Sandhill Dunnart Monitoring

May 2024 SUMMARY REPORT

Top: Sand Dune Vegetation, Eastern Goldfields Pipeline. Bottom: Sandhill Dunnart and regenerating habitat post fire.

Prepared for: APA Group

Westralia Square, Level 12, 141 St Georges Terrace, Perth WA 6000

Prepared by: J. Turpin and J. Riley

Kingfisher Environmental

July 2024

EXECUTIVE SUMMARY

APA Group (APA) owns and operates the Eastern Goldfields Pipeline, situated within the Murchison and Great Victoria Desert regions of Western Australia. Due to the occurrence of the nationally endangered Sandhill Dunnart, APA commissioned Kingfisher Environmental to develop a Sandhill Dunnart Monitoring Plan. Specifically, to fulfil requirements under Native Vegetation Clearing Permit CPS 6361/2 and to address the "Significant Impact Guidelines" on Matters of National Environmental Significance. The Sandhill Dunnart Monitoring Plan was developed in consultation with the Department of Parks and Wildlife (DPaW, now Department of Biodiversity, Conservation and Attractions, DBCA), and baseline field surveys were initiated in 2015. As the species has a highly restricted range and is vulnerable to several threatening processes, subsequent monitoring has been conducted bi-annually to determine the Sandhill Dunnart's status along the pipeline corridor.

The Sandhill Dunnart Monitoring Programme assesses a series of fragmented populations at the species' northern known extent in Western Australia. The species occurrence, movements and breeding along the Eastern Goldfields Pipeline are monitored to assess population stability, habitat fragmentation and the use of rehabilitated and disturbed areas. Monitoring aims to highlight important areas of habitat, investigate the associated impacts of predation and fire, and document the species recovery post-disturbance. This report summarises the results of the field survey conducted during April and May 2024. Field sampling included:

- Systematic trapping (to verify species occurrence, breeding, genetic viability);
- Motion-activated cameras (to monitor presence, assess rehabilitation usage, locate additional populations);
- Predator scat collection and analysis (to evaluate predation, new populations);
- Habitat and shelter assessments: measures of vegetation, re-growth, and colonisation post-disturbance (clearing and fire);
- Assessment of fauna within rehabilitated and disturbed areas; and
- Searches for, and monitoring of, additional taxa of conservation significance.

A total of 126 vertebrate taxa were recorded during the field survey, comprising two frog, 35 reptiles, 68 birds, 15 native mammal and six introduced mammal species. Forty eight species were trapped at the permanent monitoring sites and 20 taxa were recorded via motion-activated camera. Species of conservation significance recorded included the Sandhill Dunnart (EPBC Endangered), Malleefowl (EPBC Vulnerable), Brush-tailed Mulgara (DBCA Priority 4), Striated Grasswren (DBCA Priority 4) and the locally restricted Southern Scrub-robin. Introduced fauna were widely recorded via tracks, scats and on camera.

The Sandhill Dunnart was recorded during the 2024 field survey, mostly from areas of long-unburnt vegetation, which provide the range and abundance of sites required for shelter. The species was recorded via pitfall trapping and by motion camera including from several cameras installed both within intact vegetation and

within rehabilitation. Cameras also extended the species known local occurrence by approximately 7km.

The Sandhill Dunnart was recorded within the rehabilitating pipeline corridor. Twelve (12) of 40 cameras installed detected the species (12/40 = 30%) amongst vegetation regrowing since the corridors initial clearance (in 2015). Measures of vegetation also revealed the trend of regrowth towards Sandhill Dunnart habitat. However, as half (6/12 = 50%) of the cameras installed, detected the Sandhill Dunnart on only one occasion, much of the species presence within rehabilitation is likely to be foraging or during transit, as the young spinifex present is unlikely to provide shelter habitat. This is likely to change over time as the spinifex matures to a size suitable to support the species. Recent rainfall has assisted the rehabilitation of vegetation, with habitat metrics revealing an increase in the size and cover of potential habitat. Most spinifex hummocks have not (yet) reached a size suitable for shelter, and remain sparsely distributed overall.

The Sandhill Dunnart has a highly fragmented occurrence along the Eastern Goldfields Pipeline, attributable to the complex interactions of predation, rainfall, and fire. While monitoring has expanded the species range, low rainfall and the destructive effects of large bushfires have impacted large areas of habitat in preceding years. The species inhabits discrete areas of mature vegetation, which occur intermittently along the pipeline corridor. Post-burn monitoring has failed to detect the Sandhill Dunnart at formerly occupied sites, and it is likely to take several years after disturbance before habitat matures to a suitable stage to provide shelter and protection from predation.

Monitoring is proposed to continue during 2024. The results of the monitoring to date indicate that Sandhill Dunnart population numbers along the Eastern Goldfields Pipeline fluctuate due to rainfall and fire, but can recover after disturbance. Local populations have been recorded to persist after construction of the pipeline. As the vegetation along the cleared pipeline matures, it is likely to provide habitat for the Sandhill Dunnart and offset that lost during the initial pipeline construction.

	Document Status													
Revision No.	Author	Review	Approved for Issue to	Date										
1.	J. Turpin	J. Riley	S. Franceschini	24/07/2024										
2.	J. Turpin	S. Franceschini	APA	12/08/2024										

CONTENTS

EXECUTIVE SUMMARY	2
1. INTRODUCTION	7
2. BACKGROUND	8
2.1 Great Victoria Desert	8
2.2 Sandhill Dunnart	8
2.3 Other Conservation Significant Fauna	9
2.4 Survey Techniques	9
3. SANDHILL DUNNART MONITORING	11
3.1 Approach	11
3.2 Sampling	11
3.3 Survey Area	11
3.4 Other Significant Fauna	12
4. FIELD SURVEY METHODOLOGY	13
4.1 Personnel and Timing	13
4.2 Licencing	13
4.3 Survey Techniques	13
5. SURVEY RESULTS	19
5.1 Vertebrate Fauna Summary	19
5.2 Trapping Results	20
5.3 Breeding and Shelter Observations	21
5.4 Sandhill Dunnart	21
5.5 Motion-activated Camera results	26
5.6 Introduced Mammals	26
5.7 Predator Scat Analysis	27
5.8 Other Species of Conservation Significance	28
6. DISCUSSION	35
7. CONCLUSIONS	54
REFERENCES	56
Appendix A: Sandhill Dunnart Survey Site Locations	60
Appendix B: Fauna Recorded / Expected in the Survey Area.	79
Appendix C: Fire Regeneration: Mulga and Spinifex Assessment.	90
Appendix D: Sandhill Dunnart Predator Scat Analysis.	94
Appendix E: Rainfall Recorded at Tropicana Gold Mine.	98

FIGURE 1. CAMERAS INSTALLED ALONG THE PIPELINE CORRIDOR	15
FIGURE 2. SANDHILL DUNNART RECORDED DURING THE SURVEY	21
FIGURE 3. SANDHILL DUNNART IDENTIFIED ON CAMERA	22
FIGURE 4. SANDHILL DUNNARTS RECORDED ALONG THE EASTERN GOLDFIELDS PIPELINE	22
FIGURE 5. EXAMPLES OF FAUNA RECORDED ON MOTION CAMERA (BRUSH-TAILED MULGARA)	26
FIGURE 6. SCAT ANALYSIS - PREY SPECIES OF FERAL CATS, FOXES AND DINGOS AT TROPICANA	
FIGURE 7. MALLEEFOWL RECORDS ALONG THE EASTERN GOLDFIELDS PIPELINE	
FIGURE 8. STRIATED GRASSWREN RECORDS ALONG THE EASTERN GOLDFIELDS PIPELINE.	30
FIGURE 9. SOUTHERN SCRUB-ROBIN RECORDS ALONG THE EASTERN GOLDFIELDS PIPELINE	
FIGURE 10. REGENERATING SOUTHERN SCRUB-ROBIN HABITAT ADJACENT TO THE PIPELINE	
FIGURE 11. REGENERATING SOUTHERN SCRUB-ROBIN HABITAT ADJACENT TO THE PIPELINE	
FIGURE 12. RUFOUS TREECREEPER RECORDS ALONG THE EASTERN GOLDFIELDS PIPELINE	32
FIGURE 13. SOUTHERN MARSUPIAL MOLE RECORDS ALONG THE EASTERN GOLDFIELDS PIPELINE	
FIGURE 14. MAJOR MITCHELL'S COCKATOO BREEDING HOLLOW ALONG THE PIPELINE CORRIDOR	
FIGURE 15. MAJOR MITCHELL'S COCKATOO RECORDS ALONG THE EASTERN GOLDFIELDS PIPELINE	
FIGURE 16. LONG-TAILED DUNNART RECORDED ON CAMERA AT THE IRWIN HILLS.	34
FIGURE 17. VARIATION OF SMALL MAMMAL CAPTURE RATES BETWEEN SAMPLING PERIODS	
FIGURE 18. SIGNIFICANT VARIATIONS OF RODENTS AND THE NINGAUI AT TROPICANA	
FIGURE 19. SANDHILL DUNNART CAPTURE RATE	
FIGURE 20. SANDHILL DUNNART CAPTURE RATE WITHIN REHABILITATION.	38
FIGURE 21. SANDHILL DUNNART DISTRIBUTION IN THE GREAT VICTORIA DESERT.	
FIGURE 22. FORMERLY OCCUPIED SANDHILL DUNNART HABITAT (SITE 10B).	
FIGURE 23. REGENERATING SANDHILL DUNNART HABITAT (SITE 10B).	
FIGURE 24. REGENERATING SANDHILL DUNNART HABITAT (SITE 10B).	
FIGURE 25. SANDHILL DUNNART SITES IMPACTED BY FIRE.	
FIGURE 26. SANDHILL DUNNART SITES IMPACTED BY FIRE (WITH RECENT FIRE HISTORY DISPLAYED)	
FIGURE 27. PIPELINE REHABILITATION (REHAB) COMPARED TO SANDHILL DUNNART HABITAT (SHD)	
FIGURE 28. SPECIES RICHNESS (REHAB) COMPARED TO SANDHILL DUNNART (SHD) HABITAT	
TABLE 1. SURVEY EFFORT AT SANDHILL DUNNART TRAPPING SITES	13
Table 2. Sandhill Dunnart Camera Monitoring Sites	14
TABLE 3. SANDHILL DUNNART MONITORING SITE DESCRIPTIONS	15
Table 4. Conservation Significant Fauna recorded during the survey (UTM Zone 51)	18
TABLE 5. SPECIES TRAPPED DURING THE SURVEY PERIOD	
Table 6. Mammals recorded from survey sites	20
Table 7. Sandhill Dunnart records	21
Table 8. Sandhill Dunnart Measurements from Tropicana	22
Table 9. Sandhill Dunnart Habitat Characteristics.	24
TABLE 10. TRIODIA MEASUREMENTS AT MONITORING SITES (PERCENTAGE COVER LISTED UNDER %)	25
Table 11. Dominant Vegetation at Sandhill Dunnart Sites.	
TABLE 12. FAUNA RECORDED ON MOTION CAMERA ALONG THE PIPELINE CORRIDOR	
TABLE 13. INTRODUCED MAMMALS RECORDED DURING THE SURVEY	
TABLE 14. SOUTHERN SCRUB-ROBIN SIGHTINGS.	
TABLE 15. COMPARISON OF MAMMAL CAPTURES.	
Table 16. Fauna assemblage recorded across all surveys.	
TABLE 17. SANDHILL DUNNART PRESENCE AT MONITORING SITES AND THE IMPACTS OF FIRE	
TABLE 18. T-TEST COMPARISONS OF VEGETATION AT INTACT HABITAT AND THE PIPELINE CORRIDOR	
Table 19. EPBC Impact Assessment Criteria.	
Table 20. Significant records obtained during monitoring	

1. INTRODUCTION

APA Group (APA) owns and operates the Eastern Goldfields Pipeline, located in the Murchison and Great Victoria Desert regions of Western Australia. In 2014, prior to pipeline construction, Kingfisher Environmental Consulting (KEC) conducted a fauna assessment of the pipeline corridor and several conservation significant fauna species were identified. This included the nationally threatened Sandhill Dunnart, recorded near the Tropicana Gold Mine.

Due to the presence of the Sandhill Dunnart (Sminthopsis psammophila) and extent of suitable habitat, APA commissioned Kingfisher Environmental Consulting to develop a Sandhill Dunnart Monitoring Plan to fulfil the requirements under Native Vegetation Clearing Permit CPS 6361/2. The Sandhill Dunnart Monitoring Plan assesses the significance of any impacts associated with the Eastern Goldfields Pipeline upon the local Sandhill Dunnart population. The "Significant Impact Guidelines on Matters of National Environmental Significance" (DoTE, 2013) provide a framework for the assessment of impact:

- Will the action lead to a long-term decrease in the size of a population?
- Will the action reduce the area of occupancy of the species?
- Will the action fragment an existing population?
- Will the action adversely affect habitat critical to the survival of a species?
- Will the action disrupt the breeding cycle of a population?
- Will the action modify, destroy, remove, isolate, or decrease the availability or quality of habitat to the extent that the species is likely to decline?
- Will the action result in introducing invasive species that are harmful to a critically endangered or endangered species becoming established in the endangered or critically endangered species' habitat?
- Will the action introduce disease that may cause the species to decline?
- Will the action interfere with the recovery of the species?

Sandhill Dunnart Monitoring Plan

The Sandhill Dunnart Monitoring Plan (KEC, 2015a) was developed in consultation with the Department of Parks and Wildlife (DPaW). The objectives of the Sandhill Dunnart Monitoring Plan included:

- (i) monitor for an impact arising from the Eastern Goldfields Pipeline project,
- (ii) add to the ecological knowledge of the species,
- (iii) assess how the Sandhill Dunnart responds to rehabilitation measures,
- (iv) assess the presence and activity of introduced species.

