetation types included:
 - Acacia/ mulga shrubland and woodland;
 - Triodia hummock grassland
 - o Eremophila low shrubland
 - o Eucalyptus/ Corymbia woodland
 - o Frankenia low open shrubland
- Vegetation types supporting *Eremophila capricornica* were generally in very good condition.

The MaxENT modelling of known occurrences of *Eremophila capricornica* against landform, soil and bedrock map layers produced a Core Study Area that was used to guide targeted survey effort. Many populations, however, were found outside of this Core Study Area, suggesting that *Eremophila capricornica* can grow under a wide range of habitats and environmental conditions. Whilst it is still only known from a relatively restricted area of the Pilbara/ Gascoyne bioregional border, it has been found growing in many different habitats, from broad drainage areas and stony plains to undulating slopes and hillcrests. Although *Eremophila capricornica* has been found growing in broad floodplains and drainage areas, it does not seem to grow in defined creek lines, riverbanks or areas inundated with water.

The current targeted survey has increased the known occurrences of *Eremophila capricornica* to at least 34,469 individuals and has extended its known distribution east by approximately 11 km. It is thought that with additional survey effort the distribution of *Eremophila capricornica* could be further expanded to the south and east.

This targeted flora survey and complementary genomic analysis has highlighted the complexity that can exist within groups of closely related plant species, particularly when morphological differences in sterile specimens are not conspicuous. Genomic analysis of *Eremophila capricornica* has shown that it is possible to confidently identify sterile individuals using nuclear ribosomal DNA (nrDNA), making out-of-season surveys a viable option for this taxon.

5 REFERENCES

- ALA, Atlas of Living Australia. (2020). Atlas of Living Australia; Occurrence search (custom search). http://www.ala.org.au/
- BHP, Billiton Iron Ore. (2018). Vegetation and flora survey procedure. Document number: 0124627. Unpublished report prepared by BHP Iron Ore.
- BHP, Billiton Iron Ore. (2020a). BHP flora records database (custom search).
- BHP, Billiton Iron Ore. (2020b). *Biological survey spatial data requirements*. Unpublished manuscript prepared by BHP Billiton.
- Biologic, Environmental Survey. (2019). East Jimblebar & Caramulla Detailed Flora and Vegetation Assessment. Unpublished report prepared for BHP Western Australian Iron Ore:
- BoM. (2020). Climate data online. Retrieved 2020, from Bureau of Meteorology http://www.bom.gov.au./climate/data/index.shtml
- Brown, A., & Buirchell, B. (2011). A field guide to the Eremophilas of Western Australia. Perth, Western Australia: Simon Nevill Publications.
- Buirchell, B. J., & Brown, A. P. (2016). New species of *Eremophila* (Scrophulariaceae): thirteen geographically restricted species from Western Australia. *Nuytsia, 27*, 253-283.
- CBC, Centre for Biodiversity and Conservation, American Museum of Natural History. (2020). Maxent software for modeling species niches and distributions. Retrieved from https://biodiversityinformatics.amnh.org/open_source/maxent/
- Chinnock, R. J. (2007). Eremophila and allied genera: a monograph of the plant family Myoporaceae (1st ed. ed.). NSW: Rosenberg Publishing Pty Ltd.
- CSIRO. (2013). Digital Atlas of Australian Soils. http://www.asris.csiro.au/themes/Atlas.html#Atlas_References_
- DBCA. (2020a). NatureMap; mapping Western Australia's biodiversity (custom search). from Department of Biodiversity, Conservation and Attractions http://naturemap.dec.wa.gov.au./default.aspx
- DBCA. (2020b). Plastids of the Pilbara. Retrieved from https://pilbseq.dbca.wa.gov.au
- DBCA. (2020c). Threatened and Priority Flora Database (custom search). Retrieved 2019, from Department of Biodiversity, Conservation and Attractions <u>http://www.dpaw.wa.gov.au/plants-and-animals/threatened-species-and-communities/threatened-animals</u>
- EPA. (2016a). *Environmental Factor Guideline: Flora and Vegetation*. Perth, Western Australia: Environmental Protection Authority.
- EPA. (2016b). *Technical Guidance: Flora and Vegetation Surveys for Environmental Impact* Assessment. Perth, Western Australia: Environmental Protection Authority.
- EPA. (2020). Statement of environmental principles, factors and objectives. Perth, Western Australia: Environmental Protection Authority.
- GSWA, Geological Survey of Western Australia. (2016). 1:500,000 State interpreted bedrock geology of Western Australia.
- Onshore, Environmental Consultants. (2014). Consolidation of Regional Vegetation Mapping BHP Billiton Iron Ore Pilbara Tenure. Unpublished report prepared for BHP Billiton Iron Ore Pty Ltd.
- Onshore, Environmental Consultants. (2018a). *Reconnaissance Flora and Vegetation Survey Caramulla*. Unpublished report prepared for BHP Western Australia Iron Ore:
- Onshore, Environmental Consultants. (2018b). *Vegetation Survey and Desktop Assessment Caramulla Creek*. Unpublished report prepared for BHP WAIO:
- Onshore, Environmental Consultants. (2019). *Jimblebar North Reconnaissance Flora and Vegetation Survey*. Unpublished report prepared for BHP Western Australia Iron Ore:
- R Core Team. (2020). R: A language and environment for statistical computing.: R Foundation for Statistical Computing, Vienna, Austria. Retrieved from <u>https://www.R-project.org/</u>.
- Stack, G. (2017). Threatened and Priority flora report form field manual. Bentley, WA:
- van Vreeswyk, A. M. E., Payne, A. L., Leighton, K. A., & Hennig, P. (2004). *An inventory and condition survey of the Pilbara region, Western Australia*. South Perth, Western Australia: Western Australian Department of Agriculture.
- WAH, Western Australian Herbarium. (1998-). FloraBase-the Western Australian Flora. Retrieved January 2020, from Department of Biodiversity, Conservation and Attractions <u>https://florabase.dpaw.wa.gov.au/</u>

6 APPENDICES

Appendix A: Eremophila capricornica Genomic Sequencing Report

Jimblebar *Eremophila capricornica* Targeted Flora Genomic Analysis

Biologic Environmental Survey Report to BHP Western Australian Iron Ore March 2021

DOCUMENT STATUS					
Version Authors No.	Review / Approved	Approved for Issue to			
	for Issue	Name	Date		
1	Joel Huey, Stephanie Floeckner	Nihara Gunawardene/ Clinton van den Bergh	T. Carroll & B. Menezies	November 2020	
2	Nihara Gunawardene	Clinton van den Bergh	T. Carroll & B. Menezies	December 2020	
3	Joel Huey, Nihara Gunawardene	Nihara Gunawardene	T. Carroll & B. Menezies	March 2020	

"IMPORTANT NOTE"

Apart from fair dealing for the purposes of private study, research, criticism, or review as permitted under the Copyright Act, no part of this report, its attachments or appendices may be reproduced by any process without the written consent of Biologic Environmental Survey Pty Ltd ("Biologic"). All enquiries should be directed to Biologic.

We have prepared this report for the sole purposes of BHP Western Australian Iron Ore ("Client") for the specific purpose only for which it is supplied. This report is strictly limited to the Purpose and the facts and matters stated in it do not apply directly or indirectly and will not be used for any other application, purpose, use or matter.

In preparing this report we have made certain assumptions. We have assumed that all information and documents provided to us by the Client or as a result of a specific request or enquiry were complete, accurate and up-to-date. Where we have obtained information from a government register or database, we have assumed that the information is accurate. Where an assumption has been made, we have not made any independent investigations with respect to the matters the subject of that assumption. We are not aware of any reason why any of the assumptions are incorrect.

This report is presented without the assumption of a duty of care to any other person (other than the Client) ("Third Party"). The report may not contain sufficient information for the purposes of a Third Party or for other uses. Without the prior written consent of Biologic:

a) This report may not be relied on by a Third Party; and

b) Biologic will not be liable to a Third Party for any loss, damage, liability or claim arising out of or incidental to a Third Party publishing, using or relying on the facts, content, opinions or subject matter contained in this report.

If a Third Party uses or relies on the facts, content, opinions or subject matter contained in this report with or without the consent of Biologic, Biologic disclaims all risk and the Third Party assumes all risk and releases and indemnifies and agrees to keep indemnified Biologic from any loss, damage, claim or liability arising directly or indirectly from the use of or reliance on this report.

In this note, a reference to loss and damage includes past and prospective economic loss, loss of profits, damage to property, injury to any person (including death) costs and expenses incurred in taking measures to prevent, mitigate or rectify any harm, loss of opportunity, legal costs, compensation, interest and any other direct, indirect, consequential or financial or other loss.

GLOSSARY

18S	18S ribosomal RNA – a nrDNA gene commonly used in phylogenetics.
28S	28S ribosomal RNA – a nrDNA gene commonly used in phylogenetics.
5.8S	5.8S ribosomal RNA – a conserved gene nested within the nrDNA region.
Annotated genome	A genome that has all gene regions and genomic structures identified.
Bioinformatic	Analysis and management of large biological datasets, using novel computational solutions.
Bootstrap value	Value between 0 and 100 that indicates the robustness of the node in a phylogenetic tree.
bp	Base pairs – a measure of the number of nucleotides in a sequence
DNA barcoding	Identification of specimens by comparing DNA sequences of unknown specimens to known sequence libraries.
ETS	External Transcribed Spacer – a region adjacent to 18S which typically shows more genetic variation than 18S.
GenBank	Annotated open access sequence database of all publicly available nucleotide sequences and their protein translations.
Genome skimming	Genome skimming is a sequencing approach that uses shallow NGS sequencing of a genome to generate fragments of DNA. These fragments contain information about the high-copy fraction of the genome (e.g., plastome and nrDNA).
Genomic	Data derived from whole genomes, or large fragments of the whole genome.
ITS	Internal Transcribed Spacer – made up of subunits 1 and 2. These regions are nested within the nrDNA region, and show significantly more genetic variation than adjacent regions.
Mitochondrial DNA (mtDNA)	Mitochondrial DNA is the circular genome found in all animal cells. MtDNA is in high copy numbers and has certain evolutionary properties that make it useful for barcoding and phylogenetic studies.
NGS	Next Generation Sequencing – sequencing technologies that enable rapid genomic sequencing, producing large, powerful datasets. Also known as "massively parallel sequencing".
nrDNA	The nuclear ribosomal DNA region, comprised of ETS, 18S, ITS, 5.8S and 28S. The nrDNA region is located in the nuDNA genome and is duplicated throughout that genome
Nuclear DNA (nuDNA)	Nuclear DNA is the DNA found in the cell nucleus, where the bulk of eukaryote DNA is found.
Organelle DNA	DNA is found in two parts of cells; the nucleus, where most of the DNA is found, and the organelles (mitochondria and plastids). Organelle DNA is in high copy numbers and has certain evolutionary properties that make it useful for barcoding and phylogenetic studies.
Phylogenomic	Phylogenetics based on genomic data.
Plastid DNA	Plastid DNA is the circular genome (also called a plastome) found in all plant cells. Plastid DNA is in high copy numbers and has certain evolutionary properties that make it useful for barcoding and phylogenetic studies.
Plastome	See "plastid DNA".

1 INTRODUCTION

BHP Western Australia Iron Ore (BHP WAIO) commissioned Biologic Environmental Survey (Biologic) to undertake a targeted flora survey for *Eremophila capricornica* (Priority 1) in the areas surrounding the Jimblebar and Caramulla project areas (the Study Area). Accurate species identification of *Eremophila* specimens is difficult when specimens are not in flower (sterile). Molecular tools can supplement morphological identification to accurately identify more specimens, maximising the efficiency of targeted flora surveys.

DNA barcoding involves sequencing a short fragment of organelle DNA, which can be compared to a sequence library of known specimens (Hebert *et al.*, 2003). These organelle DNA sequences are from mitochondrial DNA in animals and plastid (chloroplast or other) DNA in plants. However, in closely related species there may be insufficient genetic information to reliably differentiate species (Hassel *et al.*, 2013). In addition, a positively identified specimen of the target species may have never been sequenced, making comparisons unreliable. For *E. capricornica*, both limitations apply. Comparison of available *Eremophila* plastid sequence data (not including *E. capricornica*) revealed low genetic variation between species (data not included), and there are no *E. capricornica* sequences available in public databases (e.g., GenBank).

Genome skimming is a powerful tool to overcome these limitations. Genome skimming uses high throughput, next generation sequencing technologies to sequence the entire genome at low coverage (nuclear and organelle), producing a genetic dataset to compare closely related species and providing molecular resources for previously un-sequenced taxa (Dodsworth, 2015). Reconstructing the entire genome (nuclear and organelle) from genome skimming is not the objective. Rather, high copy regions of the genome such as the entire plastid genome ("plastome") and the nuclear ribosomal DNA (nrDNA) gene region can be sequenced and analysed. In *Eremophila* this equates to approximately 150,000 base pairs (bp) of plastome DNA sequence data and 7,500 bp of nrDNA sequence data. The nrDNA dataset includes genes commonly used in phylogenetics (18S ribosomal RNA [18S], the Internal Transcribed Spacer subunits 1 and 2 [ITS1 and ITS2], 5.8S ribosomal RNA [5.8S], and 26S ribosomal RNA [26S]).

Recently, the "Plastids of the Pilbara" project (DBCA, 2020) produced 672 plastomes from 585 Pilbara taxa, including 13 *Eremophila* species (Nevill *et al.*, 2020). Unfortunately, this dataset did not include *E. capricornica*, but the method and existing dataset provide a path to develop a plastid dataset to resolve targeted surveying of *E. capricornica* in and surrounding the Study Area. Since this project was proposed, two annotated *Eremophila* plastomes and 257 *Eremophila* nrDNA sequences have been published on GenBank (Fowler *et al.*, 2020; Fowler *et al.*, in review). While these datasets do not include *E. capricornica*, they are useful for comparative purposes, and can expedite the analysis process.

1.1 Aims and objectives

The aims and objectives of the molecular systematics analysis were to:

• Perform genome skimming of 24 Eremophila specimens collected from the Study Area;

- Reconstruct plastomes from genome skimming data using standard bioinformatic methods;
- Use phylogenomic analyses to investigate the relationships among sequences from the Study Area and to compare to existing sequence data (from GenBank and "Plastids of the Pilbara");
- Compare phylogenomic results to morphological identifications to infer the species identification of the 24 *Eremophila* specimens;
- If required, reconstruct the nrDNA gene region using standard bioinformatic methods, undertake phylogenomic analyses, and compare nrDNA phylogenomic results to plastome and morphological identifications; and
- Explore whether phylogenomic analyses can be used to reliably distinguish *Eremophila* species and identify sterile specimens of *E. capricornica*.

This document reports the methods and results of the genomic analysis. All sequence data will be uploaded to GenBank[™] (Benson *et al.*, 2013) as per Biologic's Molecular Systematics Data Sharing Policy.

2 METHODS

2.1 Sub-sample preparation, DNA extraction and sequencing

A targeted flora survey was undertaken in the Study Area, across seven days from the 9th to the 15th of July 2020. This survey identified 28,000 individuals, which were later separated into *E. capricornica* (Priority 1), *E. jucunda* subsp. *pulcherrima* and *E.* sp. (Sect. Eriocalyx) based on WA Herbarium identifications of collected specimens. Twenty-six of these collected specimens were selected for DNA extraction, from which 24 specimens were selected for genome skimming (i.e. sequenced) (Table 2.1).

Plant leaves were collected in the field using sterile equipment, with storage of tissue in envelopes submerged in silica beads. This dehydrated the leaves, delaying DNA degradation before DNA extraction in Biologic's laboratory. More than 15 leaves were collected per plant to ensure sufficient tissue was available to fine tune the DNA extraction protocol. DNA extractions were undertaken using the Qiagen DNeasy Plant Mini Kit following the manufacturer's instructions. Some steps were modified to improve the protocol after checking the final quality and quantity of DNA to ensure each extraction had greater than 200 nanograms (ng) of high genomic weight DNA, at a concentration greater than 10 ng per microlitre (uL). Modifications included using a mortar and pestle to grind tissue after freezing and extending the homogenisation of tissue in the Qiagen TissueLyser II.

DNA extractions were sent to the Melbourne AGRF node for library preparation and sequencing. Library preparations consist of fragmenting target DNA into an ideal length for sequencing while adding short DNA adaptors to the target DNA. These adaptors allow the target DNA fragments to adhere to the sequencing flowcell and to identify specimens post-sequencing. Next generation sequencing entails pooling libraries from multiple individuals and simultaneously sequencing all fragments of DNA in the sample pool. These fragments (or reads) are then split back into their corresponding specimens and are analysed using bioinformatic tools. Each specimen will include millions of 100-150 bp DNA sequencing reads, which are then overlapped to reconstruct a gene region of interest.

Nextera Flex Library Preps were used on specimens, and after passing library preparation quality checks, libraries were sequenced on a single lane of an Illumina NovaSeq SP Lane, 300 cycle (150 bp paired end). This was expected to produce ~16 million reads per specimen, which is more than sufficient to reconstruct plastomes. Nevill *et al.* (2020) reconstructed plastomes using ~5 million reads per specimen.

Table 2.1: Specimens that were selected for DNA sequencing

BMR	Biologic ID	Registration Number	WA Herbarium or other further ID	Lat	Long	Sequenced
BMR01799	Eremophila capricornica	ECG.22	Eremophila capricornica	-23.4105	120.3989	Yes
BMR01800	Eremophila capricornica	ECG.20	Eremophila jucunda subsp. pulcherrima	-23.2895	120.0964	Yes
BMR01804	Eremophila capricornica	ECG.18	Eremophila sp. (Sect. Eriocalyx)	-23.2619	120.0853	Yes
BMR01805	Eremophila capricornica	ECG.08	Eremophila jucunda subsp. pulcherrima	-23.4674	120.2779	Yes
BMR01806	Eremophila margarethae	EMG.01	Eremophila latrobei var. glabra*	-23.3951	120.4147	Yes
BMR01807	Eremophila capricornica	ECG.14	Eremophila capricornica	-23.3861	120.5012	Yes
BMR01808	Eremophila capricornica	ECG.15	Eremophila capricornica	-23.3867	120.5030	No
BMR01809	Eremophila capricornica	ECG.17	Eremophila jucunda subsp. pulcherrima	-23.4058	120.2135	Yes
BMR01810	Eremophila capricornica	ECG.16	Eremophila capricornica	-23.3396	120.5072	Yes
BMR01811	Eremophila capricornica	ECG.21	Eremophila capricornica	-23.4015	120.4092	Yes
BMR01812	Eremophila capricornica	ECG.13	Eremophila capricornica	-23.4218	120.4874	Yes
BMR01813	Eremophila capricornica	ECG.19	Eremophila jucunda subsp. pulcherrima	-23.2669	120.0861	Yes
BMR01814	Eremophila capricornica	ECG.03	Eremophila jucunda subsp. pulcherrima	-23.3590	120.2239	Yes
BMR01815	Eremophila capricornica	ECG.10	Eremophila capricornica	-23.4952	120.4142	Yes
BMR01816	Eremophila forrestii	EFG.01	Eremophila forrestii subsp. forrestii*	-23.3296	120.2795	Yes
BMR01817	Eremophila capricornica	ECG.12	Eremophila capricornica	-23.4474	120.5251	Yes
BMR01818	Eremophila sp. indet	EJG.01	Eremophila sp. indet*	-23.4264	120.1219	Yes
BMR01819	Eremophila capricornica	ECG.02	Eremophila jucunda subsp. pulcherrima	-23.3441	120.2139	Yes
BMR01820	Eremophila capricornica	ECG.06	Eremophila sp. (Sect. Eriocalyx)	-23.4699	120.2486	Yes
BMR01821	Eremophila capricornica	ECG.11	Eremophila capricornica	-23.4893	120.4646	Yes
BMR01822	Eremophila capricornica	ECG.09	Eremophila sp. (Sect. Eriocalyx)	-23.5036	120.3885	Yes
BMR01823	Eremophila capricornica	ECG.01	Eremophila jucunda subsp. pulcherrima	-23.3669	120.2596	Yes
BMR01824	Eremophila capricornica	ECG.07	Eremophila jucunda subsp. pulcherrima	-23.4662	120.2499	Yes
BMR01825	Eremohila ?jucunda	EJC.01	Eremophila sp. indet*	-23.4264	120.1219	Yes
BMR01826	Eremophila capricornica	ECG.04	Eremophila jucunda subsp. pulcherrima	-23.4051	120.2962	No
BMR01827	Eremophila capricornica	ECG.05	Eremophila jucunda subsp. pulcherrima	-23.4033	120.2991	Yes

*Specimens not identified by WA Herbarium

2.2 Plastome Analysis

2.2.1 Analysis of DNA sequence reads

All DNA read analysis and plastome construction occurred in Geneious Prime (2020.0.5). Paired DNA reads were imported into Geneious and trimmed using the Geneious BBDuk plugin, with the default settings, trimming adapters and low quality (Q20), and discarding short reads (minimum length 10 bp).

Assembly of next generation sequencing reads collapses millions of paired reads into a single consensus sequence of the plastome (~150,000 bp). The availability of two annotated *Eremophila* plastomes allowed us to use a reference mapping approach, expediting the assembly of the sequence read data. For each specimen, reads were mapped to *Eremophila oppositifolia* (GenBank Accession Number MN044645) using the Geneious Read Mapper, on medium-low sensitivity and iterating up to five times. Consensus sequences were extracted from the assemblies using the "Highest Quality (Adjusted)" setting.

2.2.2 Phylogenomics

Alignments of plastomes were carried out using the online MAFFT alignment server (Katoh *et al.*, 2019), which efficiently handles large datasets. Initially, all available *Eremophila* plastomes (including species not from Western Australia) were included, however datasets that included the *Eremophila youngii* subsp. *lepidota* (Priority 4) specimen from the "Plastids of the Pilbara" website (specimen code 22471) failed to align efficiently. This specimen had a shorter sequence length relative to other *Eremophila* sequences on the "Plastids of the Pilbara" website (129.8k vs >151k) suggests that it may be a low quality assembly from a smaller initial read dataset. As such, it was excluded from all downstream analyses. The specimens included in the analysis are detailed in Table 2.2.2.

A maximum likelihood phylogeny was built using the RAxML-HPC2 on XSEDE tool on the Cipres Science Gateway (Miller *et al.*, 2010), with 1,000 bootstrap replicates and the GTR+GAMMA substitution model.

Voucher Number	Source	Species
BMR01799	This Study	Eremophila capricornica
BMR01800	This Study	Eremophila jucunda subsp. pulcherrima
BMR01804	This Study	Eremophila sp. (Sect. Eriocalyx)
BMR01805	This Study	Eremophila jucunda subsp. pulcherrima
BMR01806	This Study	Eremophila latrobei var. glabra
BMR01807	This Study	Eremophila capricornica
BMR01809	This Study	Eremophila jucunda subsp. pulcherrima
BMR01810	This Study	Eremophila capricornica
BMR01811	This Study	Eremophila capricornica
BMR01812	This Study	Eremophila capricornica
BMR01813	This Study	Eremophila jucunda subsp. pulcherrima
BMR01814	This Study	Eremophila jucunda subsp. pulcherrima
BMR01815	This Study	Eremophila capricornica
BMR01816	This Study	Eremophila forrestii subsp. forrestii

Table 2.2.2: Specimens i	included in	plastome	alignments
--------------------------	-------------	----------	------------

Voucher Number	Source	Species
BMR01817	This Study	Eremophila capricornica
BMR01818	This Study	<i>Eremophila</i> sp. indet
BMR01819	This Study	Eremophila jucunda subsp. pulcherrima
BMR01820	This Study	Eremophila sp. (Sect. Eriocalyx)
BMR01821	This Study	Eremophila capricornica
BMR01822	This Study	Eremophila sp. (Sect. Eriocalyx)
BMR01823	This Study	Eremophila jucunda subsp. pulcherrima
BMR01824	This Study	Eremophila jucunda subsp. pulcherrima
BMR01825	This Study	Eremophila sp. indet
BMR01827	This Study	Eremophila jucunda subsp. pulcherrima
22464	Plastids of the Pilbara, Nevill et al. 2020	Eremophila pilosa
22468	Plastids of the Pilbara, Nevill et al. 2020	Eremophila longifolia
22470	Plastids of the Pilbara, Nevill et al. 2020	Eremophila latrobei subsp. filiformis
22472	Plastids of the Pilbara, Nevill et al. 2020	Eremophila pusilliflora
22480	Plastids of the Pilbara, Nevill et al. 2020	Eremophila forrestii subsp. forrestii
22481	Plastids of the Pilbara, Nevill et al. 2020	Eremophila spongiocarpa
22559	Plastids of the Pilbara, Nevill et al. 2020	Eremophila cuneifolia
33450	Plastids of the Pilbara, Nevill et al. 2020	Eremophila magnifica subsp. velutina
33453	Plastids of the Pilbara, Nevill et al. 2020	Eremophila magnifica subsp. magnifica
33473	Plastids of the Pilbara, Nevill et al. 2020	Eremophila platycalyx subsp. pardalota
33474	Plastids of the Pilbara, Nevill et al. 2020	Eremophila maculata subsp. brevifolia
33540	Plastids of the Pilbara, Nevill et al. 2020	Eremophila lanceolata
MN044640, MELU	GenBank, Fowler et al. 2020	Eremophila gibbifolia
MN044645, MELUD118629a	GenBank, Fowler <i>et al</i> . 2020	Eremophila oppositifolia

2.3 Nuclear rDNA Analysis

2.3.1 Assembly of DNA sequence reads

The trimmed reads were assembled using the aforementioned "map to reference" method (Section 2.2.1) against *Eremophila jucunda* subsp. *pulcherrima* (isolate RMF75, GenBank Accession Number MN411414); a 7,474 bp sequence, which includes the 18S gene, internal transcribed spacer 1 (ITS1), 5.8S gene, internal transcribed spacer 2 (ITS2), and 26S gene. The fragment also includes some of the External Transcribed Spacer (ETS).

2.3.2 Phylogenomics

There are 257 nrDNA *Eremophila* sequences on GenBank (Fowler *et al.*, in review). These sequences provide a valuable comparative dataset, as they include vouchered specimens of species that may be in the target dataset. These included *Eremophila jucunda* subsp. *pulcherrima*, *Eremophila latrobei* var. *glabra*, *Eremophila forrestii*, and other species in the 'sect. Eriocalyx' part of the *Eremophila* radiation.

Alignments of nrDNA genes can be challenging due to the impact of insertions and deletions (indels) when aligning highly divergent sequences. As such, we initially aligned all available *Eremophila* nrDNA

sequences, and then selected a smaller dataset from the 'sect. Eriocalyx' part of the *Eremophila* radiation that included all sequences closely related to the target sequences, and those species that were believed to be in the target dataset based on morphological identifications. This dataset included species not found in Western Australia, but that were still phylogenetically related to the target specimens. This smaller dataset was aligned again. This improved the quality of the final alignment and provided a more easily interpreted final phylogeny.

See Table 2.3.2 for a list of sequences included in the final nrDNA alignments. Alignments of the nrDNA sequences were undertaken on the MAFFT online server, and maximum likelihood phylogenies were constructed following the same method detailed in Section 2.2.2.

Table 2.3.2: Specimens included in nrDNA alignments

Voucher Number	Source	Species
BMR01799	This Study	Eremophila capricornica
BMR01800	This Study	Eremophila jucunda subsp. pulcherrima
BMR01804	This Study	Eremophila sp. (Sect. Eriocalyx)
BMR01805	This Study	Eremophila jucunda subsp. pulcherrima
BMR01806	This Study	Eremophila latrobei var. glabra
BMR01807	This Study	Eremophila capricornica
BMR01809	This Study	Eremophila jucunda subsp. pulcherrima
BMR01810	This Study	Eremophila capricornica
BMR01811	This Study	Eremophila capricornica
BMR01812	This Study	Eremophila capricornica
BMR01813	This Study	Eremophila jucunda subsp. pulcherrima
BMR01814	This Study	Eremophila jucunda subsp. pulcherrima
BMR01815	This Study	Eremophila capricornica
BMR01816	This Study	Eremophila forrestii subsp. forrestii
BMR01817	This Study	Eremophila capricornica
BMR01818	This Study	Eremophila sp. indet
BMR01819	This Study	Eremophila jucunda subsp. pulcherrima
BMR01820	This Study	Eremophila sp. (Sect. Eriocalyx)
BMR01821	This Study	Eremophila capricornica
BMR01822	This Study	Eremophila sp. (Sect. Eriocalyx)
BMR01823	This Study	Eremophila jucunda subsp. pulcherrima
BMR01824	This Study	Eremophila jucunda subsp. pulcherrima
BMR01825	This Study	Eremophila sp. indet.
BMR01827	This Study	Eremophila jucunda subsp. pulcherrima
MN380713	GenBank, Fowler et al. in review	Eremophila bowmanii
MN411326	GenBank, Fowler et al in review	Eremophila eriocalyx
MN411328	GenBank, Fowler et al in review	Eremophila caespitosa
MN411341	GenBank, Fowler et al in review	Eremophila latrobei subsp. latrobei
MN411352	GenBank, Fowler et al in review	Eremophila forrestii subsp. forrestii
MN411353	GenBank, Fowler et al in review	Eremophila jucunda subsp. jucunda
MN411355	GenBank, Fowler et al in review	Eremophila latrobei subsp. latrobei
MN411377	GenBank, Fowler et al in review	Eremophila obovata subsp. glabriuscula
MN411378	GenBank, Fowler et al in review	Eremophila obovata subsp. obovata
MN411380	GenBank, Fowler et al in review	Eremophila compacta subsp. fecunda
MN411381	GenBank, Fowler et al in review	Eremophila forrestii subsp. capensis
MN411386	GenBank, Fowler et al in review	Eremophila bowmanii subsp. nutans
MN411392	GenBank, Fowler et al in review	Eremophila compacta subsp. compacta
MN411412	GenBank, Fowler et al in review	Eremophila latrobei subsp. filiformis
MN411414	GenBank, Fowler et al in review	Eremophila jucunda subsp. pulcherrima
MN411447	GenBank, Fowler et al in review	Eremophila conferta

Voucher Number	Source	Species
MN411448	GenBank, Fowler et al in review	Eremophila muelleriana
MN411459	GenBank, Fowler et al in review	Eremophila occidens
MN411471	GenBank, Fowler et al in review	Eremophila punicea
MN411485	GenBank, Fowler et al in review	Eremophila margarethae
MN411489	GenBank, Fowler et al in review	Eremophila citrina
MN411495	GenBank, Fowler et al in review	Eremophila campanulata
MN411498	GenBank, Fowler et al in review	Eremophila glandulifera
MN411519	GenBank, Fowler et al in review	Eremophila congesta
MN411523	GenBank, Fowler et al in review	Eremophila rigens
MN411525	GenBank, Fowler et al in review	Eremophila physocalyx
MN411532	GenBank, Fowler et al in review	Eremophila tenella
MN411591	GenBank, Fowler et al in review	Eremophila demissa
MN411596	GenBank, Fowler et al in review	Eremophila humilis
MN411598	GenBank, Fowler et al in review	Eremophila buirchellii
MN411599	GenBank, Fowler et al in review	Eremophila conferta
MN411600	GenBank, Fowler et al in review	Eremophila yinnetharrensis
MN411601	GenBank, Fowler et al in review	Eremophila rhegos
MN411602	GenBank, Fowler et al in review	Eremophila recurva
MN411604	GenBank, Fowler et al in review	Eremophila anomala

2.4 Constraints and Limitations

The analysis was constrained by the breadth of data available to undertake comparisons and the accuracy of morphological identifications. The survey team collected in excess of 20 specimens believed to be *E. capricornica* for further taxonomic review, however over half of the specimens collected were identified as *E. jucunda* subsp. *pulcherrima* by specialist taxonomists at the WA Herbarium. This included specimens collected from previously known *E. capricornica* locations within the Study Area. The main survey report (Biologic, 2021) has highlighted the issue of morphological differentiation between these two species in the Study Area. More comprehensive datasets of *Eremophila* from the region would have assisted in analysis and interpretation.

The databases used for regional comparisons included GenBank and the "Plastids of the Pilbara" dataset. While these sequence databases, in combination, is a significant comparative dataset, it is acknowledged that taxon sampling was incomplete, and it is possible that identifications were incorrect. Furthermore, more intraspecific genetic data would have assisted in analysis and interpretation. GenBank is a dynamic database, and the addition of new sequences and altered taxonomic classifications could not be included into this report if they occurred after the 15th of November 2020.

All care was taken to ensure that the risks of laboratory contamination, data handling issues, and specimen management issues were minimised within Biologic's laboratories throughout the subsampling, processing and genetic analysis.

3 RESULTS AND DISCUSSION

3.1 Sequencing Effectiveness

All 24 selected specimens returned high quality data, within the expected yield (Table 3.1). After assembly of the plastomes and nrDNA genes, read coverage was high (Table 3.1), enabling the extraction of high-quality consensus sequences for all specimens, for both genomic regions. Figure 3.1 visually shows the assembly of reads to a reference plastome sequence.