The plan allowed for baseline surveys (to collect data on the local population and to record the species over a wider range); monitoring to assess species presence, extent, breeding, and movements; tracking to collect detailed ecological and habitat information and determine the use of impact and rehabilitated areas; an assessment of pipeline impacts associated with threatened fauna, introduced predators and fire; and monitoring of other significant fauna (including the EPBC listed Malleefowl) and the associated vegetation. The initial field survey and assessment was conducted during 2014 (KEC, 2015b) with monitoring surveys subsequently conducted since 2015 (KEC, 2020). This report summarises the results from the monitoring conducted during April and May 2024.

2. BACKGROUND

2.1 Great Victoria Desert

The Great Victoria Desert is Australia's largest desert but is remote and the region's fauna is poorly sampled and little understood. Despite this, the region supports a diverse assemblage of plants and animals, containing a unique mix of species from the temperate south-west and arid interior. A number of atypical desert species occur at the arid extremes of their range, in small, restricted populations (e.g. Southern Scrub-robin, Western Pygmy Possum, Sandhill Dunnart). Like much of arid Australia, the region's mammalian fauna has suffered significant declines (Woinarski et al. 2014). A number of mammals are considered regionally extinct, while several others have suffered significant range reductions and occur in small and vulnerable populations. This includes the Sandhill Dunnart.

2.2 Sandhill Dunnart

The Sandhill Dunnart (*Sminthopsis psammophila*) is listed as Endangered under the EPBC Act (Environment Protection and Biodiversity Conservation Act 1999) and BC Act (Biodiversity Conservation Act 2016, see KEC 2015). It has a highly restricted range with small, disjunct populations in Western Australia and South Australia (Churchill, 2001, DPaW, 2015).

The Sandhill Dunnart is a large dunnart, with an adult's body weight ranging from 30 – 55g (Churchill, 2001). Due to its large size, it is one of only two dunnart species that fall within the "critical weight range" of mammals sensitive to a number of threatening processes, exacerbated by its desert sandplain habitation (Woolley *et al.* 2017). The species is identified from other dunnarts by its large size, distinctive bicoloured tail (with a crest of stiff black hairs along the ventral surface of the distal portion), large ears and dark forehead.

In Western Australia, the Sandhill Dunnart appears to be restricted to the south western fringe of the Great Victoria Desert. The species inhabits yellow sand dune systems with mature hummock grasslands (*Triodia* spp.) and often in association with Mallee (*Eucalyptus* spp.) or Marble Gum (*Eucalyptus* gongylocarpa), Callitris (Callitris spp.) and an associated complex shrub understorey (KEC, 2014). There is also a disjunct population in southern South Australia, in which the species appears to occupy a broader range of habitats (GHD 2010).

Sandhill Dunnarts require habitat that is long unburnt, as mature vegetation contains the range and abundance of sites required for shelter. Such habitat includes mature hummocks of spinifex (and other dense hummocks such as *Lepidobolus*) and a complex shrub layer which develops in the absence of fire. Summer fires in the Great Victoria Desert can be extensive and destroy large areas of land, rendering them unsuitable for the species.

Sandhill Dunnarts at Tropicana

The Sandhill Dunnart was recorded at four locations by Kingfisher during the initial assessment of the pipeline project in 2014 (KEC, 2015). At all four locations,

vegetation comprised long-unburnt and mature spinifex with a variable and complex shrub layer and in association with a yellow sand dune. Vegetation included Marble Gum (E. gongylocarpa), Callitris preissii, mixed Acacia (including Acacia ramulosa, Acacia ligulata), Grevillea juncifolia, Anthotroche pannosa, Daviesia grahamii and Triodia desertorum.

Since the Sandhill Dunnart was initially recorded at Tropicana, the species has been detected over a wider area. However, the known distribution for the species in Western Australia remains highly restricted and extends over approximately 200 km from Queen Victoria Spring Nature Reserve to the Tropicana Gold Mine (KEC, 2015). Within this range, the Sandhill Dunnart's occurrence is highly fragmented, owing to the intermittent occurrence of suitable habitat arising from the region's fire regime. Along the Eastern Goldfields pipeline the Sandhill Dunnart is known only from disjunct areas of long unburnt vegetation within approximately 100km of Tropicana Gold Mine (recorded from near Tropicana to near Hope Campbell Lake). Of the four initial locations where the species was recorded along the Eastern Goldfields Pipeline, two sites no longer support the species, due to the removal of critical habitat by wildfire.

2.3 Other Conservation Significant Fauna

Additional species of conservation significance occur along the Eastern Goldfields Pipeline in small and restricted populations. These include the Malleefowl (*Leipoa ocellata*, Vulnerable under the EPBC Act), Brush-tailed Mulgara (*Dasycercus blythi*, DBCA Priority 4), Striated Grasswren (*Amytornis striatus*, DBCA Priority 4) and the regionally significant and isolated Southern Scrub-robin (*Drymodes brunneopygia*) and Western Pygmy Possum (*Cercartetus concinnus*). The Malleefowl and Southern Scrub-robin are restricted to areas of dense Mulga while the Brush-tailed Mulgara and Striated Grasswren inhabit long-unburnt spinifex sandplains. All species have a fragmented occurrence with few known regional populations.

Monitoring of these species, particularly the EPBC listed Malleefowl, was incorporated into the field survey to assess the pipeline's influences over a wider context and to enhance local knowledge of the region's poorly known biodiversity. While not known from the pipeline corridor, the Great Desert Skink (*Liopholis kintorei*, EPBC Vulnerable) occurs nearby and so surveying also aimed to determine the species status along the corridor.

2.4 Survey Techniques

The optimisation of detection is important when designing monitoring programs for rare species, such as the endangered Sandhill Dunnart (Read *et al.*, 2016). Important considerations for survey design include:

- timing (season and moon phase);
- sampling duration;
- location and frequency of sampling;
- the detectability of the target species; and
- the modes of detection (the type of traps used).

Optimal Sandhill Dunnart surveys and monitoring programs need to account for their relatively low detectability (Read *et al.*, 2016). A summary of the optimal detection methods employed for the Sandhill Dunnart and other significant fauna is listed in the initial Sandhill Dunnart Monitoring Plan (KEC, 2014). A combination of deep pitfall traps, motion-activated cameras, and long sampling periods with repeated seasonal sampling visits maximises the effectiveness of monitoring (Churchill, 2001; KEC 2014; Gaikhorst and Lambert 2008; Read *et al.*, 2016).

3. SANDHILL DUNNART MONITORING

3.1 Approach

The Sandhill Dunnart Monitoring Plan comprises a series of sampling events aiming to collect information on the Sandhill Dunnart population (and other threatened species), both within and away from areas of disturbance. Key population indicators of change include species presence, relative abundance, area of occupancy and trap success both within and away from disturbance areas. Other indicators include habitat availability, home range size and shape, activity, and movement patterns. As a result, sampling includes both systematic and repeatable trapping (at monitoring sites), the use of motion cameras (across a broader area) and the tracking of fauna movements (see KEC, 2015b).

3.2 Sampling

Monitoring incorporates several sampling components at established monitoring sites (see KEC, 2015). Sampling includes:

- Systematic trapping (to verify species occurrence, breeding, genetic viability);
- Motion-activated cameras (to monitor presence, locate additional populations, and detect other fauna, including the abundance of predators);
- Predator scat collection and analysis (to investigate predation and locate additional Sandhill populations);
- Sandhill Dunnart scat collection and analysis (to investigate diet);
- Sandhill Dunnart tracking (radio / GPS tracking to assess species movements, to determine the impact of a pipeline as a potential barrier and to determine the use of impact and rehabilitated areas);
- Habitat and shelter descriptions: measures of vegetation, vegetation cover, regrowth, and colonisation post-disturbance (clearing and fire):
 - Vegetation description (dominant species, cover, fire history);
 - Triodia assessment (life stage, size, cover, isolation calculated);
 - Microhabitat assessment (presence of logs, burrows);
 - Fire Assessment: measures of regrowth, fauna usage after fire;
- Assessment of fauna within rehabilitated and disturbed areas; and
- Searches for, and monitoring of, additional taxa of conservation significance.

3.3 Survey Area

The survey area corresponds to known Sandhill Dunnart distribution near Tropicana. Prior to the April 2015 survey, there were six known records of the species within 100 km of Tropicana. These were the four Sandhill Dunnart locations along the proposed pipeline route (recorded by Kingfisher in 2014) and two records near the Pinjin Access Road (approximately 50 km south-west of Tropicana, J Turpin, pers. obs.).

3.4 Other Significant Fauna

While populations of the Sandhill Dunnart are assessed, the influences of the pipeline on additional fauna (threatened species) and ecological processes such as predation are also monitored. The fauna use of rehabilitation is assessed, and vegetation regrowth associated with rehabilitation and fire is also measured. Monitoring therefore includes:

1. Significant Fauna:

- a. Sandhill Dunnart (EPBC Vulnerable): the focus of monitoring along the pipeline;
- b. Great Desert Skink (EPBC Vulnerable): few records for the GVD however has the potential to occur along the pipeline corridor;
- Malleefowl (EPBC Vulnerable): as several breeding sites occur along the pipeline, the species presence and breeding activity along the pipeline is monitored;
- d. Brush-tailed Mulgara (DBCA Priority 4): occurs at several locations along the pipeline and is monitored by the use of motion-activated cameras;
- e. Striated Grasswren (DBCA Priority 4): sparse occurrence in the region and the few known populations along the pipeline are monitored with motion cameras and bird census;
- f. Southern Scrub-robin (regionally significant, isolated population): as the species is highly sedentary and is restricted to a few small areas along the pipeline, known populations are monitored;
- 2. Rehabilitation after disturbance: monitoring of vegetation growth and colonisation after land clearance and fire events;
- 3. Fauna usage of rehabilitation. The Sandhill Dunnart and other dunnart species along the pipeline have the potential to forage and shelter within the rehabilitated areas along the pipeline corridor. To verify the success of rehabilitation along the Eastern Goldfields Pipeline Corridor fauna movements in the area are monitored.

4. FIELD SURVEY METHODOLOGY

4.1 Personnel and Timing

The 2024survey was conducted from the 26th April till the 16th May 2024, although motion cameras installed were collected on the 26th and 27th June 2024. The survey team comprised:

- Jeff Turpin (Supervising Zoologist, B.Sc. Zoology);
- Ray Lloyd (Senior Ecologist, B.Sc. Hons. Zoology);
- Joanna Riley (Senior Ecologist, B.Sc. Hons. Zoology, PhD, Biological Science);
- Harriet Crate (Field Assistant).

This report was prepared by Jeff Turpin and Joanna Riley (PhD, Biological Science).

4.2 Licencing

The field survey was conducted under the Department of Biodiversity, Conservation and Attractions (DBCA) Regulation 25 (Biodiversity Conservation Regulations 2018), licensed to J.M. Turpin, FO25000057-7 (valid to 31/03/2025) and an "Authorisation to Take or Disturb Threatened Species" under Section 40 of the Biodiversity Conservation Act 2016, TFA 2021-0121-2.

4.3 Survey Techniques

The field survey included the following components (Appendices A-E):

- Systematic trapping 23 monitoring sites established;
- Motion-activated Cameras established at trapping sites and additional areas;
- Predator scat collection and analysis;
- Sandhill Dunnart scat collection and analysis;
- Assessment of other significant fauna including Malleefowl breeding;
- · Fauna usage of rehabilitation; and
- Vegetation and Habitat assessment including vegetation, fire, soil, landform, and the effects of fire on local fauna (focusing on the Sandhill Dunnart).

4.3.1 Systematic Trapping

TwentythreeSandhill Dunnart monitoring sites were sampled during the field survey (Table 1). Each monitoring site consisted of:

- Pitfall Traps (20 sites) two lines of six pitfall traps (at least 620 mm deep and 225 mm diameter) spaced along a 50 m drift fence. Pitfalls were spaced eight metres apart and placed centrally under a 300 mm high flywire fence. A third line of six pitfall traps was established within the disturbed pipeline corridor at five sampling sites to assess the effects of, and fauna usage (particularly the Sandhill Dunnart) of, the pipeline's rehabilitating corridor; and
- Motion-activated cameras (41 sites) placed at each trapping site to supplement capture data (1 per site) and also elsewhere to sample fauna. Each motion camera also baited with "universal bait".

Sampling was conducted over 1894 trap nights with survey effort detailed in Tables 1 and 2 and site descriptions listed in Table 3. Photos of survey sites are displayed in Appendix A. In total, 32 permanent trapping sites have been established totalling 358 pit fall traps (Table 1). However, 42 pit-fall traps have been removed due to access limitations and fire (Table 1).

Table 1. Survey Effort at Sandhill Dunnart Trapping Sites.

				Juive				Sampled (ap Nights 2015 2015 2016 2016 2017 2017 2018 2018 2019 2019 2020 2020 2021 2021 2022 2022 2023 2023 2020 2																		
Site	Easting	Northing		Camera	Nights	Rehab	Trap Nights	2015	2015	2016	2016	2017	2017	2018	2018				2020	2021	2021	2022	2022	2023	2023	2024
	J	J	Traps	Traps	Sampled	Pits		A	В	Α	В	A	В	A	В	A	В	Α	B	В	B	A	B	A	B	A
1	641234	6763205	12	1	7		84	Χ	Х	Χ	Х	Χ	Χ	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Χ	Х	Х	Χ
2	641811	6763078	12	1	7		84	Χ	Х	Χ	Х	Χ		Х	Χ		Χ		Χ	Х	Χ	Χ	Χ	Χ	Х	Χ
3	640804	6763212		Not s	ampled			Χ	Х	Χ																
4	606034	6729480		Not s	ampled			Χ	Х	Χ	Х			Х												
5	601839	6729764		Not s	ampled			Χ	Х	Χ	Х			Х												
6	646101	6763194	6	1	5		30	Χ			Х	Χ		Х	Х	Х	Х	Х	Х	Х	Х	Χ	Χ	Х	Х	Χ
7	621440	6762911	12	1	7	6	126	Χ	Х	Χ	Х	Χ	Χ	Х	Х	Х	Χ	Х	Х	Х	Х	Χ	Χ	Х	Х	Χ
8	621873	6762857		Not s	ampled			Χ																		
9	625003	6762719	12	1	7		84		Х	Χ	Х	Χ	Χ	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Χ	Х	Х	Χ
10	626818	6762870	12	1	7	6	120		Х	Χ	Х	Χ	Χ	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Χ	Х	Х	Χ
10B	626810	6763357	12	1	7		84						Χ	Χ	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х	Х	Χ
11	603037	6729852		Not s	ampled				Х	Χ	Χ			Χ												
12	606136	6763323	12	1	7		84			Х	Х	Χ	Χ	Х	Х	Х	Х	Х	С	Х	Х	Χ	Χ	Х	Х	Χ
13	608822	6763296	12	1	7	6	126			Х	Х	Χ	Χ	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Χ	Х	Х	Χ
14	634312	6763442	12	1	7		84			Х	Х	Χ	Χ	Х	Х	Х	Х	С	С	Х	Х	Χ	Χ	Х	Х	Χ
15	623425	6762898	10	1	7		70			Х	Х	Χ	Χ	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Χ	Х	Х	Χ
16	639811	6764494	Rem	oved (du	ie to rehal	oilitation	n of track)				Х															
17	619212	6738684		Not s	ampled						Χ			Χ												
18	628037	6743144		Not s	ampled						Χ															
19	643132	6763279	6	1	7		42				Х	Χ		Х	Х	Х	Х	С	Х	Х	Х	Χ	Χ	С	Х	Χ
20	595291	6764675	12	0	0		0					Χ	Χ		Х	Х	Χ	С	С	С	С	С	С			
21	640281	6763563	6	1	7		42						Χ	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Χ	Х	Х	Χ
22	639353	6763759	12	1	7		84						Χ	Х	Х	Х	Х	С	Х	Х	Х	Χ	Χ	Х	Х	Χ
23	614745	6763088	12	1	8	6	144							Х	Х	Х	Х	Х	Х	Х	Х	Χ	Χ	Х	Х	Χ
24	611831	6763382	12	1	7		84								Х	Х	Х	С	С	Х	Х	Χ	Χ	Х	Х	Χ
25	637051	6763604	6	0	7		42								С									Х	Х	Χ
26	646935	6763687	6	1	0		0									Х	Χ	Х	Х	Х	Х	Χ	С			
27	645203	6763227	12	1	7		84									Х	Χ	Х	Х	Х	Х	Χ	Χ	Х	Х	Χ
28	646887	6763245	12	1	6		72													Х	Х	Х	С	Х	Х	Χ
29	647544	6763463	12	1	6		72														Х	Х	С	Х		Х
30	602025	6763984	12	1	7		84																	Х	Х	Х
31	589268	6765391	12	1	7		84																		Х	Х
32	584155	6765591	12	1	7		84																		Х	Х
Total			268	23	154	24	1894	8	9	12	17	12	12	19	17	18	19	18	19	20	20	20	17	20	22	23

Note: "X" denotes sampling by a combination of trapping and cameras, "C" denotes sampling by camera only.

4.3.2 Motion-activated Cameras

Motion cameras were placed targeting the Sandhill Dunnart and other significant fauna. Cameras were placed at each trapping site and at an additional 40 locations, particularly within the rehabilitating pipeline corridor (Tables 1 and 2, Figure 1). All cameras were baited with "universal bait", a mixture of peanut butter, sardines and

oats (a known attractant for the Sandhill Dunnart). Six cameras were established west of the species current known range, aiming to determine if the Sandhill Dunnart has a wider occurrence along the EGP.

Table 2. Sandhill Dunnart Camera Monitoring Siteswithin Pipeline Rehabilitation .

Date Set	Camera	Easting	Northing	Field	Location	Date Collected	Nights
05/15/2024	cam TP01	647732	6763774	TGM	Pipeline Corridor Rehabilitation	06/25/2024	41
05/15/2024	cam B1	645921	6763208	6	Pipeline Corridor Rehabilitation	06/25/2024	41
05/15/2024	cam k8	645124	6763203	27	Pipeline Corridor Rehabilitation	06/25/2024	41
05/15/2024	cam m03	644639	6763191	27 West	Pipeline Corridor Rehabilitation	06/25/2024	41
05/15/2024	ft04	643183	6763165	19	Pipeline Corridor Rehabilitation	06/25/2024	41
05/15/2024	cam ft12 1	640153	6763486	21	Pipeline Corridor Rehabilitation	06/25/2024	41
05/15/2024	cam B4	639505	6763571	22	Pipeline Corridor Rehabilitation	06/25/2024	41
05/15/2024	cam k6	635156	6763444	14	Pipeline Corridor Rehabilitation	06/25/2024	41
05/15/2024	cam t3	629914	6762190	10 east B	Pipeline Corridor Rehabilitation	06/25/2024	41
05/15/2024	cam T2	628092	6762439	10 east	Pipeline Corridor Rehabilitation	06/25/2024	41
05/15/2024	cam A11	626762	6762636	10	Pipeline Corridor Rehabilitation	06/25/2024	41
05/15/2024	cam K1	624742	6762839	9	Pipeline Corridor Rehabilitation	06/25/2024	41
05/15/2024	cam B3	623149	6763014	15	Pipeline Corridor Rehabilitation	06/25/2024	41
05/15/2024	cam T07	621241	6763028	7	Pipeline Corridor Rehabilitation	06/25/2024	41
05/15/2024	cam b2	619439	6763108	Old camp	Pipeline Corridor Rehabilitation	06/25/2024	41
05/15/2024	cam tb04	617733	6763144	Xanth	Pipeline Corridor Rehabilitation	06/25/2024	41
05/15/2024	cam k9	614806	6763204	23	Pipeline Corridor Rehabilitation	06/25/2024	41
05/15/2024	cam A3	611867	6763345	24	Pipeline Corridor Rehabilitation	06/25/2024	41
05/15/2024	cam a1	608816	6763424	13	Pipeline Corridor Rehabilitation	06/25/2024	41
05/15/2024	cam tb1	605914	6763601	12	Pipeline Corridor Rehabilitation	06/25/2024	41
05/15/2024	cam TB02	602111	6763940	30	Pipeline Corridor Rehabilitation	06/25/2024	41
05/15/2024	cam k2	596734	6764599	Banksias	Pipeline Corridor Rehabilitation	06/25/2024	41
05/15/2024	cam t5	592775	6765022	GW nest	Pipeline Corridor Rehabilitation	06/25/2024	41
05/15/2024	cam A21	591448	6765112	20 W	Pipeline Corridor Rehabilitation	06/25/2024	41
05/15/2024	cam Ray 17	584159	6765501	32	Pipeline Corridor Rehabilitation	06/25/2024	41
05/15/2024	browning 1	578887	6765571	GW E	Pipeline Corridor Rehabilitation	06/25/2024	41
05/15/2024	cam T1	578221	6765592	GW	Pipeline Corridor Rehabilitation	06/25/2024	41
05/15/2024	cam A4	577419	6765682	West MG	Pipeline Corridor Rehabilitation	06/25/2024	41
05/15/2024	cam 3991	575062	6766089	RR	Pipeline Corridor Rehabilitation	06/25/2024	41
05/15/2024	cam bc01	555602	6767838	Cage	Pipeline Corridor Rehabilitation	06/25/2024	41
05/15/2024	ray 727127	553694	6768053	West	Pipeline Corridor Rehabilitation	06/25/2024	41
05/16/2024	ft3c	553063	6768599	W Mallee	Native Vegetation	06/25/2024	40
05/16/2024	cam ft1	545658	6770686	W Erem	Native Vegetation	06/25/2024	40
05/16/2024	cam 18668	539178	6771270	Far West	Native Vegetation	06/25/2024	40
05/16/2024	cam 5c	549269	6770389	M Erem	Native Vegetation	06/25/2024	40
05/16/2024	cam 18657	551271	6769873	W Cnr	Native Vegetation	06/25/2024	40
05/16/2024	Blan Cam	589095	6765272	31	Pipeline Corridor Rehabilitation	06/26/2024	41
05/16/2024	Cam C2	636890	6763604	14 East	Pipeline Corridor Rehabilitation	06/26/2024	41

Figure 1. Cameras installed along the pipeline corridor.

This document has been prepared for use by APA Group by Kingfisher Environmental

4.3.3 Predator Scat Analysis

Searches for predator scats (feral cat, fox, dingo) and pellets (owls, birds of prey) were conducted at known Sandhill Dunnart sites and elsewhere (aiming to locate the species at additional locations). A number of dingo, feral cat and fox scats were collected and forwarded to Scats About (Georgeanna Storey) for analysis.

4.3.4 Sandhill Dunnart Scat Analysis

Sandhill Dunnart scats were collected from trapped individuals and subsequently analysed with the Western Australian Museum to collect information on the species' diet.

Table 3. Sandhill Dunnart Monitoring Site Descriptions.

Site	Habitat	Vegetation	Burn Age (Y)	Triodia Stage
1	Dune	Marble Gum and mixed shrubs over Triodia desertorum	4.5	1
2	Dune	Mixed Eucalypt and C. preissii, over Triodia desertorum	4.5	1
4	Dune	Mallee Allocasuarina and Melaleuca over T. desertorum	4.5	2
5	Dune	Marble Gum and mixed shrubs over Triodia desertorum	4.5	2
6	Dune	Mixed shrubland over Triodia desertorum	24.5	3-5
7	Dune	Mixed shrubland over Triodia desertorum	19.5	2-3
9	Dune	Mixed Eucalypt and C. preissii over T. desertorum / T. basedowii	40+	4-5
10	Dune	Mixed shrubland over Triodia desertorum	40+	4-5
11	Dune	Mixed Eucalypt and C. preissii over Triodia desertorum	4.5	2
12	Plain	Mixed Eucalypt and C. preissii overT. desertorum / T. basedowii	40+	3-5
13	Dune	Marble Gum and mixed shrubs over T. desertorum / T. basedowii	40+	4-5
14	Plain	Regenerating Mallee and Mulga (post-fire)over T. rigidissima, T. basedowii.	4.5	1
15	Dune	Mallee and Allocasuarina over T. desertorum	40+	4-5
16	Dune	Mixed Eucalypt and C. preissii, over Triodia desertorum	40+	4-5
17	Dune	Mixed Eucalypt and C. preissii, over Triodia desertorum	14/40+	3-4-5
18	Plain	Regenerating Mallee and Mulga (post-fire)over T. desertorum / T. basedowii	14	3-3.5
19	Swale	Marble Gum, Callitris preissii and mixed shrubs over Triodia desertorum	40+	4-5
20	Plain	Marble Gum, Callitris preissii and mixed shrubs over Triodia desertorum	3	1
21	Dune	Marble Gum, Callitris preissii and mixed shrubs over Triodia desertorum	4.5	1
22	Dune	Marble Gum, Callitris preissii and mixed shrubs over Triodia desertorum	40+	5
23	Dune	Mallee and Allocasuarina over T. desertorum / T. basedowii	19.5	5
24	Plain	Marble Gum, Callitris preissii and mixed shrubs over Triodia desertorum	19.5	3-5
MP	Plain	Xanthorrhoea thorntonii and mixed Acacia over T. desertorum / T. basedowii	4	1
26	Dune	Marble Gum, Callitris preissii and mixed shrubs over Triodia desertorum	40+	3-5
27	Swale	Regenerating Mallee and Mulga (post-fire)over T. rigidissima, T. basedowii.	24.5	3-4
28	Dune	Marble Gum, Callitris preissii and mixed shrubs over Triodia desertorum	40+	3-5
29	Dune	Marble Gum, Callitris preissii and mixed shrubs over Triodia desertorum	40+	3-5
30	Rise	Mallee over T. desertorum	40+	3-5
31	Dune	Marble Gum, Callitris preissii and mixed shrubs over Triodia desertorum	40+	3-5
32	Rise	Marble Gum, Callitris preissii and mixed shrubs over Triodia desertorum	40+	3-5

4.3.5 Habitat Assessment

Sandhill Dunnart habitat was described at shelter sites (located during previous radiotracking) and compared with vegetation along the rehabilitating pipeline corridor. As the species is highly mobile and individuals have large home ranges, shelters can be located away from trap locations (up to 2 km recorded). Due to the heterogeneity of vegetation, habitat can vary throughout an individual's home range. As such, habitat considered critical to the species' survival, was considered to

comprise the vegetation necessary for shelter. When shelter sites (typically burrows under spinifex) were located, the following habitat parameters were measured:

- Dominant vegetation (upper-storey, mid-storey, and lower-storey vegetation);
- Fire history (time since last fire, calculated using aerial imagery dating to 1984 (Google Timelapse, 2016);
- Landform;
- Soil;
- Presence and abundance of logs;

At each Sandhill Dunnart shelter, vegetation was systematically measured throughout a 5 x 5 m quadrat, placed centrally over the shelter site. Measurements included:

- Spinifex (*Triodia* spp.) type, cover, size (height, width, and length), life stage, and separation;
- Percentage cover of vegetation (divided into spinifex, shrubs above 2m, shrubs 1-2m, shrubs below 1m, litter, bare ground);
- Slope;
- Spoil-type;
- Species richness; and
- Vegetation height.