Specimen	Paired End Reads	Yield (bp)	Plastome average coverage (reads)	Plastome sequence length (bp)	nrDNA average coverage (reads)	nrDNA sequence length (bp)
BMR01799	17,078,308	5.16 Gb	258.1	151,563	4,620.4	7,479
BMR01800	24,414,424	7.37 Gb	375.9	151,592	5,002.4	7,479
BMR01804	17,401,910	5.26 Gb	454.3	151,606	2,640.5	7,479
BMR01805	11,721,621	3.54 Gb	215.2	151,574	2,435.6	7,479
BMR01806	15,095,148	4.56 Gb	959.0	151,574	6,012.2	7,478
BMR01807	17,416,452	5.26 Gb	192.0	151,577	5,604.0	7,479
BMR01809	15,393,034	4.65 Gb	184.8	151,574	5,425.8	7,480
BMR01810	16,387,381	4.95 Gb	835.3	151,556	4,800.7	7,479
BMR01811	15,771,630	4.76 Gb	239.4	151,582	4,366.6	7,479
BMR01812	15,871,130	4.79 Gb	124.8	151,561	4,019.2	7,480
BMR01813	17,687,243	5.34 Gb	273.4	151,609	6,313.7	7,479
BMR01814	17,344,211	5.24 Gb	251.4	151,584	4,767.1	7,481
BMR01815	13,706,718	4.14 Gb	394.5	151,570	4,084.9	7,479
BMR01816	15,418,997	4.66 Gb	182.5	151,587	2,344.1	7,475
BMR01817	16,786,937	5.07 Gb	547.5	151,556	3,826.3	7,479
BMR01818	18,330,925	5.54 Gb	558.6	151,594	7,874.7	7,481
BMR01819	15,597,659	4.71 Gb	272.8	151,576	4,476.8	7,479
BMR01820	16,308,653	4.93 Gb	204.4	151,587	6,077.6	7,479
BMR01821	14,953,850	4.52 Gb	216.9	151,570	3,015.9	7,479
BMR01822	20,551,114	6.21 Gb	346.3	151,572	5,877.0	7,479
BMR01823	16,724,025	5.05 Gb	310.2	151,570	5,433.3	7,477
BMR01824	19,171,416	5.79 Gb	205.9	151,582	5,160.2	7,479
BMR01825	21,307,120	6.43 Gb	372.3	151,548	3,428.7	7,474
BMR01827	17,527,600	5.29 Gb	204.5	151,565	3,591.7	7,479
Total	407,967,506	123.21 Gb	-	-	-	-

Table 3.1: Summary of Next Generation Sequencing and assembly read coverage.

Figure 3.1: Screenshot of plastome assembly (BMR01812). Colours represent different nucleotides (A, T, C, G), with read data assembled below the reference sequence. This represents approximately 900bp of the 150,000bp plastome (0.6%).

Page | 48

3.2 Plastomes

The phylogeny of the plastome dataset failed to clearly resolve species that were included in the analysis (Figure 3.2). All of the target sequences of *E. capricornica* and *E. jucunda* subsp. *pulcherrima* (sequences labelled with BMR prefix) formed a single clade, which also included other species. However, other more distinctive species were phylogenetically resolved (e.g., *E. magnifica*). This result suggests that the plastome is not useful for distinguishing between closely related species but does seem to resolve more distinct species.

Figure 3.2: ML Phylogeny of *Eremophila* plastome sequences. Values represent bootstrap support (%). Values below 80%, which represent moderate to low support have been removed. Sequences highlighted in red are from this study.

3.3 Nuclear rDNA

The nrDNA phylogeny was more informative (Figure 3.3). All target specimens identified as *E. capricornica, E. jucunda* subsp. *pulcherrima*, and *Eremophila* sp. (Sect. Eriocalyx) formed a single lineage, with moderate-strong bootstrap support (red in Figure 3.2). *Eremophila jucunda* subsp. *pulcherrima* from GenBank was not closely related to these specimens (green in Figure 3.2). This GenBank specimen was originally collected in 2014, before the description of *E. capricornica*. However, the specimen was originally collected by B. Buirchell and R. Fowler, and B. Buirchell is one of the

describers of *E. capricornica*. The molecular work was undertaken by R. Fowler, in collaboration with B. Buirchell, and uploaded to GenBank in 2020. We have discussed these results with R. Fowler and B. Buirchell and they are confident that the GenBank specimen of *E. jucunda* subsp. *pulcherrima* is correctly identified and that the survey specimens are not *E. jucunda* subsp. *pulcherrima*.

This group was closely related to *E. demissa*, a species found to the south of the Pilbara and unlikely to be confused with *E. capricornica* as they are separated by ~170 km (Buirchell & Brown, 2016). However, a WA Herbarium specimen that is now identified as *E. capricornica* was initially identified as *E. demissa*, and Buirchell and Brown (2016) state that *E. capricornica* is most similar morphologically to *E. demissa* and *E. margarethae*.

Based on this result we conclude that the target specimens identified as *E. capricornica*, *E. jucunda* subsp. *pulcherrima*, and *Eremophila* sp. (Sect. Eriocalyx) are all conspecific and represent *E. capricornica*. The identification of survey specimens as *E. jucunda* subsp. *pulcherrima* were misidentifications. See Figure 3.3 for a graphical representation of this lineage. From this point forth, we refer to these specimens as *E. capricornica*.

A final confirmation of this result would require the sequencing of the type specimen of *E. capricornica*, currently held in the WA Herbarium. While the type location of *E. capricornica* was sampled for this study, the identical plant could not be confirmed (see survey report).

The remaining four target specimens were not identified as *E. capricornica* or *E. jucunda* subsp. *pulcherrima* and were not within the *E. capricornica* group. BMR01806 was morphologically identified as *E. latrobei* var. *glabra* (but without flowers) but was not closely related to the GenBank sequence of *E. latrobei* subsp. *latrobei* (MN411341). BMR01816 was identified as *E. forrestii* subsp. *forrestii* and was closely related to *E. forrestii* subsp. *forrestii* in the analysis. BMR01818 and BMR1825 was identified as *Eremophila* sp. indet. and did not group with tightly with any other GenBank *Eremophila* sequences.

Figure 3.3: ML Phylogeny of *Eremophila* nrDNA sequences. The phylogeny tips state the original morphological identifications made by WA Herbarium or other further ID. The grey box indicates the specimens we are identifying as *E. capricornica* based on molecular evidence. Values represent bootstrap support (%). Values below 80%, which represent moderate to low support, have been removed.

3.4 Barcoding

Generating whole plastome and nrDNA datasets may allow the identification of a shorter fragment of DNA that has fixed differences between the target taxon (*E. capricornica*) and all other sympatric species. Targeting then sequencing that fragment using a cheaper sequencing technology, or analysing using restriction enzymes, could provide a cheap and efficient method for identifying specimens without using the more expensive and time-consuming genome skimming approach.

Biologic searched for these diagnostic fragments in the plastome dataset and nrDNA dataset, aiming to identify a fragment that would differentiate *E. capricornica* from all other species. The plastome dataset had no fixed diagnostic nucleotides, mirroring the lack of phylogenetic resolution. The ~600bp ITS1-5.8S-ITS2 fragment of the nrDNA dataset showed more resolution, and other that the specimen BMR01806 (which was initially identified as *Eremophila latrobei* var. *glabra* but phylogenetically distinct based on nrDNA, Figure 3.3), all species could be easily distinguished (Figure 3.4 and 3.5). This analysis excluded *E. demissa*, as it is not sympatric with *E. capricornica*.

This region can be easily amplified using Sanger sequencing, which is significantly cheaper than genome skimming, and could allow the barcoding of many specimens across a project prea. For *E. capricornica*, this nrDNA fragment shows promise, however a more comprehensive sample of non-*E. capricornica* species would be advisable to confirm that diagnostic nucleotides are fixed. Sampling intraspecific variation will ensure that this technique is robust and reliable. Primer design and successful amplification and sequencing of this region has not yet been conducted on *Eremophila* specimens to-date.

Figure 3.4: RaxML tree of the ~600bp fragment of ITS1-5.8S-ITS2. Specimens with *Eremophila capricornica* on tips are those identified molecularly using nrDNA in Section 3.3.

	1	10	100	190		270	296	and .	218	100	195	 120	(1)
Consensus													
Identity											í a		
2. BMR01800 Eremophila capricornica		_											
 BMR01805, Eremophila capricornica 	-												
 BMRD1807_Enemophila capricornica 				and and a state of the									
BMR01810_Eremophila capricornica													
6. BMR01819_Enemophila capricornica		_											
DMR01813_Eremophila capricornica													
II. BMR01II17, Eremophila capricornica													
 IMAD1824_Eremophile capricornica 													
10. BMR01822_Enemophila capricornica													
11, BMH01820, Eremophila caphionnica													
12. BMR01804 Eremophila capricornica													
1.5. DMM01021, premophia capricomica													
15 BM001815 Exemplain capricornica													
16. BMBD3814 Framonbila capriconnera													
17, FMR01809 Ersmonhila capricornica													
18, BMI01812 Eremophila capricornica													
19. BMII01811 Eremophila capricornica													
20. BMII01823 Eremophila capricomica	-									_			
21, BMR01806 Eremophila latrobei var. glabra													
22. BMR01816 Eremophila forrestii subsp. forrestii					-	-					1110		
 BMR01825_Eremophila.np. indet 											100		
24. MN411414_Eremophila_jucunda_subsppulchecrima	-	_	1		-								
 MN411352_Eremophila_forrestil_subsp_forrestil 													
MN411341_Eremophila_latrobei_subsplatrobei													
27, MN411355_Eremophila_latrobei_sutrsplatrobei			1										
28. BMHD1818_Eremophila sp. indet					-						1.0	 -	
29. MN411392_Eremoprika_compacta_subsp_compacta		_										 	
34. MARTINE Franciskis lineards siders, hunde		_									- 11 - 11		
31. Weet 1333_Eremophila_jocunda_subspjucunda		_											
32. Milet 1403 Elementalita latrobal datas. Billionia		_			-								
22. WHALFTELEIEUDDURGTRUDDETIREDTURD													

biologic

4 SUMMARY

Genome skimming was used to successfully sequence the entire plastome and nrDNA region of 24 specimens of *Eremophila* from the Study Area. The plastome was not effective at distinguishing between *E. capriconica* specimens and other *Eremophila* species (specifically, *E. jucunda* subsp. *pulcherrima*, and *E.* sp. indet.). The nrDNA region showed more phylogenetic signal and confirmed that all specimens morphologically identified as *E. capricornica*, *E. jucunda* subsp. *pulcherrima*, and *Eremophila* species. (Sect. Eriocalyx) formed a single unique lineage. This unique lineage likely represents *E. capriconica*, however sequencing of the type specimen would be required to confirm this.

5 **REFERENCES**

- Benson, D. A., Cavanaugh, M., Clark, K., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J., & Sayers, E. W. (2013). GenBank. *Nucleic Acids Research, 41*, D36-D42. doi:10.1093/nar/gks1195
- Biologic. (2021). *Jimblebar Eremophila capricornica Targeted Flora Survey*. Unpublished report prepared for BHP Western Australia Iron Ore.
- Buirchell, B. J., & Brown, A. P. (2016). New species of *Eremophila* (Scrophulariaceae): thirteen geographically restricted species from Western Australia. *Nuytsia, 27*, 253-283.
- DBCA. (2020). Plastids of the Pilbara. Retrieved from https://pilbseq.dbca.wa.gov.au
- Dodsworth, S. (2015). Genome skimming for next-generation biodiversity analysis. *Trends in Plant Science*, 20(9), 525-527.
- Fowler, R. M., McLay, T. G., Schuster, T. M., Buirchell, B. J., Murphy, D. J., & Bayly, M. J. (2020). Plastid phylogenomic analysis of tribe Myoporeae (Scrophulariaceae). *Plant Systematics and Evolution*, 306, 1-10.
- Fowler, R. M., Murphy, D. J., McLay, T. G., Buirchell, B. J., Chinnock, R. J., & Bayly, M. J. (in review). Molecular phylogeny of tribe Myoporeae (Scrophulariaceae) using nuclear ribosomal DNA: generic relationships and evidence for major clades. *TAXON*.
- Hassel, K., Segreto, R., & Ekrem, T. (2013). Restricted variation in plant barcoding markers limits identification in closely related bryophyte species. *Molecular Ecology Resources*, *13*(6), 1047-1057.
- Hebert, P. D., Cywinska, A., Ball, S. L., & deWaard, J. R. (2003). Biological identifications through DNA barcodes. *Proceedings of the Royal Society B, 270*(1512), 313-321.
- Katoh, K., Rozewicki, J., & Yamada, K. D. (2019). MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. *Briefings in Bioinformatics, 20*(4), 1160–1166. doi:<u>https://doi.org/10.1093/bib/bbx108</u>
- Miller, M. A., Pfeiffer, W., & Schwartz, T. (2010). *Creating the CIPRES Science Gateway for inference of large phylogenetic trees.* Paper presented at the Proceedings of the Gateway Computing Environments Workshop (GCE), New Orleans, LA.
- Nevill, P. G., Zhong, X., Tonti-Filippini, J., Byrne, M., Hislop, M., Thiele, K., . . . Small, I. (2020). Large scale genome skimming from herbarium material for accurate plant identification and phylogenomics. *Plant methods*, *16*(1), 1-8.

Appendix B: State Flora Conservation Listings

Biodiversity Conservation Act 2016

Category	Definition
Threatened Flora Species	
Critically Endangered (CR)	Threatened species considered to be "facing an extremely high risk of extinction in the wild in the immediate future, as determined in accordance with criteria set out in the ministerial guidelines". Published under schedule 1 of the <i>Wildlife Conservation (Rare Flora) Notice 2018</i> for critically endangered flora.
Endangered (EN)	Threatened species considered to be "facing a very high risk of extinction in the wild in the near future, as determined in accordance with criteria set out in the ministerial guidelines". Published under schedule 2 of the <i>Wildlife Conservation (Rare Flora) Notice 2018</i> for endangered flora.
Vulnerable (VU)	Threatened species considered to be "facing a high risk of extinction in the wild in the medium-term future, as determined in accordance with criteria set out in the ministerial guidelines". Published under schedule 3 of the Wildlife Conservation (Rare Flora) Notice 2018 for vulnerable flora.
Extinct (EX)	Species where "there is no reasonable doubt that the last member of the species has died", and listing is otherwise in accordance with the ministerial guidelines (section 24 of the BC Act). Published as presumed extinct under schedule 4 of the Wildlife Conservation (Rare Flora) Notice 2018 for extinct flora.
Extinct in the Wild (EW)	Species that "is known only to survive in cultivation, in captivity or as a naturalised population well outside its past range; and it has not been recorded in its known habitat or expected habitat, at appropriate seasons, anywhere in its past range, despite surveys over a time frame appropriate to its life cycle and form", and listing is otherwise in accordance with the ministerial guidelines (section 25 of the BC Act). Currently there are no threatened flora species listed as extinct in the wild.

Department of Biodiversity, Conservation and Attractions Priority Definitions

Category	Definition
Priority Flora Species	
	Poorly-known Species
Priority 1 (P1)	Species that are known from one or a few locations (generally five or less) which are potentially at risk. All occurrences are either: very small; or on lands not managed for conservation, e.g. agricultural or pastoral lands, urban areas, road and rail reserves, gravel reserves and active mineral leases; or otherwise under threat of habitat destruction or degradation. Species may be included if they are comparatively well known from one or more locations but do not meet adequacy of survey requirements and appear to be under immediate threat from known threatening processes. Such species are in urgent need of further survey.

Category	Definition
	Poorly-known Species
Priority 2 (P2)	Species that are known from one or a few locations (generally five or less), some of which are on lands managed primarily for nature conservation, e.g. national parks, conservation parks, nature reserves and other lands with secure tenure being managed for conservation. Species may be included if they are comparatively well known from one or more locations but do not meet adequacy of survey requirements and appear to be under threat from known threatening processes. Such species are in urgent need of further survey.
	Poorly-known Species
Priority 3 (P3)	Species that are known from several locations, and the species does not appear to be under imminent threat, or from few but widespread locations with either large population size or significant remaining areas of apparently suitable habitat, much of it not under imminent threat. Species may be included if they are comparatively well known from several locations but do not meet adequacy of survey requirements and known threatening processes exist that could affect them. Such species are in need of further survey.
	Rare, Near Threatened and other species in need of monitoring
Briority 4 (B4)	(a) Rare. Species that are considered to have been adequately surveyed, or for which sufficient knowledge is available, and that are considered not currently threatened or in need of special protection but could be if present circumstances change. These species are usually represented on conservation lands.
Friority 4 (F4)	(b) Near Threatened. Species that are considered to have been adequately surveyed and that are close to qualifying for vulnerable but are not listed as Conservation Dependent.
	(c) Species that have been removed from the list of threatened species during the past five years for reasons other than taxonomy.

Appendix C: Eremophila capricornica location coordinates

Taxon	Date	Abundance	Latitude	Longitude
Eremophila capricornica	2020-07-10	1	-23.3433387	120.2183371
Eremophila capricornica	2020-07-10	1	-23.3617807	120.2303792
Eremophila capricornica	2020-07-11	1	-23.4694636	120.2810445
Eremophila capricornica	2020-07-12	1	-23.3402789	120.5067905
Eremophila capricornica	2020-07-13	1	-23.2886241	120.0998092
Eremophila capricornica	2020-07-13	1	-23.28874915	120.0998109
Eremophila capricornica	2020-07-12	1	-23.4066983	120.2115801
Eremophila capricornica	2020-07-12	1	-23.4051828	120.2123003
Eremophila capricornica	2020-07-12	1	-23.4065331	120.212067
Eremophila capricornica	2020-07-12	1	-23.4061629	120.2125519
Eremophila capricornica	2020-07-12	1	-23.40627314	120.2126891
Eremophila capricornica	2020-07-12	1	-23.40620377	120.2130126
Eremophila capricornica	2020-07-11	1	-23.4913938	120.4622129
Eremophila capricornica	2020-07-12	1	-23.4242002	120.4885492
Eremophila capricornica	2020-07-12	1	-23.41726884	120.4831345
Eremophila capricornica	2020-07-12	1	-23.417478	120.4837489
Eremophila capricornica	2020-07-12	1	-23.42318152	120.488486
Eremophila capricornica	2020-07-13	1	-23.290349	120.0970541
Eremophila capricornica	2020-07-13	1	-23.2908106	120.0978534
Eremophila capricornica	2020-07-13	1	-23.2884876	120.0963285
Eremophila capricornica	2020-07-13	1	-23.2835414	120.0971831
Eremophila capricornica	2020-07-13	1	-23.40225782	120.276073
Eremophila capricornica	2020-07-13	1	-23.26969981	120.0794666
Eremophila capricornica	2020-07-13	1	-23.26765502	120.0826923
Eremophila capricornica	2020-07-12	1	-23.3619743	120.5716296
Eremophila capricornica	2020-07-12	1	-23.36404078	120.5714432
Eremophila capricornica	2020-07-14	1	-23.40072963	120.4080912
Eremophila capricornica	2020-07-14	1	-23.40088951	120.4084588
Eremophila capricornica	2020-07-14	1	-23.40141621	120.4091579
Eremophila capricornica	2020-07-14	1	-23.40275961	120.4078785
Eremophila capricornica	2020-07-11	1	-23.4675535	120.2491652
Eremophila capricornica	2020-07-11	1	-23.4676057	120.2534401
Eremophila capricornica	2020-07-11	1	-23.4697517	120.2492281
Eremophila capricornica	2020-07-11	1	-23.47168319	120.2475094
Eremophila capricornica	2020-07-11	1	-23.47142732	120.2470387
Eremophila capricornica	2020-07-11	1	-23.46975801	120.2492961
Eremophila capricornica	2020-07-11	1	-23.46704395	120.253013
Eremophila capricornica	2020-07-10	1	-23.4055255	120.2968351
Eremophila capricornica	2020-07-10	1	-23.3559027	120.2173682
Eremophila capricornica	2020-07-10	1	-23.40336927	120.2942781
Eremophila capricornica	2020-07-10	1	-23.40517413	120.2967007
Eremophila capricornica	2020-07-10	1	-23.40553351	120.2969972
Eremophila capricornica	2020-07-10	1	-23.40078408	120.2978069
Eremophila capricornica	2020-07-10	1	-23.40081527	120.2985198

Taxon	Date	Abundance	Latitude	Longitude
Eremophila capricornica	2020-07-10	1	-23.40234705	120.3002172
Eremophila capricornica	2020-07-10	1	-23.40251565	120.3002318
Eremophila capricornica	2020-07-10	1	-23.4014403	120.3004747
Eremophila capricornica	2020-07-11	1	-23.4965708	120.4873286
Eremophila capricornica	2020-07-14	1	-23.4094491	120.3998448
Eremophila capricornica	2020-07-11	1	-23.49574064	120.4113981
Eremophila capricornica	2020-07-11	1	-23.49699392	120.4082328
Eremophila capricornica	2020-07-11	1	-23.4971112	120.4077034
Eremophila capricornica	2020-07-11	1	-23.49711291	120.4076001
Eremophila capricornica	2020-07-11	1	-23.50271806	120.3930629
Eremophila capricornica	2020-07-11	1	-23.50387412	120.3880042
Eremophila capricornica	2020-07-11	1	-23.50362261	120.3885454
Eremophila capricornica	2020-07-11	1	-23.4956748	120.4125651
Eremophila capricornica	2020-07-11	1	-23.4958679	120.4119771
Eremophila capricornica	2020-07-11	1	-23.4985408	120.4057172
Eremophila capricornica	2020-07-11	1	-23.4985606	120.4051764
Eremophila capricornica	2020-07-11	1	-23.5055256	120.3891216
Eremophila capricornica	2020-07-12	1	-23.38197111	120.5036882
Eremophila capricornica	2020-07-12	1	-23.38093555	120.5016883
Eremophila capricornica	2020-07-12	1	-23.3812598	120.4974993
Eremophila capricornica	2020-07-10	2	-23.34914901	120.2196721
Eremophila capricornica	2020-07-10	2	-23.34978005	120.2195134
Eremophila capricornica	2020-07-10	2	-23.35060857	120.2196145
Eremophila capricornica	2020-07-10	2	-23.3585838	120.2286001
Eremophila capricornica	2020-07-11	2	-23.46759323	120.2773272
Eremophila capricornica	2020-07-11	2	-23.4692424	120.2813047
Eremophila capricornica	2020-07-13	2	-23.2889183	120.0995389
Eremophila capricornica	2020-07-12	2	-23.4061607	120.212572
Eremophila capricornica	2020-07-12	2	-23.4235557	120.4880859
Eremophila capricornica	2020-07-13	2	-23.290691	120.0978608
Eremophila capricornica	2020-07-13	2	-23.26564376	120.0853005
Eremophila capricornica	2020-07-13	2	-23.26970767	120.0791947
Eremophila capricornica	2020-07-14	2	-23.40287949	120.4030382
Eremophila capricornica	2020-07-14	2	-23.40190724	120.400764
Eremophila capricornica	2020-07-14	2	-23.40181524	120.4038321
Eremophila capricornica	2020-07-11	2	-23.4664145	120.2508988
Eremophila capricornica	2020-07-11	2	-23.4713775	120.2476546
Eremophila capricornica	2020-07-11	2	-23.4665329	120.2496184
Eremophila capricornica	2020-07-11	2	-23.4698015	120.2489836
Eremophila capricornica	2020-07-11	2	-23.47066613	120.2472236
Eremophila capricornica	2020-07-11	2	-23.47027608	120.2471562
Eremophila capricornica	2020-07-10	2	-23.4010876	120.3008509
Eremophila capricornica	2020-07-10	2	-23.4028352	120.3005486
Eremophila capricornica	2020-07-10	2	-23.4033597	120.2940664

Taxon	Date	Abundance	Latitude	Longitude
Eremophila capricornica	2020-07-11	2	-23.4965757	120.4869227
Eremophila capricornica	2020-07-14	2	-23.41540133	120.3931081
Eremophila capricornica	2020-07-14	2	-23.41616772	120.3923001
Eremophila capricornica	2020-07-11	2	-23.494645	120.4139449
Eremophila capricornica	2020-07-11	2	-23.4959279	120.410865
Eremophila capricornica	2020-07-11	2	-23.49704434	120.4071659
Eremophila capricornica	2020-07-11	2	-23.50296983	120.3892199
Eremophila capricornica	2020-07-11	2	-23.496179	120.4110675
Eremophila capricornica	2020-07-11	2	-23.4975283	120.4077123
Eremophila capricornica	2020-07-11	2	-23.4975	120.4075202
Eremophila capricornica	2020-07-11	2	-23.5028582	120.3943743
Eremophila capricornica	2020-07-11	2	-23.5036152	120.3887623
Eremophila capricornica	2020-07-11	2	-23.504781	120.3893431
Eremophila capricornica	2020-07-11	2	-23.5050176	120.3896306
Eremophila capricornica	2020-07-10	3	-23.3505251	120.2200827
Eremophila capricornica	2020-07-10	3	-23.3487677	120.2198702
Eremophila capricornica	2020-07-10	3	-23.346332	120.2112423
Eremophila capricornica	2020-07-09	3	-23.3666768	120.2594321
Eremophila capricornica	2020-07-11	3	-23.4676822	120.2761432
Eremophila capricornica	2020-07-11	3	-23.4676775	120.2764686
Eremophila capricornica	2020-07-11	3	-23.4682708	120.2821938
Eremophila capricornica	2020-07-12	3	-23.4058464	120.2127079
Eremophila capricornica	2020-07-12	3	-23.4178307	120.4841917
Eremophila capricornica	2020-07-12	3	-23.4183791	120.4858199
Eremophila capricornica	2020-07-12	3	-23.4230772	120.4877539
Eremophila capricornica	2020-07-13	3	-23.2884486	120.0965448
Eremophila capricornica	2020-07-13	3	-23.3498254	120.2701067
Eremophila capricornica	2020-07-14	3	-23.4074581	120.4018974
Eremophila capricornica	2020-07-14	3	-23.40262535	120.4055499
Eremophila capricornica	2020-07-14	3	-23.40263812	120.4053383
Eremophila capricornica	2020-07-14	3	-23.40208142	120.4011327
Eremophila capricornica	2020-07-14	3	-23.40223133	120.4019642
Eremophila capricornica	2020-07-14	3	-23.40317732	120.403546
Eremophila capricornica	2020-07-11	3	-23.4699443	120.2485927
Eremophila capricornica	2020-07-11	3	-23.4677615	120.2491873
Eremophila capricornica	2020-07-11	3	-23.469806	120.2486096
Eremophila capricornica	2020-07-11	3	-23.4700349	120.2479853
Eremophila capricornica	2020-07-11	3	-23.4706004	120.2477515
Eremophila capricornica	2020-07-11	3	-23.4679964	120.2534568
Eremophila capricornica	2020-07-11	3	-23.4683852	120.2484119
Eremophila capricornica	2020-07-11	3	-23.4698207	120.2490927
Eremophila capricornica	2020-07-10	3	-23.4018187	120.3006181
Eremophila capricornica	2020-07-10	3	-23.3569664	120.2169305
Eremophila capricornica	2020-07-10	3	-23.40326779	120.3001882

Taxon	Date	Abundance	Latitude	Longitude
Eremophila capricornica	2020-07-10	3	-23.4018912	120.2965388
Eremophila capricornica	2020-07-14	3	-23.42458298	120.3797088
Eremophila capricornica	2020-07-14	3	-23.4167426	120.3909075
Eremophila capricornica	2020-07-14	3	-23.41021368	120.3989268
Eremophila capricornica	2020-07-14	3	-23.4159982	120.3926874
Eremophila capricornica	2020-07-14	3	-23.40914173	120.4001851
Eremophila capricornica	2020-07-11	3	-23.4948617	120.4139183
Eremophila capricornica	2020-07-11	3	-23.4954566	120.4133072
Eremophila capricornica	2020-07-11	3	-23.49773	120.4081523
Eremophila capricornica	2020-07-11	3	-23.4986253	120.4049746
Eremophila capricornica	2020-07-11	3	-23.5046406	120.3891679
Eremophila capricornica	2020-07-12	3	-23.3820315	120.4988513
Eremophila capricornica	2020-07-10	4	-23.34398875	120.2173225
Eremophila capricornica	2020-07-09	4	-23.3668818	120.2596319
Eremophila capricornica	2020-07-11	4	-23.4674999	120.2775983
Eremophila capricornica	2020-07-12	4	-23.3401543	120.5059577
Eremophila capricornica	2020-07-12	4	-23.3384094	120.5052733
Eremophila capricornica	2020-07-12	4	-23.4244637	120.4888571
Eremophila capricornica	2020-07-14	4	-23.40292627	120.4027577
Eremophila capricornica	2020-07-14	4	-23.40263055	120.4073902
Eremophila capricornica	2020-07-11	4	-23.4685201	120.2486052
Eremophila capricornica	2020-07-11	4	-23.4689606	120.2486542
Eremophila capricornica	2020-07-11	4	-23.4710149	120.2487421
Eremophila capricornica	2020-07-10	4	-23.4013932	120.296931
Eremophila capricornica	2020-07-10	4	-23.4020997	120.2969032
Eremophila capricornica	2020-07-10	4	-23.40500997	120.2966478
Eremophila capricornica	2020-07-11	4	-23.50282825	120.3892359
Eremophila capricornica	2020-07-11	4	-23.4977749	120.4079483
Eremophila capricornica	2020-07-11	4	-23.5043731	120.3891449
Eremophila capricornica	2020-07-12	4	-23.3812592	120.4982471
Eremophila capricornica	2020-07-12	4	-23.3811829	120.4981135
Eremophila capricornica	2020-07-10	5	-23.3454634	120.2122515
Eremophila capricornica	2020-07-10	5	-23.3461629	120.2110849
Eremophila capricornica	2020-07-10	5	-23.34324485	120.2177419
Eremophila capricornica	2020-07-10	5	-23.34333141	120.2180937
Eremophila capricornica	2020-07-09	5	-23.3669281	120.2587622
Eremophila capricornica	2020-07-13	5	-23.4010423	120.2765674
Eremophila capricornica	2020-07-13	5	-23.4012613	120.2763668
Eremophila capricornica	2020-07-13	5	-23.4011062	120.276202
Eremophila capricornica	2020-07-13	5	-23.40110198	120.2757631
Eremophila capricornica	2020-07-11	5	-23.46883263	120.2755161
Eremophila capricornica	2020-07-11	5	-23.4680378	120.2779577
Eremophila capricornica	2020-07-10	5	-23.3595575	120.21481
Eremophila capricornica	2020-07-12	5	-23.33885883	120.506578

Taxon	Date	Abundance	Latitude	Longitude
Eremophila capricornica	2020-07-13	5	-23.2890714	120.0997881
Eremophila capricornica	2020-07-13	5	-23.2893452	120.099836
Eremophila capricornica	2020-07-12	5	-23.40613971	120.2131054
Eremophila capricornica	2020-07-12	5	-23.40603151	120.2131154
Eremophila capricornica	2020-07-12	5	-23.40617417	120.214074
Eremophila capricornica	2020-07-12	5	-23.40676224	120.2146326
Eremophila capricornica	2020-07-11	5	-23.493449	120.4591164
Eremophila capricornica	2020-07-11	5	-23.49162252	120.4631259
Eremophila capricornica	2020-07-12	5	-23.4176196	120.4827163
Eremophila capricornica	2020-07-12	5	-23.4256178	120.4898033
Eremophila capricornica	2020-07-12	5	-23.4261971	120.4904471
Eremophila capricornica	2020-07-12	5	-23.41952608	120.4868552
Eremophila capricornica	2020-07-12	5	-23.42480684	120.4900835
Eremophila capricornica	2020-07-12	5	-23.42508211	120.4902743
Eremophila capricornica	2020-07-13	5	-23.2908725	120.0980674
Eremophila capricornica	2020-07-13	5	-23.2911703	120.0979091
Eremophila capricornica	2020-07-13	5	-23.2900878	120.096612
Eremophila capricornica	2020-07-13	5	-23.289309	120.0961403
Eremophila capricornica	2020-07-13	5	-23.26520042	120.0854183
Eremophila capricornica	2020-07-13	5	-23.2658972	120.0850195
Eremophila capricornica	2020-07-13	5	-23.26646046	120.0849064
Eremophila capricornica	2020-07-13	5	-23.26941854	120.0802781
Eremophila capricornica	2020-07-12	5	-23.36126853	120.5695794
Eremophila capricornica	2020-07-12	5	-23.36239997	120.5715974
Eremophila capricornica	2020-07-14	5	-23.40157885	120.4000036
Eremophila capricornica	2020-07-14	5	-23.40236301	120.4035993
Eremophila capricornica	2020-07-14	5	-23.40171071	120.406547
Eremophila capricornica	2020-07-14	5	-23.4012707	120.4072624
Eremophila capricornica	2020-07-14	5	-23.4010718	120.4083243
Eremophila capricornica	2020-07-14	5	-23.40245969	120.4063879
Eremophila capricornica	2020-07-14	5	-23.40278535	120.4058699
Eremophila capricornica	2020-07-14	5	-23.4009378	120.4004376
Eremophila capricornica	2020-07-14	5	-23.40190802	120.4019994
Eremophila capricornica	2020-07-14	5	-23.40073994	120.4075017
Eremophila capricornica	2020-07-14	5	-23.40073067	120.4076536
Eremophila capricornica	2020-07-14	5	-23.40097535	120.4086613
Eremophila capricornica	2020-07-11	5	-23.4686605	120.2486263
Eremophila capricornica	2020-07-11	5	-23.4707533	120.2477632
Eremophila capricornica	2020-07-11	5	-23.4715182	120.2477066
Eremophila capricornica	2020-07-11	5	-23.4699341	120.2489523
Eremophila capricornica	2020-07-11	5	-23.4678332	120.2487998
Eremophila capricornica	2020-07-11	5	-23.4686005	120.2482947
Eremophila capricornica	2020-07-11	5	-23.4712755	120.2486772
Eremophila capricornica	2020-07-11	5	-23.47118283	120.2470689