4.3.6 Rehabilitation Assessment

Critical habitat for the Sandhill Dunnart is mature spinifex dominated shrublands, as these provide the range and abundance of sites required for shelter and protection from predators. The Sandhill Dunnart shelters within or under large, mature hummocks of vegetation (especially spinifex - *T. desertorum* or *T. basedowii*, and also *Lepidobolus* or *Schoenus*). A diverse shrub layer is also typically present at sites supporting the Sandhill Dunnart as a mature, structurally complex habitat provides protection from predators. Clearing for the pipeline corridor resulted in the loss of such habitat, however, since the pipeline's construction in 2015, the pipeline corridor has undergone rehabilitation (both assisted and natural). Regenerating vegetation is within the early stages of succession, and while species present include pioneer species (e.g. *Dubosia*, *Dicrastylis* spp.), some taxa indicative of Sandhill Dunnart habitat (particularly spinifex hummocks) are also present.

To assess the development of rehabilitation and its potential to provide habitat for the Sandhill Dunnart, measures of vegetation (species type, richness, density, cover) were conducted via standardised vegetation quadrats and compared to tracking and trapping data. The same habitat parameters recorded at Sandhill Dunnart Shelters (described in Section 4.3.6) were measured within a total of 39 quadrats (5 x 5m) located within the rehabilitating pipeline corridor. Habitat parameters were then compared to intact, mature vegetation, supporting the Sandhill Dunnart at shelter sites. To further investigate the usage of rehabilitation (by local fauna and its potential to provide habitat for the Sandhill Dunnart), pitfall traps were also installed

at five sites (see Table 1). Each rehabilitation site contained one line of six pitfall traps, giving a total of 30 traps within rehabilitation. Motion cameras (toting 36) were as placed within the pipeline corridor to assess the dunnarts presence within the rehabilitation (see Table 3).

4.3.7 Other Significant Fauna

To assess the suitability of rehabilitated vegetation for other fauna, pipeline vegetation measures (described in Section 4.3.7) were also compared with equivalent parameters at Brush-tailed Mulgara burrows. The same parameters measured at Sandhill Dunnart burrows, were also measured at Brush-tail Mulgara burrows, and then compared with the vegetation assessment along the rehabilitating pipeline corridor.

Known breeding sites of the Malleefowl were also visited to assess the species breeding activity in the area and searches were undertaken to verify the species presence along the Eastern Goldfields pipeline. Additionally, opportunistic searches were undertaken for the Great Desert Skink and at sites known to support the Striated Grasswren and Southern Scrub-robin and motion-activated cameras were placed at sites known to support the Brush-tailed Mulgara.

4.3.8 Effects of Fire

Wildfire has burned a total of eleven Sandhill Dunnart Monitoring Sites since the commencement of monitoring in 2015. Five survey sites were burned during the summers of 2016/2017 (Site 10 and 10B) and 2017/2018 (4, 5 and 11). A further five sites were burned during the summer of 2018/2019 (Sites 1, 2, 21, 22, 14) and one site (20) burned during the summer of 2019/2020. To investigate the effects of fire on fauna (including the Sandhill Dunnart), six recently burned survey sites (Sites 10, 10B, 1, 2, 14, 21) were trapped and an additional site (20) was surveyed by camera, to sample recently burnt habitats. All sites were sampled prior to fire and then subsequently sampled to determine the differences in the fauna assemblage present. To assess habitat suitability (post-fire) and measure the regrowth of native vegetation, 10 randomly selected Mulga (*Acacia aneura* or *Acacia caesaneura*), Spinifex (*Triodia desertorum*), Bertya (*Bertya dimerostigma*) and Aluta (*Aluta maisonneuvei*) plants in the early stages of regrowth (post fire) were measured (height, width and location recorded, Appendix C).

5. SURVEY RESULTS

5.1 Vertebrate Fauna Summary

In total, 126 vertebrate taxa were recorded during the field survey, comprising two frog, 35 reptiles, 68 birds, 15 native mammal and six introduced mammal species (see Appendix A, B, D and E). Forty eight species were trapped at the permanent monitoring sites and 20 taxa were recorded via motion-activated camera. Several species of conservation significance were recorded (Table 4). The Sandhill Dunnart was trapped at 10 monitoring sites and on camera elsewhere on the pipeline corridor (Tables 4 and 5). The species local range was extended west by 7km, recorded near Hope Campbell Lake for the first time (549269E, 6770389N). The Striated Grasswrenand Brush-tailed Mulgara were also recorded on the pipeline corridor (Table 4). Several additional locally significant species were recorded opportunistically or during transit during the survey period (Table 4).

Table 4. Conservation Significant Fauna recorded during the survey (UTM Zone 51).

Common Name	Status	Easting	Northing	Comments
Sandhill Dunnart	Endangered	602055	6763977	Trapped site 30; 4/05/24
Sandhill Dunnart	Endangered	640210	6763626	Trapped at Site 21; 6/05/24
Sandhill Dunnart	Endangered	647606	6763479	Trapped at Site 29; 7/05/24
Sandhill Dunnart	Endangered	646064	6763167	Recorded on camera, Site 6
Sandhill Dunnart	Endangered	645921	6763208	Recorded on camera Site 6 Pipeline
Sandhill Dunnart	Endangered	624742	6762839	Recorded on camera Site 9 Pipeline
Sandhill Dunnart	Endangered	626762	6762636	Recorded on camera Site 10 Pipeline
Sandhill Dunnart	Endangered	605914	6763601	Recorded on camera Site 12 Pipeline
Sandhill Dunnart	Endangered	608816	6763424	Recorded on camera Site 13 Pipeline
Sandhill Dunnart	Endangered	640153	6763486	Recorded on camera Site 21 Pipeline
Sandhill Dunnart	Endangered	639505	6763571	Recorded on camera Site 22 Pipeline
Sandhill Dunnart	Endangered	602111	6763940	Recorded on camera Site 30 Pipeline
Sandhill Dunnart	Endangered	578887	6765571	Recorded on camera Site GW east Pipeline
Sandhill Dunnart	Endangered	578221	6765592	Recorded on camera Site GW Pipeline
Sandhill Dunnart	Endangered	619439	6763108	Recorded on camera Site old camp Pipeline
Sandhill Dunnart	Endangered	551271	6769873	Recorded on camera, west corner
Sandhill Dunnart	Endangered	549269	6770389	Recorded on camera, mallee, Eremophila
Malleefowl	Vulnerable	622853	6762102	Old mound
Malleefowl	Vulnerable	623255	6762868	Fresh tracks
Brush-tailed Mulgara	P4	626912	6762791	Trapped at site 10
Brush-tailed Mulgara	P4	625090	6762712	Trapped at site 9
Brush-tailed Mulgara	P4	621441	6762905	Trapped at Site 7
Brush-tailed Mulgara	P4	635156	6763444	Camera Site 14
Brush-tailed Mulgara	P4	636890	6763604	Camera Site 14 East
Brush-tailed Mulgara	P4	626762	6762636	Cameras Site 10
Brush-tailed Mulgara	P4	605914	6763601	Camera Site 12
Brush-tailed Mulgara	P4	602111	6763940	Camera Site 30
Brush-tailed Mulgara	P4	553694	6768053	Camera West Tree
Brush-tailed Mulgara	P4	553063	6768599	Camera Mallee
Brush-tailed Mulgara	P4	621260	6763035	Burrow
Striated Grasswren	P4	592577	6765036	Two birds seen on pipeline corridor
Striated Grasswren	P4	592834	6765019	Two birds seen on pipeline corridor
Striated Grasswren	P4	592907	6765013	Two birds seen on pipeline corridor
Kultarr	Local significance	621353	6762925	Trapped at Site 7
Scarlet-chested Parrot	Local significance	643200	6763207	1, Site 19
Scarlet-chested Parrot	Local significance	540090	6772417	Hope Campbell lakes
Banded Stilt	Local significance	534529	6771547	Hope Campbell lakes
Gilberts Whistler	Local significance	628140	6733882	One observed south of pipeline corridor

5.2 Trapping Results

A total of 48 species were recorded from 461 captures (35 reptile, 12 mammal and two frog species, Table 5). Additional species were recorded opportunistically, or via motion cameras (Appendix B).

Table 5. Species Trapped During the Survey Period from each Monitoring Site.

Table 5. Sp				r e		_					_																	
Species	1	2	6	7	9	10	12	13	14	15	19	21	22	23	24	25	27	28	29	30	31	32	10B	10R	13R	23R	7R	Total
Antechinomys laniger				1																								1
Brachyurophis fasciolatus		1																				1						2
Ctenophorus clayi	1																											1
Ctenophorus fordi					1																							1
Ctenophorus isolepis									2	1														1	1			5
Ctenophorus nuchalis	1	4							1															1				7
Ctenotus brooksi	2	2			2																1		3					10
Ctenotus calurus					1			1							2					1	1							6
Ctenotus dux	1			2	6						1			3				1			2							16
Ctenotus kutjupa						5				8					2						1						2	18
Ctenotus pantherinus				1	1		2																					4
Ctenotus quattaurodecimlineatus		1		5	3	2	4	1		1	1	1		1	2			2			1	1						26
Ctenotus schomburgkii				1		3	5			1				1		1				3	2							17
Cyclodomorphus melanops																			1									1
Dasycercus blythi				2	3	1																						6
Delma butleri				1	1													1										3
Delma nasuta	1				Ī												1											1
Delma petersoni				1			1										_											2
Diporiphora reginae														1														1
Eremiascincus richardsoni																							3					3
Lerista bipes	3	2	1	1									1				2	2					1					13
Lialis burtonis		_	-	_				1					-				_	_					_					1
Liopholis inornata		1						_								1												2
Lucasium dameum	3	2			1			1		3						_							1	1		1		13
Moloch horridus	-				_			2		,													_	_	1	-		3
Morethia butleri																				1					_			1
Mus musculus																1				-	1							2
Neobatrachus kunapalari									1							-												1
Neobatrachus sutor				16					_																		39	55
Nephrurus laevissimis	4	5		10							2							2									33	13
Ningaui ridei	4	,		10	1		7	1		6		5	2	1	1		5	1	3	2	2	3						50
				10			,	10		0		,		2	1		3	1	3			3						13
Ningaui yvonnae Notomys alexis	1	3						10	3			1			1					1	4						1	14
•	1	3							3			1								1	4							+
Parasuta monachus	1	1									1						1									1		4
Pogona minor Proablepharus reginae		1		2							1						1		1				1					4
Pseudechis australis										1									1				1					1
				_			1	_	3	2					1			_			_	1			1	1	_	26
Pseudomys hermannsburgensis				2			1	3	-		_				1			3			3	1			1	1	5	1
Rhynchoedura ornata									2		1											_						3
Simoselaps bertholdi													_									1						1
Sminthopsis dolichura	1				_	2	4	1	1	3		1	2	1	1			_		4	2	4	_		_		_	27
Sminthopsis hirtipes	5				3	1	5	4	5	2	2		1	1	2	-		1	1	5	3	3	2	1	1		2	50
Sminthopsis ooldea	-	<u> </u>	<u> </u>	<u> </u>	Ļ	2	_	1				_				1			_	_		<u> </u>			<u> </u>		₩	4
Sminthopsis psammophila	1	<u> </u>		4	2		2	1		1		2							1	4		4	-		1		ऻ—	22
Sminthopsis youngsoni	1	<u> </u>	-		-											-							3				₩	3
Suta monachus	1								1																		—	1
Varanus eremius	1	<u> </u>	<u> </u>	1	<u> </u>											<u> </u>											—	1
Varanus tristis																						1					<u> </u>	1
Total	23	22	1	50	25	16	31	27	19	29	8	10	6	11	12	4	9	13	7	21	23	19	14	4	5	3	49	461

Each mammal captured was individually marked using a hair clipping code (small areas of fur were temporarily clipped above the base of the tail). Therefore, the number of individual mammals trapped at each survey site was recorded (Table 6). Overall, 189 individuals were recorded from 218 captures, with 29 recaptures.

Table 6. Mammals recorded from survey sites.

Species	1	2	7	9	10	12		14	15	19	21	22	23	24	25	27	28	29	30	31	32	10B	13R	23R	7R	Total
Antechinomys laniger	_	_	1																	-						1
Antechinomys laniger																									-	
Dasycercus blythi			1	3	1																					5
Mus musculus															1					1						2
Ningaui ridei			6	1		6	1		4		3	2	1	1		5	1	3	2	2	3					41
Ningaui yvonnae							6						2	1												9
Notomys alexis	1	3						2			1								1	4					1	13
Pseudomys hermannsburgensis			2			1	3	3	1					1			3			3	1		1	1	3	23
Sminthopsis dolichura	1				2	3	1	1	3		1	2	1	1					4	2	4					26
Sminthopsis hirtipes	4			3	1	5	3	3	2	2		1	1	2			1	1	4	2	3	2	1		1	42
Sminthopsis ooldea					2		1								1											4
Sminthopsis psammophila			3	2		2	1		1		2							1	4		3		1			20
Sminthopsis youngsoni																						3				3
Total	6	3	13	9	6	17	16	9	11	2	7	5	5	6	2	5	5	5	15	14	14	5	3	1	5	189

5.3 Breeding and Shelter Observations

Breeding was observed to be widespread within the rodents, with pregnant females of *Notomys alexis* and *Pseudomys hermannsburgensis* recorded.