Taxon	Date	Abundance	Latitude	Longitude
Eremophila capricornica	2020-07-11	5	-23.47077193	120.2471623
Eremophila capricornica	2020-07-11	5	-23.46884214	120.2482896
Eremophila capricornica	2020-07-11	5	-23.47091573	120.247135
Eremophila capricornica	2020-07-10	5	-23.3615286	120.2306712
Eremophila capricornica	2020-07-10	5	-23.3575908	120.2164461
Eremophila capricornica	2020-07-10	5	-23.40463664	120.2962301
Eremophila capricornica	2020-07-10	5	-23.40221518	120.2963172
Eremophila capricornica	2020-07-10	5	-23.40159298	120.2977956
Eremophila capricornica	2020-07-10	5	-23.40295811	120.3001615
Eremophila capricornica	2020-07-11	5	-23.49663024	120.4856457
Eremophila capricornica	2020-07-11	5	-23.49673708	120.4864988
Eremophila capricornica	2020-07-11	5	-23.49648952	120.4884954
Eremophila capricornica	2020-07-14	5	-23.42357821	120.3803643
Eremophila capricornica	2020-07-14	5	-23.41952983	120.3863305
Eremophila capricornica	2020-07-14	5	-23.41130593	120.3979713
Eremophila capricornica	2020-07-14	5	-23.4089331	120.4001166
Eremophila capricornica	2020-07-14	5	-23.42214641	120.3825349
Eremophila capricornica	2020-07-14	5	-23.42007253	120.3861176
Eremophila capricornica	2020-07-14	5	-23.41786755	120.3893222
Eremophila capricornica	2020-07-14	5	-23.41643231	120.3915853
Eremophila capricornica	2020-07-14	5	-23.41279291	120.3962825
Eremophila capricornica	2020-07-11	5	-23.4947242	120.4148811
Eremophila capricornica	2020-07-11	5	-23.4953758	120.4135037
Eremophila capricornica	2020-07-12	5	-23.3866882	120.5012417
Eremophila capricornica	2020-07-12	5	-23.3866641	120.5012399
Eremophila capricornica	2020-07-12	5	-23.381377	120.5034483
Eremophila capricornica	2020-07-12	5	-23.382035	120.4990965
Eremophila capricornica	2020-07-10	6	-23.349329	120.2200099
Eremophila capricornica	2020-07-10	6	-23.34565737	120.2143667
Eremophila capricornica	2020-07-11	6	-23.467444	120.2779008
Eremophila capricornica	2020-07-12	6	-23.4169606	120.4808501
Eremophila capricornica	2020-07-14	6	-23.40251715	120.4010478
Eremophila capricornica	2020-07-14	6	-23.40125231	120.408828
Eremophila capricornica	2020-07-14	6	-23.40245779	120.407608
Eremophila capricornica	2020-07-11	6	-23.4702473	120.2477033
Eremophila capricornica	2020-07-11	6	-23.4708784	120.2475898
Eremophila capricornica	2020-07-11	6	-23.4700657	120.2488601
Eremophila capricornica	2020-07-11	6	-23.4670164	120.2527461
Eremophila capricornica	2020-07-11	6	-23.47083932	120.2487677
Eremophila capricornica	2020-07-10	6	-23.4052909	120.2965182
Eremophila capricornica	2020-07-10	6	-23.4015554	120.2970311
Eremophila capricornica	2020-07-10	6	-23.4054334	120.2967116
Eremophila capricornica	2020-07-14	6	-23.4094731	120.399737
Eremophila capricornica	2020-07-14	6	-23.4093163	120.3998665

Taxon	Date	Abundance	Latitude	Longitude
Eremophila capricornica	2020-07-11	6	-23.4973204	120.408903
Eremophila capricornica	2020-07-12	6	-23.381844	120.4999659
Eremophila capricornica	2020-07-10	6	-23.4039191	120.2948405
Eremophila capricornica	2020-07-10	7	-23.3431902	120.2173761
Eremophila capricornica	2020-07-12	7	-23.4063425	120.2128213
Eremophila capricornica	2020-07-12	7	-23.4210939	120.4868981
Eremophila capricornica	2020-07-11	7	-23.448533	120.5264349
Eremophila capricornica	2020-07-13	7	-23.2621478	120.0854424
Eremophila capricornica	2020-07-13	7	-23.26471398	120.0867782
Eremophila capricornica	2020-07-13	7	-23.26945812	120.0787687
Eremophila capricornica	2020-07-14	7	-23.40222895	120.4063644
Eremophila capricornica	2020-07-11	7	-23.4697708	120.2486998
Eremophila capricornica	2020-07-11	7	-23.471144	120.2475696
Eremophila capricornica	2020-07-11	7	-23.4699966	120.2492504
Eremophila capricornica	2020-07-11	7	-23.46901482	120.2483674
Eremophila capricornica	2020-07-10	7	-23.3613506	120.230618
Eremophila capricornica	2020-07-12	8	-23.3397537	120.5053228
Eremophila capricornica	2020-07-12	8	-23.33931	120.5053161
Eremophila capricornica	2020-07-13	8	-23.4020597	120.2754988
Eremophila capricornica	2020-07-13	8	-23.4023312	120.2759252
Eremophila capricornica	2020-07-12	8	-23.363536	120.5686402
Eremophila capricornica	2020-07-14	8	-23.4028633	120.4024711
Eremophila capricornica	2020-07-14	8	-23.40150566	120.4067951
Eremophila capricornica	2020-07-14	8	-23.40229301	120.406614
Eremophila capricornica	2020-07-14	8	-23.40320399	120.4016889
Eremophila capricornica	2020-07-11	8	-23.4680474	120.2490149
Eremophila capricornica	2020-07-11	8	-23.4692274	120.2487041
Eremophila capricornica	2020-07-11	8	-23.4714082	120.2483188
Eremophila capricornica	2020-07-11	8	-23.4709306	120.2484229
Eremophila capricornica	2020-07-11	8	-23.4699223	120.2488706
Eremophila capricornica	2020-07-10	8	-23.4017985	120.297312
Eremophila capricornica	2020-07-10	8	-23.4040784	120.2950347
Eremophila capricornica	2020-07-10	8	-23.4018889	120.2978842
Eremophila capricornica	2020-07-10	8	-23.4050663	120.2961883
Eremophila capricornica	2020-07-14	8	-23.41623725	120.3914653
Eremophila capricornica	2020-07-11	8	-23.4985282	120.4053891
Eremophila capricornica	2020-07-10	10	-23.3432267	120.2169256
Eremophila capricornica	2020-07-10	10	-23.34929923	120.2196524
Eremophila capricornica	2020-07-13	10	-23.4014706	120.2760929
Eremophila capricornica	2020-07-14	10	-23.3641619	120.3115527
Eremophila capricornica	2020-07-11	10	-23.4686637	120.2756075
Eremophila capricornica	2020-07-13	10	-23.2918437	120.0978053
Eremophila capricornica	2020-07-12	10	-23.33858793	120.5048134
Eremophila capricornica	2020-07-12	10	-23.33834258	120.5038445

Taxon	Date	Abundance	Latitude	Longitude
Eremophila capricornica	2020-07-12	10	-23.33785987	120.5044108
Eremophila capricornica	2020-07-12	10	-23.33756157	120.5095784
Eremophila capricornica	2020-07-12	10	-23.33775736	120.5095998
Eremophila capricornica	2020-07-12	10	-23.33843955	120.5094184
Eremophila capricornica	2020-07-12	10	-23.33896781	120.5067258
Eremophila capricornica	2020-07-12	10	-23.33872153	120.5063547
Eremophila capricornica	2020-07-12	10	-23.33834535	120.5059604
Eremophila capricornica	2020-07-12	10	-23.3380712	120.5055146
Eremophila capricornica	2020-07-13	10	-23.2899805	120.09977
Eremophila capricornica	2020-07-13	10	-23.2899708	120.0995842
Eremophila capricornica	2020-07-13	10	-23.29176157	120.0989
Eremophila capricornica	2020-07-12	10	-23.4064837	120.2139866
Eremophila capricornica	2020-07-12	10	-23.40691348	120.2148855
Eremophila capricornica	2020-07-12	10	-23.40760875	120.2149861
Eremophila capricornica	2020-07-12	10	-23.40794745	120.2149758
Eremophila capricornica	2020-07-11	10	-23.4903151	120.4639523
Eremophila capricornica	2020-07-11	10	-23.4910698	120.4636942
Eremophila capricornica	2020-07-11	10	-23.4914225	120.4634793
Eremophila capricornica	2020-07-11	10	-23.4483716	120.52652
Eremophila capricornica	2020-07-11	10	-23.4480575	120.5266481
Eremophila capricornica	2020-07-13	10	-23.29039887	120.0969497
Eremophila capricornica	2020-07-13	10	-23.2892936	120.0960014
Eremophila capricornica	2020-07-13	10	-23.40227413	120.2762476
Eremophila capricornica	2020-07-10	10	-23.35999622	120.2143155
Eremophila capricornica	2020-07-13	10	-23.26617244	120.0846565
Eremophila capricornica	2020-07-13	10	-23.26644134	120.0846927
Eremophila capricornica	2020-07-13	10	-23.26650103	120.084476
Eremophila capricornica	2020-07-13	10	-23.26677992	120.0851899
Eremophila capricornica	2020-07-13	10	-23.26915069	120.0785118
Eremophila capricornica	2020-07-12	10	-23.36221899	120.5689517
Eremophila capricornica	2020-07-12	10	-23.36184872	120.5691764
Eremophila capricornica	2020-07-12	10	-23.36117096	120.5704705
Eremophila capricornica	2020-07-12	10	-23.36168344	120.571462
Eremophila capricornica	2020-07-12	10	-23.3637839	120.5714274
Eremophila capricornica	2020-07-12	10	-23.3648569	120.5707994
Eremophila capricornica	2020-07-12	10	-23.36514541	120.5701953
Eremophila capricornica	2020-07-14	10	-23.40182758	120.4072204
Eremophila capricornica	2020-07-14	10	-23.40239464	120.4026231
Eremophila capricornica	2020-07-14	10	-23.40336278	120.4026514
Eremophila capricornica	2020-07-14	10	-23.40209935	120.4025609
Eremophila capricornica	2020-07-14	10	-23.40186225	120.404754
Eremophila capricornica	2020-07-14	10	-23.40153872	120.4060685
Eremophila capricornica	2020-07-14	10	-23.40142244	120.4062337
Eremophila capricornica	2020-07-11	10	-23.4704276	120.2480394

Taxon	Date	Abundance	Latitude	Longitude
Eremophila capricornica	2020-07-11	10	-23.4681189	120.2483791
Eremophila capricornica	2020-07-11	10	-23.4702964	120.2526794
Eremophila capricornica	2020-07-10	10	-23.3605007	120.2304879
Eremophila capricornica	2020-07-10	10	-23.40309506	120.294251
Eremophila capricornica	2020-07-10	10	-23.40356345	120.2947515
Eremophila capricornica	2020-07-10	10	-23.40478028	120.2964875
Eremophila capricornica	2020-07-10	10	-23.4015663	120.2973466
Eremophila capricornica	2020-07-10	10	-23.401731	120.2983786
Eremophila capricornica	2020-07-10	10	-23.40203375	120.2987538
Eremophila capricornica	2020-07-10	10	-23.40331408	120.2990614
Eremophila capricornica	2020-07-10	10	-23.36137913	120.2302617
Eremophila capricornica	2020-07-11	10	-23.498335	120.4843173
Eremophila capricornica	2020-07-14	10	-23.41895943	120.387398
Eremophila capricornica	2020-07-14	10	-23.41266985	120.3959328
Eremophila capricornica	2020-07-14	10	-23.41198066	120.3971723
Eremophila capricornica	2020-07-14	10	-23.41168529	120.3975626
Eremophila capricornica	2020-07-14	10	-23.42440916	120.3803958
Eremophila capricornica	2020-07-14	10	-23.42401875	120.3804944
Eremophila capricornica	2020-07-14	10	-23.4210081	120.385033
Eremophila capricornica	2020-07-14	10	-23.41628094	120.3920403
Eremophila capricornica	2020-07-11	10	-23.4949675	120.4130429
Eremophila capricornica	2020-07-11	10	-23.4951288	120.413892
Eremophila capricornica	2020-07-12	10	-23.3831517	120.504017
Eremophila capricornica	2020-07-12	10	-23.38542794	120.5051598
Eremophila capricornica	2020-07-12	10	-23.38078229	120.496058
Eremophila capricornica	2020-07-12	10	-23.3821409	120.5033683
Eremophila capricornica	2020-07-10	12	-23.3431629	120.2156941
Eremophila capricornica	2020-07-11	12	-23.4689232	120.2809685
Eremophila capricornica	2020-07-12	12	-23.3389121	120.506123
Eremophila capricornica	2020-07-12	12	-23.3395925	120.5072499
Eremophila capricornica	2020-07-12	12	-23.3386947	120.505297
Eremophila capricornica	2020-07-12	12	-23.4177218	120.4831555
Eremophila capricornica	2020-07-13	12	-23.2624977	120.0853684
Eremophila capricornica	2020-07-14	12	-23.40278987	120.4042031
Eremophila capricornica	2020-07-14	12	-23.40218338	120.4014645
Eremophila capricornica	2020-07-14	12	-23.40096679	120.4081449
Eremophila capricornica	2020-07-11	12	-23.467291	120.2493706
Eremophila capricornica	2020-07-11	12	-23.4664322	120.249727
Eremophila capricornica	2020-07-11	12	-23.4704612	120.2475663
Eremophila capricornica	2020-07-11	12	-23.4691438	120.2526459
Eremophila capricornica	2020-07-11	12	-23.468818	120.2527625
Eremophila capricornica	2020-07-11	12	-23.4681531	120.2533468
Eremophila capricornica	2020-07-10	12	-23.4037338	120.2944813
Eremophila capricornica	2020-07-10	12	-23.40231	120.298745

Taxon	Date	Abundance	Latitude	Longitude
Eremophila capricornica	2020-07-10	12	-23.4026871	120.2983551
Eremophila capricornica	2020-07-10	12	-23.3596537	120.2307319
Eremophila capricornica	2020-07-10	12	-23.3591791	120.2242525
Eremophila capricornica	2020-07-10	12	-23.4021284	120.2973285
Eremophila capricornica	2020-07-10	12	-23.4022555	120.2985196
Eremophila capricornica	2020-07-14	12	-23.4224233	120.3815743
Eremophila capricornica	2020-07-11	12	-23.4950058	120.4146212
Eremophila capricornica	2020-07-11	12	-23.49525	120.4137096
Eremophila capricornica	2020-07-12	12	-23.38192	120.4996239
Eremophila capricornica	2020-07-12	14	-23.3391075	120.50641
Eremophila capricornica	2020-07-11	14	-23.47035	120.2525022
Eremophila capricornica	2020-07-11	14	-23.4689702	120.2527396
Eremophila capricornica	2020-07-11	14	-23.4662201	120.249926
Eremophila capricornica	2020-07-10	15	-23.3453575	120.211946
Eremophila capricornica	2020-07-10	15	-23.3459713	120.2115232
Eremophila capricornica	2020-07-10	15	-23.3460771	120.2119499
Eremophila capricornica	2020-07-10	15	-23.35944119	120.2302617
Eremophila capricornica	2020-07-13	15	-23.2913813	120.097897
Eremophila capricornica	2020-07-12	15	-23.338579	120.5037955
Eremophila capricornica	2020-07-12	15	-23.33947698	120.5072988
Eremophila capricornica	2020-07-12	15	-23.3394274	120.5066741
Eremophila capricornica	2020-07-12	15	-23.3383055	120.5053059
Eremophila capricornica	2020-07-13	15	-23.2920663	120.0980559
Eremophila capricornica	2020-07-11	15	-23.44464793	120.5244661
Eremophila capricornica	2020-07-11	15	-23.44441249	120.5254715
Eremophila capricornica	2020-07-11	15	-23.4447722	120.5258703
Eremophila capricornica	2020-07-12	15	-23.40595955	120.2132827
Eremophila capricornica	2020-07-12	15	-23.40687934	120.2135872
Eremophila capricornica	2020-07-12	15	-23.40610136	120.2136341
Eremophila capricornica	2020-07-12	15	-23.40631487	120.2139485
Eremophila capricornica	2020-07-12	15	-23.40601276	120.2139537
Eremophila capricornica	2020-07-12	15	-23.40625611	120.2143106
Eremophila capricornica	2020-07-12	15	-23.40822412	120.2149547
Eremophila capricornica	2020-07-12	15	-23.40847203	120.2150593
Eremophila capricornica	2020-07-12	15	-23.418959	120.4863018
Eremophila capricornica	2020-07-12	15	-23.420915	120.4867573
Eremophila capricornica	2020-07-12	15	-23.4322287	120.493368
Eremophila capricornica	2020-07-11	15	-23.4488211	120.5256646
Eremophila capricornica	2020-07-13	15	-23.40195074	120.27642
Eremophila capricornica	2020-07-13	15	-23.2623365	120.0853976
Eremophila capricornica	2020-07-13	15	-23.26402663	120.0842019
Eremophila capricornica	2020-07-13	15	-23.26489971	120.0858682
Eremophila capricornica	2020-07-13	15	-23.26659157	120.0839435
Eremophila capricornica	2020-07-13	15	-23.26699901	120.083297

Taxon	Date	Abundance	Latitude	Longitude
Eremophila capricornica	2020-07-13	15	-23.2687359	120.0789321
Eremophila capricornica	2020-07-12	15	-23.36329	120.5684759
Eremophila capricornica	2020-07-14	15	-23.4026352	120.4050439
Eremophila capricornica	2020-07-14	15	-23.40235058	120.4022314
Eremophila capricornica	2020-07-14	15	-23.40234498	120.4032243
Eremophila capricornica	2020-07-14	15	-23.40230783	120.4038406
Eremophila capricornica	2020-07-14	15	-23.40209455	120.4069413
Eremophila capricornica	2020-07-14	15	-23.4031854	120.4047941
Eremophila capricornica	2020-07-14	15	-23.40338932	120.4035648
Eremophila capricornica	2020-07-14	15	-23.40206148	120.4030337
Eremophila capricornica	2020-07-14	15	-23.40169054	120.4050103
Eremophila capricornica	2020-07-14	15	-23.40157081	120.4059364
Eremophila capricornica	2020-07-11	15	-23.4663683	120.2498685
Eremophila capricornica	2020-07-11	15	-23.4686338	120.2534686
Eremophila capricornica	2020-07-11	15	-23.46826367	120.2535219
Eremophila capricornica	2020-07-11	15	-23.46811667	120.2535545
Eremophila capricornica	2020-07-10	15	-23.3595694	120.222762
Eremophila capricornica	2020-07-10	15	-23.35963907	120.22648
Eremophila capricornica	2020-07-14	15	-23.41910557	120.3867479
Eremophila capricornica	2020-07-14	15	-23.41763434	120.389177
Eremophila capricornica	2020-07-14	15	-23.41947475	120.3869924
Eremophila capricornica	2020-07-14	15	-23.41915725	120.3875992
Eremophila capricornica	2020-07-14	15	-23.41691596	120.3909268
Eremophila capricornica	2020-07-14	15	-23.41475123	120.3943607
Eremophila capricornica	2020-07-12	15	-23.3852581	120.5047182
Eremophila capricornica	2020-07-12	15	-23.3843818	120.50453
Eremophila capricornica	2020-07-12	15	-23.3862635	120.5012612
Eremophila capricornica	2020-07-12	15	-23.3863395	120.5015092
Eremophila capricornica	2020-07-12	15	-23.38621051	120.500778
Eremophila capricornica	2020-07-12	15	-23.386547	120.5015874
Eremophila capricornica	2020-07-13	16	-23.2627202	120.0852003
Eremophila capricornica	2020-07-12	16	-23.3630977	120.5684752
Eremophila capricornica	2020-07-14	16	-23.40093323	120.4078853
Eremophila capricornica	2020-07-11	16	-23.4704482	120.2484218
Eremophila capricornica	2020-07-11	16	-23.46849	120.2531809
Eremophila capricornica	2020-07-10	16	-23.4049619	120.2959719
Eremophila capricornica	2020-07-10	16	-23.402522	120.2981121
Eremophila capricornica	2020-07-10	16	-23.4051062	120.2963542
Eremophila capricornica	2020-07-11	18	-23.4707791	120.248585
Eremophila capricornica	2020-07-11	18	-23.4702995	120.2487011
Eremophila capricornica	2020-07-12	18	-23.3820656	120.5012026
Eremophila capricornica	2020-07-10	20	-23.3495739	120.220174
Eremophila capricornica	2020-07-10	20	-23.3458378	120.2117372
Eremophila capricornica	2020-07-10	20	-23.34374935	120.2153806

Taxon	Date	Abundance	Latitude	Longitude
Eremophila capricornica	2020-07-10	20	-23.34405327	120.2169266
Eremophila capricornica	2020-07-10	20	-23.34454706	120.2153262
Eremophila capricornica	2020-07-10	20	-23.34521331	120.2135726
Eremophila capricornica	2020-07-10	20	-23.3522678	120.2117657
Eremophila capricornica	2020-07-13	20	-23.4006121	120.2765998
Eremophila capricornica	2020-07-10	20	-23.3619905	120.2306622
Eremophila capricornica	2020-07-10	20	-23.36110034	120.229918
Eremophila capricornica	2020-07-10	20	-23.36160765	120.230226
Eremophila capricornica	2020-07-11	20	-23.4690857	120.2756733
Eremophila capricornica	2020-07-13	20	-23.2912235	120.0981732
Eremophila capricornica	2020-07-13	20	-23.2915813	120.0978074
Eremophila capricornica	2020-07-12	20	-23.339486	120.5068684
Eremophila capricornica	2020-07-12	20	-23.3395852	120.5070159
Eremophila capricornica	2020-07-12	20	-23.3395783	120.5054376
Eremophila capricornica	2020-07-13	20	-23.2921561	120.0987207
Eremophila capricornica	2020-07-11	20	-23.4453207	120.5264356
Eremophila capricornica	2020-07-11	20	-23.44619317	120.5264661
Eremophila capricornica	2020-07-11	20	-23.44643015	120.5266423
Eremophila capricornica	2020-07-11	20	-23.4945775	120.4604882
Eremophila capricornica	2020-07-11	20	-23.4935919	120.4594164
Eremophila capricornica	2020-07-11	20	-23.4929024	120.4580505
Eremophila capricornica	2020-07-11	20	-23.4913433	120.4590886
Eremophila capricornica	2020-07-11	20	-23.4910861	120.4599984
Eremophila capricornica	2020-07-11	20	-23.4911846	120.4603973
Eremophila capricornica	2020-07-11	20	-23.4919666	120.4623287
Eremophila capricornica	2020-07-11	20	-23.4924868	120.4621771
Eremophila capricornica	2020-07-12	20	-23.4158615	120.4801356
Eremophila capricornica	2020-07-12	20	-23.4162406	120.4802452
Eremophila capricornica	2020-07-12	20	-23.4205417	120.4866483
Eremophila capricornica	2020-07-12	20	-23.4250281	120.4891676
Eremophila capricornica	2020-07-11	20	-23.4479725	120.5247794
Eremophila capricornica	2020-07-11	20	-23.4488738	120.5264411
Eremophila capricornica	2020-07-13	20	-23.2897682	120.0964789
Eremophila capricornica	2020-07-13	20	-23.2645494	120.0856718
Eremophila capricornica	2020-07-13	20	-23.26693492	120.0861276
Eremophila capricornica	2020-07-12	20	-23.3598029	120.567848
Eremophila capricornica	2020-07-14	20	-23.4084505	120.4007416
Eremophila capricornica	2020-07-14	20	-23.4011398	120.4074783
Eremophila capricornica	2020-07-14	20	-23.40149733	120.4091647
Eremophila capricornica	2020-07-14	20	-23.40164611	120.405765
Eremophila capricornica	2020-07-14	20	-23.40142473	120.4064023
Eremophila capricornica	2020-07-14	20	-23.40114633	120.4066492
Eremophila capricornica	2020-07-14	20	-23.40107914	120.4068151
Eremophila capricornica	2020-07-14	20	-23.40086811	120.406972

Taxon	Date	Abundance	Latitude	Longitude
Eremophila capricornica	2020-07-14	20	-23.40079934	120.4072873
Eremophila capricornica	2020-07-14	20	-23.40234521	120.407869
Eremophila capricornica	2020-07-11	20	-23.4711393	120.2483936
Eremophila capricornica	2020-07-11	20	-23.4695684	120.252632
Eremophila capricornica	2020-07-11	20	-23.4686505	120.2528423
Eremophila capricornica	2020-07-11	20	-23.4703122	120.2488824
Eremophila capricornica	2020-07-10	20	-23.4021274	120.2970423
Eremophila capricornica	2020-07-10	20	-23.4029477	120.2990829
Eremophila capricornica	2020-07-10	20	-23.4038412	120.2942075
Eremophila capricornica	2020-07-10	20	-23.3593437	120.2234168
Eremophila capricornica	2020-07-10	20	-23.3600423	120.2255204
Eremophila capricornica	2020-07-10	20	-23.3565343	120.2085053
Eremophila capricornica	2020-07-11	20	-23.4996147	120.4858337
Eremophila capricornica	2020-07-14	20	-23.42191444	120.3824443
Eremophila capricornica	2020-07-14	20	-23.42073091	120.384738
Eremophila capricornica	2020-07-14	20	-23.41571884	120.3925147
Eremophila capricornica	2020-07-14	20	-23.41096872	120.39827
Eremophila capricornica	2020-07-14	20	-23.41853548	120.3886295
Eremophila capricornica	2020-07-14	20	-23.41830873	120.3888629
Eremophila capricornica	2020-07-14	20	-23.41749159	120.3899297
Eremophila capricornica	2020-07-14	20	-23.41414143	120.3949424
Eremophila capricornica	2020-07-14	20	-23.4121468	120.3974164
Eremophila capricornica	2020-07-11	20	-23.49449842	120.4150691
Eremophila capricornica	2020-07-11	20	-23.4947601	120.4152006
Eremophila capricornica	2020-07-12	20	-23.3859504	120.500899
Eremophila capricornica	2020-07-12	20	-23.3859794	120.4989718
Eremophila capricornica	2020-07-12	20	-23.38174214	120.5035716
Eremophila capricornica	2020-07-12	20	-23.38109373	120.4987215
Eremophila capricornica	2020-07-12	20	-23.3815576	120.502561
Eremophila capricornica	2020-07-12	20	-23.3809883	120.4956949
Eremophila capricornica	2020-07-12	22	-23.3399609	120.5051676
Eremophila capricornica	2020-07-11	22	-23.4702158	120.2484475
Eremophila capricornica	2020-07-10	22	-23.4020482	120.2981739
Eremophila capricornica	2020-07-10	22	-23.3610873	120.2305849
Eremophila capricornica	2020-07-11	24	-23.4682972	120.2532776
Eremophila capricornica	2020-07-10	25	-23.3441804	120.2155737
Eremophila capricornica	2020-07-10	25	-23.372079	120.2054425
Eremophila capricornica	2020-07-10	25	-23.3601462	120.2299785
Eremophila capricornica	2020-07-11	25	-23.4677643	120.2771976
Eremophila capricornica	2020-07-11	25	-23.4685418	120.2773222
Eremophila capricornica	2020-07-12	25	-23.33923594	120.5069156
Eremophila capricornica	2020-07-12	25	-23.3389359	120.5053746
Eremophila capricornica	2020-07-13	25	-23.2921105	120.0982967
Eremophila capricornica	2020-07-11	25	-23.44484061	120.5241027

Taxon	Date	Abundance	Latitude	Longitude
Eremophila capricornica	2020-07-12	25	-23.40581624	120.2134998
Eremophila capricornica	2020-07-12	25	-23.40668656	120.2138512
Eremophila capricornica	2020-07-12	25	-23.4166523	120.4805075
Eremophila capricornica	2020-07-12	25	-23.4175754	120.482371
Eremophila capricornica	2020-07-12	25	-23.420254	120.4866663
Eremophila capricornica	2020-07-12	25	-23.4172624	120.4824782
Eremophila capricornica	2020-07-12	25	-23.4172961	120.4829126
Eremophila capricornica	2020-07-10	25	-23.3623316	120.2130057
Eremophila capricornica	2020-07-13	25	-23.26603967	120.0843041
Eremophila capricornica	2020-07-13	25	-23.26628493	120.0842426
Eremophila capricornica	2020-07-13	25	-23.26650855	120.0853553
Eremophila capricornica	2020-07-13	25	-23.26662901	120.0855216
Eremophila capricornica	2020-07-13	25	-23.26688829	120.0839439
Eremophila capricornica	2020-07-13	25	-23.2679852	120.0796758
Eremophila capricornica	2020-07-13	25	-23.26836189	120.0792242
Eremophila capricornica	2020-07-12	25	-23.3603238	120.5652504
Eremophila capricornica	2020-07-12	25	-23.3596729	120.5672356
Eremophila capricornica	2020-07-12	25	-23.3606435	120.5682929
Eremophila capricornica	2020-07-12	25	-23.36275362	120.5692414
Eremophila capricornica	2020-07-12	25	-23.36120913	120.5709409
Eremophila capricornica	2020-07-14	25	-23.40241445	120.4059655
Eremophila capricornica	2020-07-14	25	-23.40274798	120.4045377
Eremophila capricornica	2020-07-14	25	-23.40233602	120.404207
Eremophila capricornica	2020-07-14	25	-23.40137182	120.4070286
Eremophila capricornica	2020-07-14	25	-23.40190951	120.4076365
Eremophila capricornica	2020-07-11	25	-23.4687585	120.2526951
Eremophila capricornica	2020-07-11	25	-23.468893	120.2533271
Eremophila capricornica	2020-07-10	25	-23.4022343	120.2976381
Eremophila capricornica	2020-07-10	25	-23.359244	120.2235569
Eremophila capricornica	2020-07-10	25	-23.3592544	120.2246238
Eremophila capricornica	2020-07-10	25	-23.3578848	120.2163685
Eremophila capricornica	2020-07-10	25	-23.3595731	120.2229825
Eremophila capricornica	2020-07-10	25	-23.3599836	120.2260852
Eremophila capricornica	2020-07-10	25	-23.35677071	120.2166067
Eremophila capricornica	2020-07-10	25	-23.40385761	120.2951969
Eremophila capricornica	2020-07-10	25	-23.40247841	120.2965811
Eremophila capricornica	2020-07-10	25	-23.40258148	120.2970498
Eremophila capricornica	2020-07-10	25	-23.36120661	120.2301896
Eremophila capricornica	2020-07-14	25	-23.4136987	120.3951389
Eremophila capricornica	2020-07-14	25	-23.41332949	120.3951627
Eremophila capricornica	2020-07-14	25	-23.4097625	120.3995071
Eremophila capricornica	2020-07-14	25	-23.42150742	120.3843142
Eremophila capricornica	2020-07-11	25	-23.49502791	120.4144448
Eremophila capricornica	2020-07-11	25	-23.49437	120.4183163