5.4 Sandhill Dunnart

The Sandhill Dunnart was trapped during the field survey from10 sites (Tables 5 and 6). All sites comprised mature vegetation that had not experience wildfire for many years. Additional records came from the camera monitoring sites including where the species has been regularly recorded (e.g. Site 7), from sites where the species is rarely recorded (e.g. Site 6) and new locations (see Table 4). Most sites supporting the Sandhill Dunnart are situated within large habitat patches (extending over hundreds or thousands of hectares) however smaller habitat patches (as small as 11 ha) appear to be able to support the species where surrounding areas have regenerated post fire (allowing for the movement of individuals).

Figure 2. Sandhill Dunnart recorded during the survey.

Figure 3. Sandhill Dunnart identified on camera, note the large head, ears, tail.

Six cameras were established west of the species known range, aiming to determine if the species has a wider occurrence along the EGP. Suitable habitat in this area has been previously highlighted (Riley et al. 2020) however had not been extensively surveyed. Two cameras recorded the species in this area, extending the known range of the Sandhill Dunnart by approximately 7km. A summary of all Sandhill Dunnarts captured along the Eastern Goldfields Pipeline is presented in Figure 4.

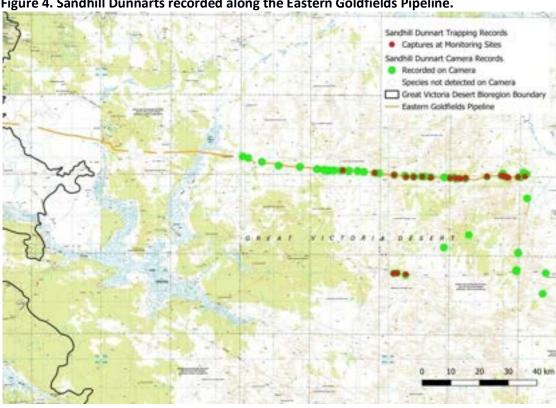


Figure 4. Sandhill Dunnarts recorded along the Eastern Goldfields Pipeline.

The Sandhill Dunnart has been recorded across approximately 100 km of the Eastern Goldfields Pipeline, in the vicinity of Tropicana Gold Mine (Figure 5). It has been trapped at 17 monitoring sites along the pipeline and at three sites to the south. Additional motion camera records have come from the pipeline corridor (18 spatially independent sites) and also at a few scattered sites to the south. The species has not been recorded to the north of the pipeline, and as such, the pipeline corridor lies at the species north-eastern range extent.

The Sandhill Dunnart has been recorded within long-unburnt Eucalypt woodland, mallee and mature spinifex (typically *T. desertorum* or *T. basedowii*, less commonly *T. rigidissima*) with a variable and complex shrub layer and often in association with a sand dune. Vegetation supporting the Sandhill Dunnart is summarised in Tables 9 - 11. Spinifex cover ranges from 11% to 37% and with spinifex hummocks typically of Stage 5 (although ranging from stages 2-5 at some sites) and 30 – 50 mm high. In total, 88 taxa have been recorded at sites occupied by the Sandhill dunnart. Most sites supporting the Sandhill Dunnart are long unburnt and include:

- Spinifex (*Triodia desertorum* and *Triodia basedowii*);
- Eucalypts (E. gongylocarpa, E. youngiana, E. leptopoda, E. trivalva, E. glomerosa, E. concinna, E. ceratocorys);
- Variable and fire-sensitive shrub-layer indicative of late seral stages including G. juncifolia, G. didymobotrya, C. preissii, H. francisiana, A. acutivalvis, A. spinosissima, B. dimerostigma, A. maisonneuvei, T. biseriata, L. fastigiatum, several Acacias, C. gilesi, S. acuminatum, X. thorntonii, P. coriacea, D.grahamii.
- Densely vegetated ground cover: L. deserti, L. leucocephala, L. chambersii.

Occupied sites support a diverse and dense vegetation that develops in the absence of fire. Late seral stages of vegetation include large, densely packed spinifex (or other ground cover) hummocks, thickets of shrubs and an abundance of litter and logs. As such, the Sandhill Dunnart inhabits long-unburned vegetation that provides the range and abundance of sites required for protection and shelter. Most sites supporting the Sandhill Dunnart along the Eastern Goldfields Pipeline comprise mature vegetation (Tables 9 - 11). Despite ongoing monitoring, the Sandhill Dunnart has not been recorded at previously occupied sites after a fire event (e.g. Sites 1, 2, 10B, 5, 20 and 11, no longer support the species after experiencing high intensity fire). The youngest age of vegetation supporting the species is 14 years post-fire.

Table 7. Sandhill Dunnart habitat characteristics.

Site	Burnt	Burn Age	Triodia Stage	Shrub Cover	Dominant Shrubs
1	Jan 2019	4	1	0 - 5 %	Recently burnt, A pannosa, C cotinifolius
22	No	40+	5 (1-5)	20 %	Acacia, Aluta maisonneuvei, Thryptomene
21	Jan 2019	4	1	0 - 5 %	Recently burnt
14	Jan 2019	4	1	0 - 5 %	Recently burnt
10	Dec 2016	40+ / 7	5 (1-5)	19 %	Allocasuarina, Acacia
10B	Dec 2016	7	1 or 2	2 %	Recently burnt, Bertya
9	No	40+	5 (1-5)	19 %	A spinosissima, G. didymobotrya, C. gilesi
15	No	40+	5 (3-5)	19 %	Acacia, Aluta maisonneuvei, G. didymobotrya
7	Dec 2001	22	3 (1-5)	23 %	Acacia, A spinosissima, L. fastigiatum
23	Dec 2001	22 / 40+	5 (3-5)	NA	Hakea, Grevillea, mixed Acacia
24	Dec 2001	22	4 (3-5)	NA	Hakea francisiana, Grevillea juncifolia
13	No 40+ 5 (3-5)		5 (3-5)	20 %	Acacia species, <i>Grevillea</i> species, Hakea, Bertya

This document has been prepared for use by APA Group by Kingfisher Environmental $\,$

Site	Burnt	Burn Age	Triodia Stage	Shrub Cover	Dominant Shrubs
12	No	40+	5 (3-5)	20 %	Acacia species, <i>Grevillea</i> species, Hakea, Bertya
20	No	40+	5 (3-5)	NA	Hakea, Grevillea, mixed Acacia
5	Dec 2016	7	1-2	18 %	Hakea, Grevillea, mixed Acacia
11	Dec 2016	7	1-2	NA	Hakea francisiana, Grevillea juncifolia
4	Dec 2016	40+ / 7	1-2	NA	H. francisiana, G. juncifolia, M. hamata
6	Jan 1997	26	4 (3-5)	NA	Hakea, Grevillea, mixed Acacia
27	Jan 1997	26	4 (3-5)	NA	Hakea, Grevillea, mixed Acacia

Table 8. Triodia Measurements at monitoring sites (Percentage Cover listed under %).

Site	Triodia Species	%	Height	Width	Separation	Stage	Dominant	Canopy
1	T. desertorum	37	38	54	8	3-5	5	-
14	T. rigidissima, T. basedowii	21	41	83	36	2-4	3	65
9	T. desertorum	11	33	42	34	1-5	5	40
10	T. desertorum	22	37	57	13	2-5	5	-
15	T. desertorum (dune), T. basedowii (swale)	22	37	58	13	3-5	5	41
7	T. desertorum (dune), T. basedowii (swale)	29	35	51	10	1-5	3	-
5	T. desertorum	25	34	50	12	1-5	2	-
11	T. desertorum (dune), T. basedowii (swale)	16	34	55	11	1-5	5	-
4	T. desertorum	20	35	30	16	3-5	5	-

Table 9. Dominant Vegetation at Sandhill Dunnart Sites.

Dominant Vegetation	1	1R	21	22	14	10	10B	9	15	7	23	24	13	12	20	5	11	4	6
Triodia desertorum	Х	Х	Х	Χ	Х	Х	Χ	Χ	Χ	Х	Χ	Х	Χ	Χ	Χ	Χ	Χ	Χ	Х
Triodia basedowii	Х	Х		Х	Х				Х	Х	Х		Х	Х	Χ		Χ		
Triodia rigidissima					Х														
Lepidobolus deserti			Х	Х			Х	Х	Х	Х	Х							Χ	
Schoenus hexandrus				Х		Х		Х		Х					Х				
Eucalyptus gongylocarpa	Х	Х	Х	Х		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Χ
Eucalyptus youngiana		Х		Х		Х	Х		Х	Х	Х	Х	Х		Х	Х		Χ	Χ
Eucalyptus leptopoda					Х	Х			Х	Х									
Eucalyptus trivalva													Х				Х		
Eucalyptus glomerosa	Х		Х	Х					Х										
Eucalyptus concinna								Х	Х				Х	Х	Х				
Eucalyptus ceratocorys						Х		Х			Х		Х		Х				
Eucalyptus oleosa			Х										Χ						
Eucalyptus horistes									Х										
Callitris preissii	Х		Х	Х	Х	Х	Χ	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х
Grevillea juncifolia	Х		Х				Х		Х	Х	Х	Х	Х	Х		Х	Х		
Grevillea didymobotrya			Х	Х		Х	Х	Х	Х	Х	Х		Х					Х	
Grevillea nematophylla								Х						Х					
Grevillea sarissa																			
Grevillea secunda											Х								
Grevillea stenobotrya				Х				Х			Х		Х	Х					
Hakea francisiana				Х		Х		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		
Calothamnus gilesi								Х	Х										
Allocasuarina acutivalvis									Х		Х				Х				
Allocasuarina spinosissima						Х		Х	Х	Х	Х								
Bertya dimerostigma	Х	Х		Х		Х	Х	Х	Х	Х			Х	Х	Х	Х	Х	Х	
Aluta maisonneuvei	Х		Х	Х	Х	Х	Х	Х	Х	Х			Х					Х	
Thryptomene biseriata	Х	Х	Х	Х	Х	Х		Х	Х	Х	Х		Х			Х		Χ	
Baeckia sp. GVD			Х	Х	Х	Х			Х	Х								Х	
Homalocalyx thryptomenoides				Х	Х	Х		Х	Х	Х	Х				Х				
Enekbatus eremaeus																			
Cryptandra distigma					Х				Х					Х	Х				
Micromyrtus flaviflora			Х		Х														
Micromyrtus stenocalyx			Х	Х				Χ	Х							Х		Х	Χ
Lomandra leucocephala	Х	Х		Х		Х	Х	Χ	Х	Х	Х		Х						
Anthotroche pannosa	Х	Х	Х				Х	Χ	Х	Х			Χ						
Microcorys macredieana			Х	Х							Х								
Conospermum toddii			Х	Х				Х											

Dominant Vegetation	1	1R	21	22	14	10	10B	9	15	7	23	24	13	12	20	5	11	4	6
Caesia rigidifolia			Х					Х											
Acacia acanthoclada			Х	Х					Х	Х	Х				Х				
Acacia burkittii														Х					
Acacia colletioides	Х				Х														
Acacia desertorum var. desertorum						Х		Х		Х	Х				Х				
Acacia eremophila									Х	Х	Х								
Acacia gilesiana															Х				
Acacia helmsiana			Х	Х									Х	Х	Х	Х			
Acacia jamesiana		Х	Х	Х		Х			Х	Х	Х				Х				
Acacia ligulata	Х	Х						Х	Х	Х	Х		Х	Х					
Acacia prainii		Х	Х	Х					Х	Х			Х		Х				
Acacia rigens						Х				Х									
Acacia aneura complex	Х	Х	Х		Х	Х		Х	Х										
Acacia ramulosa	Х		Х			Х			Х										
Acacia sibina			Х			Х	Х								Х				
Santalum acuminatum				Х				Χ	Х						Х				
Santalum murrayanum														Χ					
Xanthorrhoea thorntonii						Х	Х		Х		Х		Х			Х			
Persoonia coriacea						Х	Х	Х	Х	Х	Х		Х		Х			Х	
Leptospermum fastigiatum				Х		Х	Х	Х	Х	Х						Х		Х	
Leptosema chambersii				Х				Х		Х	Х		Х	Х	Х				
Daviesia grahamii		Х	Х			Х	Х	Х	Х										
Daviesia purpurascens / ulicifolia					Х		Х	Х		Х	Х			Х					
Melaleuca hamata										Х								Х	
Melaleuca leiocarpa										Х									
Dodonaea viscosa	Х	Х	Х																
Eremophila platythamnos	Х	Х	Х	Х															
Pityrodia loricata		Х	Х				Х		Х	Х	Х								
Westringia rigida	Х								Х		Х		Х	Х					
Chrysocephalum puteale			Х	Х			Х		Х	Х	Х		Х						
Halgonia erecta							Х	Х					Х	Х					
Senna pleurocarpa				Х										Х					
Seringia elliptica					Х														
Caustis deserti							Х			Х	Х								
Gyrostemon ramulosus		Х						Х			Х								
Brachychiton gregorii	Х										Х				Х				
Gompholobium gompholobioides								Х											
Olearia arida	Х			Х															
Dampiera eriantha						Х		Χ	Х	Х									
Alyxia buxifolia													Х	Χ					
Goodenia xanthosperma								Х	Х										
Brunonia australis	Х																		
Stylidium limbatum								Χ											
Keraudrenia velutina					Х		Х												
Dubosia hopwoodii							Х												
Scaevola basedowii		Х					Х	Χ											
Dianella revoluta									Х						Х				
Newcastelia hexarrhena											Х								
Codonocarpus cotinifolius		Х					Х												
Solanum lasiophyllum	 	Х					Х												

5.5 Motion-activated Camera results

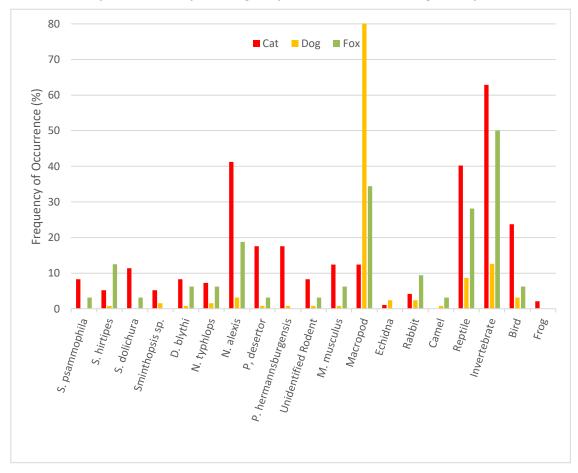
The Sandhill Dunnart was recorded on camera at 12 locations within the pipeline corridor(see Figures 2 and 3, Tables 4, 12). A wide range of additional fauna was also recorded on camera, with the Spinifex Hopping Mouse (*Notomys alexis*), Western Grey Kangaroo (*Macropus fuliginosus*) and Sandy Inland Mouse (*Pseudomys hermannsburgensis*) also widely recorded (Table 12, Figure 5).

Table 10. Fauna recorded on motion camera along the pipeline corridor.

	Sites		Sites
Birds	Recorded	Native Mammals	Recorded
Grey Teal	1	Dasycercus blythi	7
Australian Owlet-nightjar	1	Sminthopsis species	23
Little Button-quail	1	Sminthopsis hirtipes	4
Striated Grasswren	1	Sminthopsis psammophila	12
Crow species	15	Notomys alexis	31
Magpie	1	Pseudomys hermannsburgensis	19
Pied Butcherbird	1	Rodent species	1
		Macropus fuliginosus	4
Reptiles		Introduced Taxa	
Ctenotus helenae	1	Felis catus	6
		Vulpes Vulpes	14
		Canis familiaris	25
		Camelus dromedaries	1

Figure 5. Examples of fauna recorded on motion camera (Brush-tailed Mulgara).

10 °C / 50 °F 05/24/2024 03:48:18 AM K600


5.6 Introduced Mammals

Six introduced mammals were recorded during the survey (summarised in Table 13). The Dingo, Camel, Fox, Feral Cat and House Mouse have been widely recorded in the local Tropicana area. The Rabbit is rarely observed; however, tracks and scats are common along paleodrainges. The Feral Cat, Camel, Fox, and Dingo were widely recorded across the survey area during the survey period (Table 12).

5.7 Predator Scat Analysis

A total of 265 predator scats from the Dingo (127), Feral Cat (97), Fox (32), Goanna (Varanus sp., 7) and Raptors (Birds of Prey, 2) were collected and analysed (Scats About; Storey 2008, see Appendix D). Most scats contained some native mammal content and also reptile, bird and invertebrate remains (see Appendix D). The remains of 13 mammal species were identified, including three dunnarts (S. psammophila, S. dolichura and S. hirtipes), the Brush-tailed Mulgara, Southern Marsupial Mole, Spinifex Hopping Mouse, Sandy Inland Mouse, Desert Mouse and the three Macropods occurring in the area (M. rufus, M. robustus and M.fuliginosus). Macropods were a major dietary component of the Dingo, with over 80% of Dingo scats containing Kangaroo remains. A diverse assemblage was recorded from the scats of the Feral Cat and Fox which exhibited a varied diet (Figure 6). Major mammalian prey items of the Feral Cat included the Spinifex Hopping-mouse, which were present in over one third of all scats analysed. Reptile and invertebrate remains were also present in high proportions in both Feral Cat and Fox scats. A wide range of native species were recorded from Feral Cat scats (the Feral Cat exhibiting the broadest diet and consuming the most mammals). This included the Sandhill Dunnart, Brush-tailed Mulgara, and the Southern Marsupial Mole, which were recorded in much lower proportions.

Figure 6. Scat Analysis - prey species of Feral Cats, Foxes and Dingos at Tropicana. Predation is expressed as the percentage of predator scats containing each species.

5.8 Other Species of Conservation Significance

Several additional species of conservation significance have been recorded along the Eastern Goldfields Pipeline. The Malleefowl (EPBC Vulnerable) and Brush-tailed Mulgara (DBCA Priority 4) were recorded during the current survey, while the Great Desert Skink (EPBC Vulnerable), Striated Grasswren (DBCA Priority 4) and locally significance taxa have been located on preceding surveys. They are discussed below.

Great Desert Skink

The Great Desert Skink (Liopholis kintorei, listed as Vulnerable under the EPBC Act) has a poorly known and declining distribution (TSSC, 2016). Altered fire regimes and the introduction of the Fox and Feral Cat are key factors that have led to the species' decline, as well as habitat decay from feral herbivores (McAlpin 2001). Historically the species has been recorded from widely scattered localities across central Australia, including several records from the margins of the Great Victoria Desert (one record from 40 km east of Laverton by Pianka in 1967, DCBA, 2018; and also records from Warburton and near Baker Lake, DBCA, 2020). However, its range appears to have significantly contracted with surveys failing to detect the species in former strongholds of the Gibson and Great Victoria Deserts (McAlpin, 2001; Pearson et al., 2001). In Western Australia, the species is currently known from the Tanami Desert, an area of the Gibson Desert north of Warburton, the Kiwirrkurra and Ngaanyatjarra Indigenous Protected Areas and Karlamilyi National Park (TSSC, 2016). Due to the species fragmented range, populations from three broad regions are genetically distinct and are recommended to be treated as separate management units (Dennison et al., 2015). The Great Desert Skink is a culturally important species to traditional Aboriginal groups (Pearson et al., 2001), and this combined with its threatened status makes its conservation a high priority for land managers across arid and central Australia.

The Great Desert Skink was initially recorded in the Tropicana area in 2019. An active burrow was located approximately 10 km south of the pipeline, from within long unburnt Mulga (*Acacia aneura* complex) shrubland on a sandy, lateritic gravel slope. Due to the presence of suitable habitat, the species may potentially occur along the Eastern Goldfields Pipeline. Target surveys did not locate further populations during 2024. The Great Desert Skink was noted along the Yamarna Gas Pipeline, which extends from the EGP, during surveys conducted in 2024. Active burrows were recorded adjacent to the pipeline corridor (recorded from 51J, 575129m E, 6888363m S and 574927m E, 6888510m S) revealing the species presence in the area.

Malleefowl

The Malleefowl is listed as Vulnerable under the EPBC Act. The species is sparsely distributed across the Great Victoria Desert and occurs in the region at the arid extreme of its range. As Malleefowl are typically restricted to areas of dense vegetation, the species generally occurs in the Great Victoria Desert within areas of dense Mulga shrubland. Due to the effects of fire, suitable habitat is extremely uncommon and highly fragmented. The Malleefowl was recorded during the survey with fresh tracks recorded near the pipeline corridor (Table 4).

The Malleefowl is highly vulnerable to fire and large areas of habitat (the dense Mulga shrublands on which the species lies on for breeding) were burned during January 2019. Known breeding sites are regionally very uncommon and therefore of high conservation significance. Four main areas supporting breeding Malleefowl have been recorded along the pipeline, and in the vicinity of Tropicana Gold Mine (Figure7). Active mounds recorded adjacent to the pipeline reveal the species persistence in the local area.

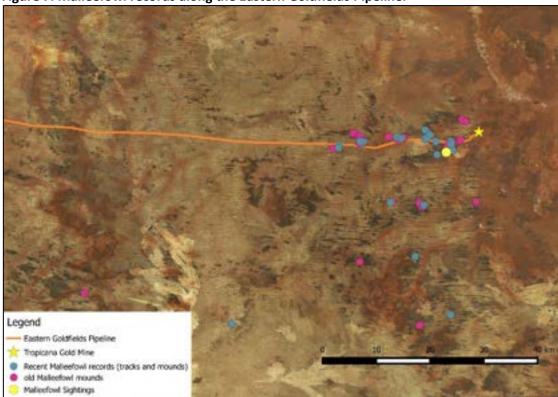


Figure 7. Malleefowl records along the Eastern Goldfields Pipeline.

Brush-tailed Mulgara

The Brush-tailed Mulgara is listed as Priority 4 by DBCA and has a scattered occurrence across the GVD. The species was extensively recorded during the 2024 survey with a number of active burrows located. Seven cameras established along the pipeline corridor within rehabilitating vegetation detected the species (Table 4).

Striated Grasswren

The Striated Grasswren is listed as Priority 4 by DBCA and has a scattered occurrence across the GVD with few regional records. The species favours long unburnt spinifex grasslands, typically with a taller shrub layer. Due to the effects of fire, suitable habitat is uncommon and highly fragmented. There are few records near Tropicana with the species recorded from eight locations along the pipeline (see Figure 8). However, wide-scale fires over summer 2016 / 2017 and 2018 / 2019 have removed vegetation from at least three sites known to previously support the species. The species was recorded during 2024 (Table 4).

Figure 8. Striated Grasswren records along the Eastern Goldfields Pipeline.

Southern Scrub-robin

The Southern Scrub-robin occurs in the semi-arid woodlands and mallee of southwestern Australia, with an isolated population in the Great Victoria Desert (including along the Eastern Goldfields Pipeline, Turpin and Johnstone 2017). Similar to the Sandhill Dunnart, the species is vulnerable to a number of threatening process including predation by the Feral Cat and fire (Woinarski *et al.*, 2017). The species has a low reproductive rate (a clutch of one egg – characteristic of arid, ground nesting birds, Holyoak 2001) and movements and dispersal appear limited (Brooker 2001; Johnstone and Storr 2004). The species is restricted to very few, scattered areas of dense Mulga shrubland with a dense understorey of *Aluta* shrubs, including along the Eastern Goldfields Pipeline. Occupied sites were re-surveyed and several were confirmed to support the same individuals recorded during previous visits (see Figure 9). However, wildfires since 2015 have removed large areas of habitat, resulting in population decline.

Legend

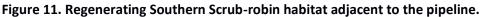

Eastern GoldFelds Pipeline
Tropicana Gold Mine
Southern Scrub-robin slightings

Figure 9. Southern Scrub-robin records along the Eastern Goldfields Pipeline.

Habitat regeneration (post fire) has been recorded at some previously occupied sites. Two large areas of Mulga adjacent to the pipeline were burnt during January 2017, and while regeneration has occurred since then, the height and cover of critical vegetation (Acacia and Aluta species) has not recovered to a stage suitable to provide habitat (see Figures 10 and 11). At these sites vegetation has not yet reached maturity and therefore a stage suitable to support the Southern Scrub-robin.

Figure 10. Regenerating Southern Scrub-robin habitat adjacent to the pipeline.

This document has been prepared for use by APA Group by Kingfisher Environmental

Rufous Treecreeper

The Rufous Treecreeper has declined throughout the woodlands of the Wheatbelt and Goldfields (Saunders and Ingram 1995) and is sparsely distributed throughout the Great Victoria Desert. As the Rufous Treecreeper requires mature hollow bearing trees and fallen logs for nesting and foraging, it is threatened by repeated, high intensity fires. The Rufous Treecreeper has been recorded from five locations along the Eastern Goldfields pipeline (Figure 12), although one site has since been burnt.

Figure 12. Rufous Treecreeper records along the Eastern Goldfields Pipeline.

Scarlet-chested Parrot

The Scarlet-chested Parrot (Neophema splendida) has declined due to extensive habitat clearance and degradation (Garnett and Crowley 2000). It is sparsely distributed throughout the Great Victoria Desert and occurs at several sites along the Eastern Goldfields Pipeline (Appendix B).

Southern Marsupial Mole

The Southern Marsupial Mole is listed as Priority 4 by DBCA. The species inhabits the desert sand dune fields of inland Australia, extending from the Great Victoria Desert to the southern Northern Territory and Simpson Desert. Southern Marsupial Moles spend almost their entire like underground, and as they rarely comes to the surface, can be difficult to locate. Individuals have been recorded at several locations along the Eastern Goldfields Pipeline, from the remains of predator scats (see Section 5.8, Sites 1, 2, 7, 9, 14) and the species distinctive tracks and tunnels have also been recorded (Figure 13, Table 4).

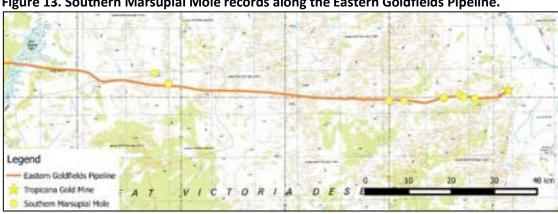
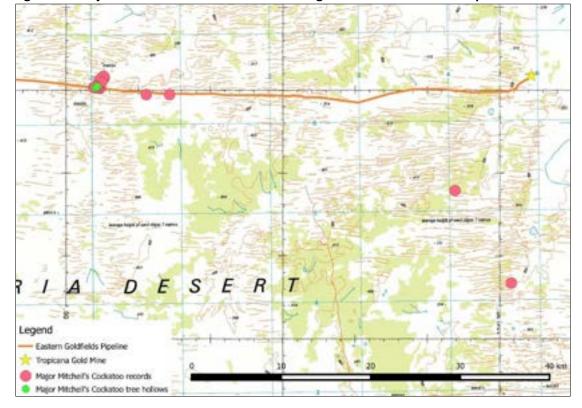


Figure 13. Southern Marsupial Mole records along the Eastern Goldfields Pipeline.