Taxon	Date	Abundance	Latitude	Longitude
Eremophila capricornica	2020-07-12	25	-23.3833075	120.5041888
Eremophila capricornica	2020-07-12	25	-23.3857082	120.5003478
Eremophila capricornica	2020-07-12	25	-23.38467183	120.5052322
Eremophila capricornica	2020-07-12	25	-23.3842537	120.5050691
Eremophila capricornica	2020-07-12	25	-23.38511836	120.4970199
Eremophila capricornica	2020-07-12	25	-23.38116697	120.5033835
Eremophila capricornica	2020-07-12	25	-23.3817071	120.5030362
Eremophila capricornica	2020-07-12	25	-23.3817746	120.500338
Eremophila capricornica	2020-07-11	26	-23.4685684	120.2530405
Eremophila capricornica	2020-07-10	26	-23.4043925	120.29533
Eremophila capricornica	2020-07-10	26	-23.4027058	120.298592
Eremophila capricornica	2020-07-11	26	-23.49518	120.4141676
Eremophila capricornica	2020-07-10	28	-23.3613724	120.2311014
Eremophila capricornica	2020-07-10	30	-23.3430768	120.2181227
Eremophila capricornica	2020-07-10	30	-23.3427723	120.2177517
Eremophila capricornica	2020-07-10	30	-23.3431208	120.2154173
Eremophila capricornica	2020-07-10	30	-23.3431592	120.2150702
Eremophila capricornica	2020-07-10	30	-23.3459947	120.2115945
Eremophila capricornica	2020-07-10	30	-23.34359913	120.2173952
Eremophila capricornica	2020-07-10	30	-23.34428761	120.2164675
Eremophila capricornica	2020-07-10	30	-23.34481815	120.2133576
Eremophila capricornica	2020-07-10	30	-23.34519601	120.214357
Eremophila capricornica	2020-07-10	30	-23.34554649	120.2138203
Eremophila capricornica	2020-07-09	30	-23.3665898	120.2587575
Eremophila capricornica	2020-07-10	30	-23.3598893	120.2147151
Eremophila capricornica	2020-07-13	30	-23.2897284	120.0998415
Eremophila capricornica	2020-07-11	30	-23.4922844	120.458475
Eremophila capricornica	2020-07-11	30	-23.4938371	120.4643919
Eremophila capricornica	2020-07-11	30	-23.4936758	120.4647353
Eremophila capricornica	2020-07-11	30	-23.4897046	120.4645091
Eremophila capricornica	2020-07-12	30	-23.4143345	120.4801564
Eremophila capricornica	2020-07-12	30	-23.4173746	120.4818508
Eremophila capricornica	2020-07-12	30	-23.4198045	120.4863824
Eremophila capricornica	2020-07-12	30	-23.4214753	120.4869935
Eremophila capricornica	2020-07-11	30	-23.4473697	120.5250563
Eremophila capricornica	2020-07-11	30	-23.4484573	120.5251101
Eremophila capricornica	2020-07-11	30	-23.4489626	120.526152
Eremophila capricornica	2020-07-11	30	-23.4477046	120.5261271
Eremophila capricornica	2020-07-13	30	-23.265027	120.0858372
Eremophila capricornica	2020-07-13	30	-23.2639153	120.0844689
Eremophila capricornica	2020-07-13	30	-23.2619339	120.0853168
Eremophila capricornica	2020-07-13	30	-23.26458292	120.0833694
Eremophila capricornica	2020-07-13	30	-23.26623542	120.081253
Eremophila capricornica	2020-07-13	30	-23.26675543	120.0835776

Taxon	Date	Abundance	Latitude	Longitude
Eremophila capricornica	2020-07-13	30	-23.26729399	120.0802777
Eremophila capricornica	2020-07-13	30	-23.2677693	120.0818532
Eremophila capricornica	2020-07-13	30	-23.26798265	120.0822
Eremophila capricornica	2020-07-12	30	-23.3596308	120.5674374
Eremophila capricornica	2020-07-12	30	-23.3609083	120.5685134
Eremophila capricornica	2020-07-12	30	-23.3620958	120.5687894
Eremophila capricornica	2020-07-12	30	-23.3623452	120.568568
Eremophila capricornica	2020-07-12	30	-23.365077	120.5704648
Eremophila capricornica	2020-07-14	30	-23.40160277	120.407496
Eremophila capricornica	2020-07-14	30	-23.40253341	120.4056791
Eremophila capricornica	2020-07-14	30	-23.40271407	120.404809
Eremophila capricornica	2020-07-14	30	-23.40191973	120.4059226
Eremophila capricornica	2020-07-14	30	-23.4011471	120.4085339
Eremophila capricornica	2020-07-14	30	-23.40201249	120.4072162
Eremophila capricornica	2020-07-14	30	-23.40194204	120.402303
Eremophila capricornica	2020-07-14	30	-23.40189837	120.4031714
Eremophila capricornica	2020-07-14	30	-23.40188979	120.4041294
Eremophila capricornica	2020-07-11	30	-23.4683361	120.2532987
Eremophila capricornica	2020-07-11	30	-23.4695564	120.2531551
Eremophila capricornica	2020-07-11	30	-23.469031	120.2530642
Eremophila capricornica	2020-07-11	30	-23.46819601	120.2534069
Eremophila capricornica	2020-07-10	30	-23.4023184	120.2978147
Eremophila capricornica	2020-07-10	30	-23.3626449	120.2071677
Eremophila capricornica	2020-07-10	30	-23.3594385	120.2223897
Eremophila capricornica	2020-07-10	30	-23.3596273	120.2230983
Eremophila capricornica	2020-07-10	30	-23.3589873	120.223882
Eremophila capricornica	2020-07-10	30	-23.359179	120.2239168
Eremophila capricornica	2020-07-10	30	-23.3583163	120.215726
Eremophila capricornica	2020-07-10	30	-23.3594186	120.2225449
Eremophila capricornica	2020-07-10	30	-23.35937998	120.2266957
Eremophila capricornica	2020-07-10	30	-23.36000656	120.2243518
Eremophila capricornica	2020-07-10	30	-23.35700743	120.2165106
Eremophila capricornica	2020-07-10	30	-23.4028401	120.2988186
Eremophila capricornica	2020-07-11	30	-23.4981498	120.4843093
Eremophila capricornica	2020-07-11	30	-23.5001912	120.4856062
Eremophila capricornica	2020-07-11	30	-23.4977049	120.4897638
Eremophila capricornica	2020-07-14	30	-23.4241332	120.3800719
Eremophila capricornica	2020-07-14	30	-23.4213203	120.384127
Eremophila capricornica	2020-07-14	30	-23.41599727	120.39211
Eremophila capricornica	2020-07-14	30	-23.41450386	120.394187
Eremophila capricornica	2020-07-14	30	-23.4140753	120.394868
Eremophila capricornica	2020-07-14	30	-23.42179938	120.3834257
Eremophila capricornica	2020-07-14	30	-23.41032629	120.3991723
Eremophila capricornica	2020-07-14	30	-23.409842	120.3995588

Taxon	Date	Abundance	Latitude	Longitude
Eremophila capricornica	2020-07-11	30	-23.49352485	120.4182548
Eremophila capricornica	2020-07-11	30	-23.49402367	120.4155431
Eremophila capricornica	2020-07-11	30	-23.4942903	120.4191558
Eremophila capricornica	2020-07-11	30	-23.4944465	120.417805
Eremophila capricornica	2020-07-11	30	-23.4948381	120.4149032
Eremophila capricornica	2020-07-12	30	-23.3860988	120.5011861
Eremophila capricornica	2020-07-12	30	-23.3855968	120.5047314
Eremophila capricornica	2020-07-12	30	-23.3831945	120.4972628
Eremophila capricornica	2020-07-12	30	-23.385448	120.4997499
Eremophila capricornica	2020-07-12	30	-23.3866778	120.5029577
Eremophila capricornica	2020-07-12	30	-23.38710847	120.5021198
Eremophila capricornica	2020-07-12	30	-23.38697091	120.5026968
Eremophila capricornica	2020-07-12	30	-23.3858523	120.4984911
Eremophila capricornica	2020-07-12	30	-23.38608834	120.4996394
Eremophila capricornica	2020-07-12	30	-23.3828851	120.5046957
Eremophila capricornica	2020-07-12	30	-23.3812284	120.4961347
Eremophila capricornica	2020-07-12	30	-23.3827284	120.4968528
Eremophila capricornica	2020-07-10	35	-23.3443417	120.2138479
Eremophila capricornica	2020-07-10	35	-23.34477312	120.213707
Eremophila capricornica	2020-07-10	35	-23.35274952	120.2111202
Eremophila capricornica	2020-07-11	35	-23.4450355	120.5238454
Eremophila capricornica	2020-07-11	35	-23.4943593	120.4600441
Eremophila capricornica	2020-07-12	35	-23.4172164	120.4813603
Eremophila capricornica	2020-07-10	35	-23.35968706	120.2145777
Eremophila capricornica	2020-07-13	35	-23.2646758	120.0862328
Eremophila capricornica	2020-07-13	35	-23.2650942	120.0855371
Eremophila capricornica	2020-07-13	35	-23.2634641	120.0855618
Eremophila capricornica	2020-07-13	35	-23.26447283	120.0852994
Eremophila capricornica	2020-07-12	35	-23.3599725	120.5654193
Eremophila capricornica	2020-07-12	35	-23.3611739	120.5688077
Eremophila capricornica	2020-07-14	35	-23.40228964	120.4045204
Eremophila capricornica	2020-07-14	35	-23.40198496	120.4045505
Eremophila capricornica	2020-07-14	35	-23.40178035	120.4054478
Eremophila capricornica	2020-07-11	35	-23.4699085	120.2529445
Eremophila capricornica	2020-07-11	35	-23.4684108	120.2535277
Eremophila capricornica	2020-07-10	35	-23.3592598	120.2254267
Eremophila capricornica	2020-07-10	35	-23.3602639	120.2303515
Eremophila capricornica	2020-07-10	35	-23.3583415	120.2209918
Eremophila capricornica	2020-07-10	35	-23.3583964	120.2212365
Eremophila capricornica	2020-07-10	35	-23.36015528	120.2249963
Eremophila capricornica	2020-07-10	35	-23.36019825	120.2252413
Eremophila capricornica	2020-07-10	35	-23.35898224	120.2219503
Eremophila capricornica	2020-07-11	35	-23.4973703	120.484796
Eremophila capricornica	2020-07-14	35	-23.41148715	120.3981514

Taxon	Date	Abundance	Latitude	Longitude
Eremophila capricornica	2020-07-14	35	-23.41108502	120.3985969
Eremophila capricornica	2020-07-11	35	-23.49417944	120.4160339
Eremophila capricornica	2020-07-11	35	-23.4942642	120.4173176
Eremophila capricornica	2020-07-12	35	-23.3866097	120.5032189
Eremophila capricornica	2020-07-12	35	-23.3807996	120.4990423
Eremophila capricornica	2020-07-12	35	-23.38310021	120.4961506
Eremophila capricornica	2020-07-10	35	-23.4025959	120.2990656
Eremophila capricornica	2020-07-10	40	-23.343003	120.2175251
Eremophila capricornica	2020-07-10	40	-23.371838	120.2054609
Eremophila capricornica	2020-07-10	40	-23.3725107	120.205853
Eremophila capricornica	2020-07-11	40	-23.46826244	120.2756529
Eremophila capricornica	2020-07-11	40	-23.4917525	120.4587792
Eremophila capricornica	2020-07-11	40	-23.4909855	120.4594184
Eremophila capricornica	2020-07-11	40	-23.4920626	120.4600595
Eremophila capricornica	2020-07-11	40	-23.4917177	120.4601604
Eremophila capricornica	2020-07-11	40	-23.4915227	120.4602691
Eremophila capricornica	2020-07-11	40	-23.49293395	120.4627715
Eremophila capricornica	2020-07-11	40	-23.48929974	120.464584
Eremophila capricornica	2020-07-11	40	-23.4900328	120.4644916
Eremophila capricornica	2020-07-12	40	-23.4193482	120.4862066
Eremophila capricornica	2020-07-12	40	-23.4220139	120.4869764
Eremophila capricornica	2020-07-12	40	-23.4223021	120.4869991
Eremophila capricornica	2020-07-12	40	-23.4267193	120.4909744
Eremophila capricornica	2020-07-12	40	-23.4273917	120.4913127
Eremophila capricornica	2020-07-12	40	-23.4277	120.4913838
Eremophila capricornica	2020-07-12	40	-23.4318984	120.4930723
Eremophila capricornica	2020-07-11	40	-23.4486595	120.5254479
Eremophila capricornica	2020-07-13	40	-23.2637175	120.0851311
Eremophila capricornica	2020-07-13	40	-23.26449796	120.0829656
Eremophila capricornica	2020-07-13	40	-23.26915145	120.0808849
Eremophila capricornica	2020-07-12	40	-23.3603211	120.5681497
Eremophila capricornica	2020-07-12	40	-23.3608958	120.5688862
Eremophila capricornica	2020-07-14	40	-23.40187475	120.4068616
Eremophila capricornica	2020-07-14	40	-23.40204291	120.4066223
Eremophila capricornica	2020-07-14	40	-23.4017491	120.4062877
Eremophila capricornica	2020-07-14	40	-23.40179318	120.4035558
Eremophila capricornica	2020-07-11	40	-23.4700995	120.2525134
Eremophila capricornica	2020-07-11	40	-23.4697393	120.2525511
Eremophila capricornica	2020-07-10	40	-23.3630649	120.2091109
Eremophila capricornica	2020-07-10	40	-23.3583731	120.221853
Eremophila capricornica	2020-07-10	40	-23.3592568	120.2218427
Eremophila capricornica	2020-07-10	40	-23.35737403	120.2162004
Eremophila capricornica	2020-07-10	40	-23.3594076	120.2083243
Eremophila capricornica	2020-07-11	40	-23.4946297	120.4154044

Taxon	Date	Abundance	Latitude	Longitude
Eremophila capricornica	2020-07-12	40	-23.3863672	120.504162
Eremophila capricornica	2020-07-12	40	-23.3848286	120.4984151
Eremophila capricornica	2020-07-12	40	-23.38693491	120.5031575
Eremophila capricornica	2020-07-12	40	-23.38550549	120.4973371
Eremophila capricornica	2020-07-12	40	-23.38624713	120.4991372
Eremophila capricornica	2020-07-12	40	-23.3816358	120.5018602
Eremophila capricornica	2020-07-12	40	-23.3819361	120.5007115
Eremophila capricornica	2020-07-13	45	-23.2893717	120.0995181
Eremophila capricornica	2020-07-10	50	-23.3445944	120.2134084
Eremophila capricornica	2020-07-10	50	-23.3455541	120.2125254
Eremophila capricornica	2020-07-10	50	-23.34410161	120.2147336
Eremophila capricornica	2020-07-10	50	-23.34432324	120.2143842
Eremophila capricornica	2020-07-10	50	-23.34458756	120.2142537
Eremophila capricornica	2020-07-10	50	-23.34500084	120.214053
Eremophila capricornica	2020-07-10	50	-23.34527855	120.213901
Eremophila capricornica	2020-07-11	50	-23.4687107	120.2761569
Eremophila capricornica	2020-07-11	50	-23.4682713	120.276912
Eremophila capricornica	2020-07-11	50	-23.4684959	120.2770633
Eremophila capricornica	2020-07-11	50	-23.4677932	120.2775522
Eremophila capricornica	2020-07-11	50	-23.4679167	120.2777046
Eremophila capricornica	2020-07-13	50	-23.2896663	120.0995609
Eremophila capricornica	2020-07-13	50	-23.2919356	120.0985661
Eremophila capricornica	2020-07-11	50	-23.4471533	120.5249447
Eremophila capricornica	2020-07-11	50	-23.44656701	120.5239723
Eremophila capricornica	2020-07-11	50	-23.44623001	120.5237531
Eremophila capricornica	2020-07-11	50	-23.44590202	120.5234765
Eremophila capricornica	2020-07-11	50	-23.44553572	120.5233016
Eremophila capricornica	2020-07-11	50	-23.44515165	120.5234601
Eremophila capricornica	2020-07-11	50	-23.44593715	120.5263479
Eremophila capricornica	2020-07-11	50	-23.44701438	120.5266215
Eremophila capricornica	2020-07-11	50	-23.44733386	120.5265403
Eremophila capricornica	2020-07-11	50	-23.44746971	120.5260391
Eremophila capricornica	2020-07-11	50	-23.4941754	120.4598039
Eremophila capricornica	2020-07-11	50	-23.4934702	120.4583616
Eremophila capricornica	2020-07-11	50	-23.4934111	120.4583005
Eremophila capricornica	2020-07-11	50	-23.4918837	120.4616772
Eremophila capricornica	2020-07-11	50	-23.4928427	120.4617376
Eremophila capricornica	2020-07-11	50	-23.4931015	120.4612503
Eremophila capricornica	2020-07-11	50	-23.4929553	120.4600917
Eremophila capricornica	2020-07-11	50	-23.4910149	120.461729
Eremophila capricornica	2020-07-11	50	-23.491109	120.4620622
Eremophila capricornica	2020-07-11	50	-23.4940143	120.4638908
Eremophila capricornica	2020-07-11	50	-23.49171751	120.4659387
Eremophila capricornica	2020-07-11	50	-23.49086026	120.4659544