This document has been prepared for use by APA Group by Kingfisher Environmental

Major Mitchell's Cockatoo

The Major Mitchell's Cockatoo was listed under the Wildlife Conservation Act 1950. Due to the loss of breeding sites (mature Eucalypt trees) it has declined throughout the Murchison and Goldfields and has a highly scattered distribution across the Great Victoria Desert. A large breeding flock of up to 23 birds was recorded feeding, roosting, and foraging along the pipeline corridor, during September 2018. Three roost sites and two breeding sites (tree hollows) were located in mature Marble Gums (Eucalyptus gongylocarpa). Forging was observed on Callitris trees and amongst Leptosema chambersii. Breeding and roosting was scattered within Marble Gum Woodland and was observed amongst mature stands of Marble Gums and Callitris, where foraging remains were abundant below the many Callitris trees present (Figures14 and 15). Since 2018 only a handful of birds have been recorded.

Figure 15. Major Mitchell's Cockatoo records along the Eastern Goldfields Pipeline.

<u>Long-tailed Dunnart (Sminthopsis longicaudata)</u>

The Long-tailed Dunnart is listed as Priority 4 by DBCA as it is known from few scattered localities across arid western and central Australia. In Western Australia the species has been recorded from few widely separated populations, extending from the Pilbara south to the Murchison and Great Victoria Desert (DBCA, 2023). The Long-tailed Dunnart is a specialist of rugged, rocky landscapes, inhabiting rocky ridges, hills and breakaways (Pavey 2006) resulting in its highly fragmented range. There are few records for the species in the Great Victoria Desert. Throughout its range, the Long-tailed Dunnart occurs in rugged rocky landscapes that support a low open woodland or shrubland of Acacias (particularly Mulga, Pavey 2006).

The Long-tailed Dunnart was recorded adjacent to the pipeline corridor, from the slopes of the Irwin Hills (Figure 16). Due to its restricted occurrence and the minimal habitat present, it is likely to occur only in this area along the pipeline corridor within the Great Victoria Desert. Other small areas of suitable habitat are intersected by the pipeline corridor near the margins of Lake Carey within the Murchison region.

O 13 °C / 55 °F 03/09/2023 04:43:34 AM A210

6. DISCUSSION

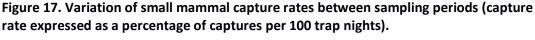
Fauna Assemblage

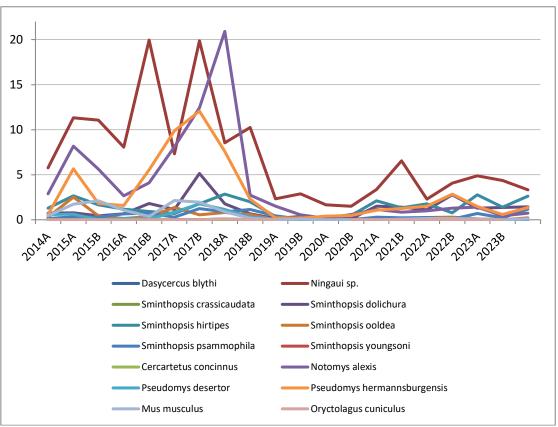
A similar fauna assemblage has been recorded across all surveys conducted to date. The mammal assemblage recorded has remained consistent, although capture rates have fluctuated (Table 15). Ningauis and Hopping Mice have typically been a high proportion of the mammal captures, however a reduced capture rate has been observed for most dunnarts. The Sandhill Dunnart has been captured at a comparatively low rate (0-5% of all captures), as has the Western Pygmy Possum and Brush-tailed Mulgara (<1%). A comparable capture rate and assemblage was observed within the pipeline trench during construction of the Eastern Goldfields pipeline (Table 15). However during pipeline construction, a reduced number of individuals were trapped, due to the effective management of the pipeline trench.

Table 11. Comparison of mammal captures.

		•									Surve										EGP
Species	2014	2015	2015	2016	2016	2017	2017	2018	2018	2019	2019	2020	2020	2021	2021	2022	2022	2023	2023	2024	Trench
	2014	Α	В	Α	В	Α	В	Α	В	Α	В	Α	В	Α	В	Α	В	Α	В	Α	TTCTICIT
Antechinomys laniger	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Dasycercus blythi	2	1	0	0	0	0	0	1	0	0	1	1	1	1	0	1	0	0	0	6	1
Ningaui sp.	40	72	73	59	219	95	112	96	108	32	48	20	13	45	99	35	53	56	80	63	30
Ningaui ridei	-	-	-	-	-	-	-	-	-	27	43	13	11	35	64	23	49	47	73	50	-
Ningaui yvonnae	-	-	-	-	-	-	-	-	-	5	5	7	2	10	35	12	4	9	7	13	-
S. crassicaudata	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
S. dolichura	5	5	3	5	20	15	29	20	7	2	6	3	1	20	21	17	36	15	25	27	24
S. hirtipes	9	17	11	9	10	9	10	32	21	5	1	3	4	28	20	27	10	32	26	50	16
S. ooldea	2	16	3	1	4	18	3	9	6	0	0	1	0	2	1	4	4	1	0	4	0
S. psammophila	1	2	2	5	8	4	7	10	12	6	1	2	0	4	3	4	1	8	4	22	2
S. youngsoni	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	3	0
C. concinnus	0	0	0	0	1	0	0	0	0	0	4	0	0	0	0	0	0	0	0	0	0
Notomys alexis	20	52	37	20	45	106	70	234	29	21	9	2	5	15	13	15	17	16	8	14	7
Pseudomys desertor	4	4	0	1	1	11	10	13	3	1	0	0	0	0	0	0	1	0	0	0	1
P. hermannsburgensis	4	36	12	12	61	129	68	85	24	3	3	5	3	14	19	23	37	17	11	26	4
Mus musculus	3	11	14	8	4	38	11	13	2	0	1	0	0	0	1	2	2	1	0	2	0
Total	87	215	155	122	373	425	320	501	212	70	74	57	27	129	277	163	161	203	154	218	85

The species totals recorded during monitoring is comparable (see Table 16). Overall, two frog, 77 reptile, 118 bird and 25 native mammal species have been recorded with approximately half to two thirds of the assemblage recorded on any one survey.


Table 12. Fauna assemblage recorded across all surveys.


				· C · · · · · · ·	Table 121 Tauria assertibiage recorded across an surveys.																
Таха		Survey															Total EGP				
	2014	2015			2016	_					2019	2020		_	2021	2022		2023		_	EGP
		а	b	а	b	а	b	а	b	а	b	a	b	а	b	a	b	a	b	a	
Frogs	0	1	0	1	0	1	0	1	0	0	0	0	0	0	0	1	0	2	0	2	2
Reptiles	34	33	35	50	50	50	46	47	39	18	43	11	37	25	27	28	50	46	50	35	77
Birds	70	59	66	62	61	67	72	73	70	62	58	52	32	44	46	52	58	60	59	68	120
Native Mammals	13	14	11	12	13	14	19	13	15	16	12	17	11	16	13	13	12	19	13	15	26
Exotic Mammals	6	6	6	6	6	6	6	6	6	5	6	6	6	5	6	6	6	6	5	6	6
Total	123	113	118	131	130	138	143	140	130	101	119	86	86	90	92	100	126	133	127	126	228

This document has been prepared for use by APA Group by Kingfisher Environmental

Capture Variation

The capture rate of small mammals has varied within and between sampling periods – attributable to season, temperature, rainfall, and the fire history of the sites sampled. While dunnart capture rates have been relatively consistent between sampling periods, similar to studies elsewhere in the arid zone (e.g. Dickman *et al.*, 1999; How and Cooper, 2002), rodent capture rates have exhibited large fluctuations, reflecting variations in rainfall (see Figures 17 and 18). Ningaui capture rates have also fluctuated dramatically and have peaked during spring (Figures 17 and 18). The captures of the Sandhill Dunnart, while low, have exhibited small fluctuations around 1 animal per 100 trap nights (see Figures 17 to 20).

Dickman *et al.* (1999) showed rodent numbers to increase after significant rainfall events ("boom" phases) and drop to near indetectable levels during drought ("bust" phases), reflecting the dramatic resource-pulsing in Australian desert environments. Similarly high numbers of rodents have been recorded at Tropicana following rainfall events, with very low numbers recorded during drought. Dasyurid captures have also fluctuated with Ningaui captures varying dramatically between sampling periods. The Sandhill Dunnart has shown a reduced fluctuation in number, however, was trapped at its highest rate during October 2017, and lowest during 2020 (Figure 19), following a similar trend in rainfall (Appendix E). Captures of all mammals were low during 2019 and 2020, reflecting a prolonged period of reduced rainfall and the widespread effects of fire (Fick and Hijmans 2017, Appendix E). Since then mammal captures have remained low due to the reduced rainfall experienced, with capture

rates during 2023 at some of the lowest rates since monitoring commenced. Captures were not elevated during 2024 despite the preceding rainfall in March, revealing the time lag between rainfall and abundance.

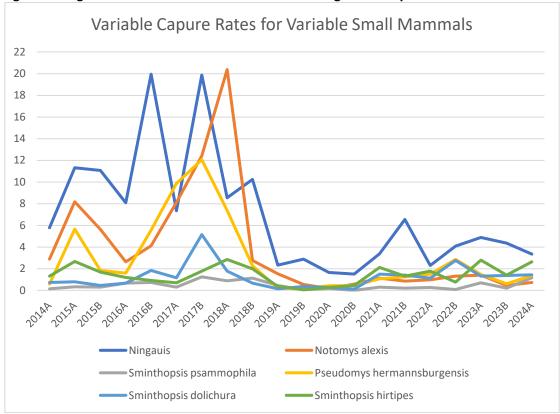


Figure 18. Significant variations of rodents and the Ningaui at Tropicana.

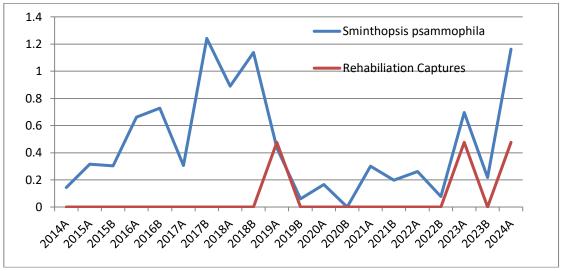
The removal of habitat by fire has also influenced Sandhill Dunnart presence and capture rates. Widespread fire during 2019 removed large areas of Sandhill Dunnart habitat along the EGP, rendering significant areas unsuitable for the species for many years. As such, detection rates of the Sandhill Dunnart during 2019 and 2020 were low. Slightly elevated captures since 2021 are likely the result of regenerating vegetation following large wildfires enhancing habitat connectivity and allowing for the movement of individuals. Three monitoring sites appear to have been recently re-colonised by the Sandhill Dunnart attributed to post-fire regeneration. The consistent number of records is indicative of a stable population despite the dry conditions of preceding years resulting in a reduced capture rate.

The Sandhill Dunnarts usage of rehabilitation appears to remain reduced, with capture rates within the rehabilitated corridor lower than those observed overall (Figure 20). This is attributed to reduced vegetation cover within the regenerating pipeline corridor. Twelve cameras (12/40 = 30%) detected the species amongst vegetation regrowing since the corridors initial clearance (in 2015). However, as half (6/12 = 50%) of the cameras installed, detected the Sandhill Dunnart on only one occasion, much of the species presence within rehabilitation is likely to be foraging or during transit, as the young spinifex present is unlikely to provide shelter habitat. This is likely to change over time as the spinifex matures to a size suitable to support the species.

Sminthopsis psammophila

Sminthopsis youngsoni

Sminthopsis crassicaudata


Sminthopsis crassicaudata

Sminthopsis crassicaudata

Sminthopsis ooldea

Figure 19. Sandhill Dunnart capture rate (percentage of captures per 100 trap nights) across all sampling periods at Tropicana.

Figure 20. Sandhill Dunnart capture rate (percentage of captures per 100 trap nights) within rehabilitation.

Sandhill Dunnart Survey Techniques

The Sandhill Dunnart has been recorded using a range of techniques. It has been detected at 41 monitoring sites (18 by trapping and all 43 by camera) and also by camera at additional locations elsewhere (away from the EGP). It has most effectively been detected using motion-activated camera, recording Sandhill Dunnarts from a range of habitats. Sandhill Dunnarts have been most effectively trapped using deep-pitfall traps although one record of the species comes from an Elliott trap. Additionally, the Sandhill Dunnart has been recorded from three feral cat scats and one fox scat (from Monitoring Sites 12, 14 and 15). While difficult to detect, a combination of trapping, the use of motion cameras and predator scat analysis readily detects the Sandhill Dunnart. Motion-activated cameras are considered the optimal technique to initially detect the species and to assist in

situating trapping sites. The trapping effort employed here is sufficient to record the species. A trapping effort of seven nights per site appears sufficient as individuals have been trapped on survey nights one to seven of the trapping program. Overall, more than half of the species captures (51%) have occurred on survey nights 2 and 3.

Sandhill Dunnart Range

In Western Australia, the Sandhill Dunnart is known from a small area of the southwestern Great Victoria Desert. The species has been considered difficult to study as capture rates are low, its numbers fluctuate widely and populations appear transitory (Pearson et al., 2021). Consequently, the Sandhill Dunnart's distribution is poorly known and confounded by the loss of several populations by fire. Population loss attributable to fire has been recorded along the Eastern Goldfields Pipeline and in the southern GVD (such as Queen Victoria Spring Nature Reserve, Appendix C). In the Tropicana area, the Sandhill Dunnart has been recorded from 40 spatially independent areas (areas at least 2km apart, see Figure 2). This includes from 25 sites along the Eastern Goldfields Pipeline corridor and from additional areas (including along the Plumridge Lakes Access Track, approximately 40km south of the pipeline). These records cover approximately half of the species known range, with previous (pre-fire) records from the vicinity of Queen Victoria Spring and Mulga Rockhole (Figure 29). The Sandhill Dunnart is known to occur across approximately 200 km of the south-western Great Victoria Desert, with the population along the Eastern Goldfields Pipeline occurring at the northern extreme of the species range (Figure 21).