Taxon	Date	Abundance	Latitude	Longitude
Eremophila capricornica	2020-07-11	50	-23.49019413	120.4658215
Eremophila capricornica	2020-07-11	50	-23.48970316	120.4655628
Eremophila capricornica	2020-07-11	50	-23.48929499	120.4653102
Eremophila capricornica	2020-07-11	50	-23.48898005	120.4647728
Eremophila capricornica	2020-07-11	50	-23.4906531	120.4637161
Eremophila capricornica	2020-07-12	50	-23.414681	120.4801294
Eremophila capricornica	2020-07-12	50	-23.4152285	120.4801082
Eremophila capricornica	2020-07-12	50	-23.4280967	120.491702
Eremophila capricornica	2020-07-12	50	-23.4291291	120.4921813
Eremophila capricornica	2020-07-12	50	-23.4294802	120.4921579
Eremophila capricornica	2020-07-12	50	-23.4301727	120.4926601
Eremophila capricornica	2020-07-12	50	-23.431321	120.4924569
Eremophila capricornica	2020-07-12	50	-23.4314794	120.4929368
Eremophila capricornica	2020-07-12	50	-23.43218	120.4931401
Eremophila capricornica	2020-07-12	50	-23.4143462	120.4803052
Eremophila capricornica	2020-07-12	50	-23.4151267	120.4805186
Eremophila capricornica	2020-07-12	50	-23.4159789	120.4804817
Eremophila capricornica	2020-07-12	50	-23.4163577	120.4805702
Eremophila capricornica	2020-07-12	50	-23.4168184	120.4814262
Eremophila capricornica	2020-07-12	50	-23.42053633	120.4871229
Eremophila capricornica	2020-07-12	50	-23.42105229	120.4872765
Eremophila capricornica	2020-07-12	50	-23.42146262	120.4874568
Eremophila capricornica	2020-07-12	50	-23.42662581	120.4915798
Eremophila capricornica	2020-07-12	50	-23.42696527	120.4918405
Eremophila capricornica	2020-07-12	50	-23.42713773	120.492197
Eremophila capricornica	2020-07-12	50	-23.4277105	120.4923993
Eremophila capricornica	2020-07-12	50	-23.42822953	120.4925878
Eremophila capricornica	2020-07-12	50	-23.42859602	120.4928432
Eremophila capricornica	2020-07-12	50	-23.42898689	120.4930214
Eremophila capricornica	2020-07-12	50	-23.42944625	120.4932216
Eremophila capricornica	2020-07-12	50	-23.42988426	120.4932763
Eremophila capricornica	2020-07-12	50	-23.43035288	120.4931841
Eremophila capricornica	2020-07-12	50	-23.4307581	120.493501
Eremophila capricornica	2020-07-12	50	-23.43104015	120.4933741
Eremophila capricornica	2020-07-12	50	-23.43133127	120.4934438
Eremophila capricornica	2020-07-12	50	-23.43182595	120.4935465
Eremophila capricornica	2020-07-12	50	-23.42182834	120.487441
Eremophila capricornica	2020-07-11	50	-23.4481815	120.5248733
Eremophila capricornica	2020-07-13	50	-23.2895495	120.096352
Eremophila capricornica	2020-07-13	50	-23.2654052	120.0843505
Eremophila capricornica	2020-07-13	50	-23.2649922	120.0842778
Eremophila capricornica	2020-07-13	50	-23.26420051	120.0848504
Eremophila capricornica	2020-07-13	50	-23.26538266	120.084864
Eremophila capricornica	2020-07-13	50	-23.26554592	120.0845363

Taxon	Date	Abundance	Latitude	Longitude
Eremophila capricornica	2020-07-13	50	-23.26591998	120.0814237
Eremophila capricornica	2020-07-13	50	-23.26695505	120.0804902
Eremophila capricornica	2020-07-13	50	-23.26727158	120.0833734
Eremophila capricornica	2020-07-13	50	-23.26738786	120.0831617
Eremophila capricornica	2020-07-13	50	-23.26758026	120.0800406
Eremophila capricornica	2020-07-13	50	-23.2678414	120.0826525
Eremophila capricornica	2020-07-13	50	-23.26798062	120.0792789
Eremophila capricornica	2020-07-12	50	-23.3597043	120.5666289
Eremophila capricornica	2020-07-12	50	-23.3619954	120.5691888
Eremophila capricornica	2020-07-12	50	-23.3624403	120.5689753
Eremophila capricornica	2020-07-12	50	-23.3620259	120.5690426
Eremophila capricornica	2020-07-12	50	-23.36144459	120.5712692
Eremophila capricornica	2020-07-14	50	-23.40224256	120.4048592
Eremophila capricornica	2020-07-14	50	-23.40229382	120.4052166
Eremophila capricornica	2020-07-14	50	-23.40209847	120.4056993
Eremophila capricornica	2020-07-14	50	-23.40110203	120.4077545
Eremophila capricornica	2020-07-11	50	-23.4698232	120.2524378
Eremophila capricornica	2020-07-11	50	-23.4694526	120.2527399
Eremophila capricornica	2020-07-11	50	-23.4693333	120.2526658
Eremophila capricornica	2020-07-11	50	-23.4701664	120.2527295
Eremophila capricornica	2020-07-11	50	-23.46939665	120.2532018
Eremophila capricornica	2020-07-10	50	-23.3632763	120.2084402
Eremophila capricornica	2020-07-10	50	-23.3630383	120.2093295
Eremophila capricornica	2020-07-10	50	-23.3603516	120.2081958
Eremophila capricornica	2020-07-10	50	-23.3615048	120.2076288
Eremophila capricornica	2020-07-10	50	-23.3617237	120.2079668
Eremophila capricornica	2020-07-10	50	-23.3592088	120.2220777
Eremophila capricornica	2020-07-10	50	-23.3593916	120.2249536
Eremophila capricornica	2020-07-10	50	-23.3593802	120.2253156
Eremophila capricornica	2020-07-10	50	-23.3586482	120.2154468
Eremophila capricornica	2020-07-10	50	-23.3596859	120.2232676
Eremophila capricornica	2020-07-10	50	-23.36003801	120.2245488
Eremophila capricornica	2020-07-10	50	-23.35762494	120.2158875
Eremophila capricornica	2020-07-10	50	-23.35799522	120.2155277
Eremophila capricornica	2020-07-10	50	-23.35839737	120.2153031
Eremophila capricornica	2020-07-11	50	-23.497613	120.4849433
Eremophila capricornica	2020-07-11	50	-23.4971632	120.4846826
Eremophila capricornica	2020-07-11	50	-23.4971658	120.4844246
Eremophila capricornica	2020-07-11	50	-23.4971332	120.4841405
Eremophila capricornica	2020-07-11	50	-23.4972288	120.483893
Eremophila capricornica	2020-07-11	50	-23.4991927	120.4863626
Eremophila capricornica	2020-07-11	50	-23.4988931	120.486296
Eremophila capricornica	2020-07-11	50	-23.49742617	120.4857268
Eremophila capricornica	2020-07-11	50	-23.49700447	120.4853038

Taxon	Date	Abundance	Latitude	Longitude
Eremophila capricornica	2020-07-11	50	-23.49721909	120.4896504
Eremophila capricornica	2020-07-11	50	-23.49761961	120.4900394
Eremophila capricornica	2020-07-11	50	-23.49760494	120.4892356
Eremophila capricornica	2020-07-11	50	-23.4976778	120.4884926
Eremophila capricornica	2020-07-11	50	-23.49743347	120.4878367
Eremophila capricornica	2020-07-14	50	-23.41811368	120.3886868
Eremophila capricornica	2020-07-14	50	-23.41060012	120.3985329
Eremophila capricornica	2020-07-14	50	-23.41369285	120.3953967
Eremophila capricornica	2020-07-14	50	-23.4104724	120.3988901
Eremophila capricornica	2020-07-11	50	-23.49363536	120.4189727
Eremophila capricornica	2020-07-11	50	-23.49342113	120.4187004
Eremophila capricornica	2020-07-11	50	-23.49360554	120.41765
Eremophila capricornica	2020-07-11	50	-23.49391052	120.4165433
Eremophila capricornica	2020-07-11	50	-23.49398401	120.4150288
Eremophila capricornica	2020-07-11	50	-23.4945253	120.4160347
Eremophila capricornica	2020-07-12	50	-23.3838981	120.497797
Eremophila capricornica	2020-07-12	50	-23.3844471	120.4983089
Eremophila capricornica	2020-07-12	50	-23.3854609	120.4999988
Eremophila capricornica	2020-07-12	50	-23.38383694	120.5050525
Eremophila capricornica	2020-07-12	50	-23.38369476	120.4961844
Eremophila capricornica	2020-07-12	50	-23.38421115	120.4962525
Eremophila capricornica	2020-07-12	50	-23.38454935	120.496684
Eremophila capricornica	2020-07-12	50	-23.38572736	120.4976865
Eremophila capricornica	2020-07-12	50	-23.38569351	120.4981924
Eremophila capricornica	2020-07-12	50	-23.38102018	120.5027749
Eremophila capricornica	2020-07-12	50	-23.38091308	120.5023602
Eremophila capricornica	2020-07-12	50	-23.380521	120.4993089
Eremophila capricornica	2020-07-12	50	-23.38139009	120.4950539
Eremophila capricornica	2020-07-12	50	-23.38189017	120.4952855
Eremophila capricornica	2020-07-12	50	-23.3820885	120.4954584
Eremophila capricornica	2020-07-12	50	-23.38210774	120.4957445
Eremophila capricornica	2020-07-12	50	-23.38228193	120.4958223
Eremophila capricornica	2020-07-12	50	-23.3816035	120.5022158
Eremophila capricornica	2020-07-12	50	-23.3817124	120.5015514
Eremophila capricornica	2020-07-10	60	-23.3433127	120.2147918
Eremophila capricornica	2020-07-10	60	-23.3447806	120.2128992
Eremophila capricornica	2020-07-10	60	-23.3721407	120.2057411
Eremophila capricornica	2020-07-13	60	-23.2892075	120.0993844
Eremophila capricornica	2020-07-11	60	-23.4925941	120.4583196
Eremophila capricornica	2020-07-13	60	-23.26438556	120.0837108
Eremophila capricornica	2020-07-13	60	-23.26462697	120.0817787
Eremophila capricornica	2020-07-11	60	-23.4944417	120.4186748
Eremophila capricornica	2020-07-11	60	-23.494329	120.4169123
Eremophila capricornica	2020-07-12	60	-23.3864657	120.5036872

Taxon	Date	Abundance	Latitude	Longitude
Eremophila capricornica	2020-07-13	70	-23.2919179	120.0983207
Eremophila capricornica	2020-07-11	70	-23.490785	120.4612103
Eremophila capricornica	2020-07-12	70	-23.4298556	120.4921906
Eremophila capricornica	2020-07-11	70	-23.4477702	120.5247764
Eremophila capricornica	2020-07-13	70	-23.2631897	120.0851069
Eremophila capricornica	2020-07-11	70	-23.4977561	120.485539
Eremophila capricornica	2020-07-14	70	-23.41832319	120.3883278
Eremophila capricornica	2020-07-11	70	-23.4946782	120.4157467
Eremophila capricornica	2020-07-10	75	-23.34410443	120.2139115
Eremophila capricornica	2020-07-10	75	-23.34459505	120.2159291
Eremophila capricornica	2020-07-10	75	-23.35982146	120.224165
Eremophila capricornica	2020-07-10	80	-23.3438772	120.2141453
Eremophila capricornica	2020-07-11	80	-23.4476263	120.5250848
Eremophila capricornica	2020-07-10	100	-23.3436038	120.2145058
Eremophila capricornica	2020-07-10	100	-23.3451798	120.212667
Eremophila capricornica	2020-07-13	100	-23.291538	120.0983074
Eremophila capricornica	2020-07-11	100	-23.44734642	120.5253513
Eremophila capricornica	2020-07-11	100	-23.44693071	120.5245428
Eremophila capricornica	2020-07-11	100	-23.4937164	120.4617748
Eremophila capricornica	2020-07-11	100	-23.4925265	120.457939
Eremophila capricornica	2020-07-11	100	-23.4921877	120.4613347
Eremophila capricornica	2020-07-11	100	-23.493206	120.460452
Eremophila capricornica	2020-07-11	100	-23.4924877	120.4599097
Eremophila capricornica	2020-07-11	100	-23.491004	120.4607528
Eremophila capricornica	2020-07-11	100	-23.4917201	120.462321
Eremophila capricornica	2020-07-11	100	-23.49235634	120.4659631
Eremophila capricornica	2020-07-12	100	-23.4234106	120.4869928
Eremophila capricornica	2020-07-12	100	-23.4234044	120.4869687
Eremophila capricornica	2020-07-12	100	-23.4283543	120.4920397
Eremophila capricornica	2020-07-12	100	-23.4304639	120.4926554
Eremophila capricornica	2020-07-12	100	-23.4310314	120.4925198
Eremophila capricornica	2020-07-13	100	-23.2652191	120.0852312
Eremophila capricornica	2020-07-13	100	-23.2657964	120.0850376
Eremophila capricornica	2020-07-13	100	-23.2655895	120.084543
Eremophila capricornica	2020-07-13	100	-23.2646115	120.0843028
Eremophila capricornica	2020-07-13	100	-23.2642017	120.0845179
Eremophila capricornica	2020-07-13	100	-23.2637507	120.0846595
Eremophila capricornica	2020-07-13	100	-23.26465599	120.0824251
Eremophila capricornica	2020-07-13	100	-23.26508313	120.0813742
Eremophila capricornica	2020-07-13	100	-23.26544128	120.0812966
Eremophila capricornica	2020-07-13	100	-23.26668763	120.0807782
Eremophila capricornica	2020-07-12	100	-23.359751	120.5656801
Eremophila capricornica	2020-07-12	100	-23.3594786	120.5658807
Eremophila capricornica	2020-07-12	100	-23.3595393	120.5662445

Taxon	Date	Abundance	Latitude	Longitude
Eremophila capricornica	2020-07-12	100	-23.3619534	120.5690637
Eremophila capricornica	2020-07-10	100	-23.3641221	120.2075849
Eremophila capricornica	2020-07-11	100	-23.4980613	120.4860304
Eremophila capricornica	2020-07-11	100	-23.4978596	120.4857848
Eremophila capricornica	2020-07-11	100	-23.4974543	120.4840112
Eremophila capricornica	2020-07-11	100	-23.4978186	120.4841251
Eremophila capricornica	2020-07-11	100	-23.4998975	120.4857283
Eremophila capricornica	2020-07-11	100	-23.4985949	120.4864381
Eremophila capricornica	2020-07-11	100	-23.49749218	120.4872231
Eremophila capricornica	2020-07-11	100	-23.49767651	120.4866475
Eremophila capricornica	2020-07-14	100	-23.42136344	120.3832222
Eremophila capricornica	2020-07-14	100	-23.41184805	120.3978271
Eremophila capricornica	2020-07-11	100	-23.49382447	120.4169607
Eremophila capricornica	2020-07-11	100	-23.4945042	120.416537
Eremophila capricornica	2020-07-12	100	-23.3853438	120.4991815
Eremophila capricornica	2020-07-12	100	-23.38260505	120.5048986
Eremophila capricornica	2020-07-12	100	-23.38253581	120.5045127
Eremophila capricornica	2020-07-12	100	-23.38252997	120.5041968
Eremophila capricornica	2020-07-12	100	-23.38030805	120.5007056
Eremophila capricornica	2020-07-12	100	-23.38008955	120.5005705
Eremophila capricornica	2020-07-12	100	-23.37930418	120.5004397
Eremophila capricornica	2020-07-12	100	-23.3798255	120.5002624
Eremophila capricornica	2020-07-12	100	-23.3798889	120.4999345
Eremophila capricornica	2020-07-12	100	-23.3802148	120.4996552
Eremophila capricornica	2020-07-12	100	-23.3824771	120.5036912
Eremophila capricornica	2020-07-12	100	-23.3813347	120.4957078
Eremophila capricornica	2020-07-12	100	-23.3817549	120.496079
Eremophila capricornica	2020-07-10	100	-23.3609109	120.2078673
Eremophila capricornica	2020-07-11	150	-23.4942481	120.4614236
Eremophila capricornica	2020-07-11	150	-23.4944265	120.4609687
Eremophila capricornica	2020-07-11	150	-23.4983472	120.4865487
Eremophila capricornica	2020-07-11	150	-23.4980213	120.4864866
Eremophila capricornica	2020-07-12	150	-23.3836086	120.4974119
Eremophila capricornica	2020-07-12	150	-23.3827409	120.5038329
Eremophila capricornica	2020-07-10	200	-23.3639432	120.2067454

[This page has been left blank intentionally]