Habitat modelling conducted by J. Riley suggests the species may occur across a wider area, while still restricted to the south-western parts of the Great Victoria Desert (Figure 21). It also indicates the species may also occur in additional areas along the Eastern Goldfields Pipeline, particularly to the west of those areas currently sampled (see Figure 21). While potentially occurring over a wider area, recent surveys targeting the species failed to record the Sandhill Dunnart across much of the Great Victoria Desert. An extensive camera survey across much of the region failed to detect the species north of Tropicana, and as a result, suggests the species has a highly restricted and fragmented range in the southern Great Victoria Desert (J. Turpin, pers. obs.). This highlights the importance of the Eastern Goldfields Pipeline population (which covers a major proportion of the species known range) and the significance of the monitoring programme (occurring at the species arid range extreme). The Sandhill Dunnart Monitoring along the Eastern Goldfields pipeline is the only field study of the species in Western Australia, and the only known location in the state where the species is regularly recorded. As a result, the information collected during monitoring has provided invaluable insights into the Sandhill Dunnart's range and ecology and has been used to update the latest volume of Mammals of Australia (see Van Dyck and Strahan, 2008; Pearson et al., 2024).

Monitoring west of the species current known range (along the EGP between Lake Carey and Hope Campell Lake) during 2023 and 2024 did not detect any additional populations, although extended the species local range 7 km west. Suitable habitat in this area has been previously highlighted (Riley et al. 2020) however had not been

surveyed since a large wildfire removed significant areas of habitat in 2019. While the Sandhill Dunnart was not recorded the area is proposed to be surveyed further during 2024.

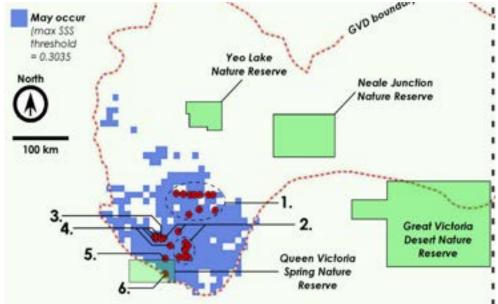


Figure 21. Sandhill Dunnart distribution in the Great Victoria Desert.

Note: Sandhill Dunnart records come from the current KEC monitoring program near Tropicana (1), Gaikhorst and Lambert (2), Vimy (3), Hart and Kitchener (4) Pearson (5) and DPaW (6).

Sandhill Dunnart Habitat

The Sandhill Dunnart favours long-unburnt vegetation, which provides the range and abundance of sites required for shelter and the protection from predation. The species is commonly associated with *Triodia desertorum*, *E. gongylocarpa*, *Callitris preissii*, *Hakea francisiana and Grevillea juncifolia*. The presence of long unburnt spinifex (particularly *Triodia desertorum*) appears an important habitat requirement as does an intact shrub layer. Shelter sites are most commonly associated with mature, long-unburnt spinifex (Stage 5, *Triodia desertorum* or Stage 4 *Triodia basedowii and T. rigidissima*, see Riley 2020) although the species has been recorded to shelter within *Lepidobolus deserti*, *Schoenus hexandrus* and Eucalypt logs. Much of the rehabilitating pipeline corridor is comprised of spinifex stages 1 – 3.

Post-clearance Habitat Rehabilitation

The Sandhill Dunnarts usage of rehabilitation appears to remain reduced, though captures and cameras reveal the species presence (Figure 27). This is likely to result from the reduced vegetation cover within the regenerating pipeline corridor. As vegetation cover increases over time capture rates are likely to resemble those observed elsewhere. Twelve cameras (12/40 = 30%) detected the species amongst vegetation regrowing since the corridors initial clearance (in 2015). However, as half (6/12 = 50%) of the cameras installed, detected the Sandhill Dunnart on only one occasion, much of the species presence within rehabilitation is likely to be foraging or during transit, as the young spinifex present is unlikely to provide shelter habitat. This is likely to change over time as the spinifex matures to a size suitable to support the species.

The Sandhill Dunnart utilises an extensive number of shelters throughout a home range (often switching on a daily basis), which enables the species to forage over a comparatively large area and reduce predation pressure. As such the species requires extensive areas of critical shelter habitat (mature, large spinifex) throughout a home range. While the Sandhill Dunnart was known from only four locations within 100km of the EGP prior to construction, suitable sheltering habitat was extensive along the pipeline corridor (evidenced by the presence of shelters recorded adjacent to the construction footprint).

Vegetation along the Eastern Goldfields Pipeline is in the process of rehabilitating and is colonising the previously cleared pipeline corridor. The corridor was cleared during April 2015 and now contains a scattered occurrence of vegetation, including species associated with Sandhill Dunnart shelters (*Triodia desertorum*, *Eucalyptus gongylocarpa*, *Eucalyptus trivalva*, *Hakea francisiana*, *Aluta maisonneuvei* and *Baeckia* sp. GVD). However, vegetation cover has not yet reached the stage of maturity or size that provides shelter for the Sandhill Dunnart. As such, the species has not been recorded to shelter within the pipeline corridor (it has utilised the corridor and can move across it to adjacent areas). The Sandhill Dunnart has been recorded foraging within and moving through open landscapes to reach shelter in adjacent vegetated areas (Riley 2020).

<u>Fire</u>

Fire is a major threat to the Sandhill Dunnart's survival in the Great Victoria Desert. Destructive summer fires remove the mature vegetation required for protection and shelter. Repeat fire events inhibit the development of habitat. The current fire regime, arising from the cessation of traditional burning practises, is ongoing and as such, large areas of the Great Victoria Desert are burnt each summer. Since the commencement of monitoring, fires have rendered large areas unsuitable for the Sandhill Dunnart and have resulted in the loss of several known populations, including at monitoring sites known to formerly support the species (Table 17, Figure 22). While some sites appear to support stable populations (23), sites effected by fire (18) do not support the species (Table 17).

More than one third of the Sandhill Dunnart Monitoring sites have been transformed by fire since their establishment (18/52 sites, Table 17, Figures 22 - 24). Four sites were burned in 2016, 13 sites were burned in January 2019 and one in December 2019 (Table 17). The Sandhill Dunnart is unlikely to remain at these sites as the youngest age of vegetation known to support the species is 14 years. As such, it is likely to take many years before habitat matures to a stage (size and structure) suitable to support the Sandhill Dunnart. Due to the removal of habitat by fire, and subsequent population loss, combined with predation pressure, the Sandhill Dunnart is likely to be declining along the Eastern Goldfields Pipeline. However, habitat recovery (post-fire) is ongoing (Figure 24) and the species can survive in small habitat patches along the pipeline corridor (patches as small as approximately 20 hectares can support the species, Table 17). Minimal fire activity since 2019 has enabled the (minor) regeneration of habitat, which has likely contributed to elevated detection

during 2023. Figures 25 and 26 display all Sandhill Dunnart monitoring sites, including those impacted by fire.

Figure 22. Formerly occupied Sandhill Dunnart habitat (Site 10B).

Figure 23. Regenerating Sandhill Dunnart habitat (Site 10B).

Figure 24. Regenerating Sandhill Dunnart habitat (Site 10B).

Site Ea							,	3	sanur	יט וווו	ınnar	ts Ke	cord	ed						SHD	Patch Size	Fire	SHD Presence	Pipeline	Age
\rightarrow	asting Northin g	201 5	2015	2016	2016	2017	2017	2018	2018	2019	2019	2020	2020	2021	2021	2022	2022	2023	2023	Record	(ha)	Burn Date			
1 64	4123 6763205																			Yes	Burnt	Jan 2019	Unlikely	Yes	5
	4181 6763078														Х					Yes	Burnt	Jan 2019	Transit	Yes	5
3 6	4080 6763212																				Burnt	Jan 2019	Unlikely	Yes	5
4 60	0603 6729480			Χ				Χ												Yes	Burnt	Dec 2017	Unlikely		6
5 60	0183 6729764	Χ																		Yes	Burnt	Dec 2017	Unlikely		6
6 64	4610 6763194									Χ							Х	Χ	Х	Yes	5000+	Jan 1997	Yes	Yes	27
	2144 6762911	Х		Χ	Х	Х	Х		Х	Χ	Χ	Χ		Х	Х	Х	Χ	Χ	Х	Yes	3400	Dec 2001	Yes	Yes	22
	2187 6762857																				3400	Dec 2001	Unknown	Yes	22
_	2500 6762719			Х				Х	Х	Χ	Χ				Х	Х				Yes	3400	Intact	Yes	Yes	40+
	2681 6762870		Х	X	Х	Х	Х	Х	Х	Χ				Х				Х		Yes	3400	Part Burnt	Yes	Yes	40+ / 2.5
	2681 6763357 0303 6729852		V	Х	v															Yes	Burnt	Dec 2016	Unlikely	Yes	7 6
_	0613 6763323		Х		X	Х	Х		Х							Х		Х		Yes Yes	Burnt 2000	Dec 2017 Intact	Unlikely Yes	Yes	40+
	0882 6763296	Х		Х	^	X	^	Х	X	Х						^		^		Yes	2000	Intact	Yes	Yes	40+
	3431 6763442		Х	X	Х		Х	X	^	^										Yes	Burnt	Jan 2019	Unlikely	Yes	5
	2342 6762898			Х		Х	Х	Х	Х	Х		Х		Х	Х	Х	Х	Х		Yes	3400	Intact	Yes	Yes	40+
	3981 6764494			Х	Х															Yes	Burnt	Jan 2019	Unlikely		5
17 63	1921 6738684				Х															Yes	Burnt	Jan 2019	Unlikely		5
	2803 6743144					Х														Yes	Burnt	Jan 2019	Unlikely		5
19 64	4313 6763279																				<10	Intact	Unknown	Yes	40+
20 59	9529 6764675				Χ	Χ	Χ		Χ											Yes	Burnt	Dec 2019	Unlikely	Yes	4
21 64	4028 6763563					Х	Х	Х										Х	Χ	Yes	Burnt	Jan 2019	Unlikely	Yes	5
22 63	3935 6763759					Х	Х							Х				Χ	Χ	Yes	145	Intact	Yes	Yes	40+
23 63	1474 6763088							Χ	Χ	Χ										Yes	5000+	Dec 2001	Yes	Yes	22
	1183 6763382			Χ					Х					Х						Yes	5000+	Dec 2001	Yes	Yes	22
	3705 6763604																				Burnt	Jan 2019	Unlikely	Yes	5
	4694 6763758																				5000+	Intact	Unknown	Yes	40+
	4520 6763227										Х								Х	Yes	5000+	Jan 1997	Yes	Yes	27
_	4688 6763245																	V		V	5000+	Intact	Unknown	Yes	40+
	4752 6763513 0202 676398																	Х		Yes	5000+ 11	intact	Yes	Yes Yes	40+ 40+
_	8926 676539																			Yes Yes	75	intact Intact	Yes Yes	Yes	40+
	8415 676559																		Х	Yes	5000+	Intact	Yes	Yes	40+
_	6064 6767542																			103	NA	intact	Unknown	Yes	40+
	5598 6768513																	Х		Yes	80	Intact	Yes	Yes	,,,,
	6199 6767686																				NA	Intact	Unknown	Yes	40+
C3a 57	7509 6766012									Χ										Yes	725	Intact	Yes	Yes	40+
C3b 57	7745 6765759																Х		Х	Yes	5000+	Intact	Yes	Yes	40+
C4 57	7825 6765629													Х	Χ	Х	Х		Х	Yes	5000+	2001	Yes	Yes	21
C5 57	7876 6765525																Х		Х	Yes	5000+	2001	Yes	Yes	21
	7943 6765525																	Χ	Х	Yes	5000+	2001	Yes	Yes	21
	8345 6765487													Χ		Х		Х	Х	Yes	5000+	intact	Yes	Yes	40+
	8415 6765590													Х		Х		Х		Yes	5000+	intact	Yes	Yes	40+
	8632 6765490						Х							,,		,,		X		Yes	25	intact	Yes	Yes	40+
	8927 6765393				-				<u> </u>	Χ	X	Χ	X	X	.,	X	Х	X		Yes	135	intact	Yes	Yes	40+
	9147 6765041										Х		Х	Х	Х	Х		Х		Yes	18	intact	Yes	Yes	40+
	9521 6764697				-									v	v		v	v		Voc	<10 47	Intact	Unlikely	Yes	40+ 40+
_	9669 6764563 0039 6764246													Х	Х		Х	Х		Yes	NA	intact	Ves	Yes Yes	40+
	0201 6763983													Х		Х	Х			Yes	16	Intact intact	Unknown Yes	Yes	40+
	1254 6763421													^		^	X			Yes	5000+	Dec 2001	Yes	Yes	22
_	1754 6763110															Х				Yes	5000+	2001	Yes	Yes	21
_	1945 6763139															X		Х	Х	Yes		Intact	Yes	Yes	40+
	2917 6762311																				5000+	intact	Likely	Yes	40+
	4768 6763751														Х			Х	Х	Yes	5000+	intact	Likely	Yes	40+
	6176 6767208						Х													Yes	NA	Unknown	Unknown	Yes	5
B2 56	6922 6766788						Х													Yes	NA	Jan 2019	Unlikely	Yes	5
B3 58	8099 6765565						Х													Yes	NA	Jan 2019	Unlikely	Yes	5
B4 58	8620 6765344						Χ													Yes	NA	Jan 2019	Unlikely	Yes	5
	52	5	3	10	8	9	13	8	9	9	5	3	2	12	8	12	10	18	13	41		27	28	44	

Table 17: Sandhill Dunnart Monitoring Sites, influence of fire and age since burn.

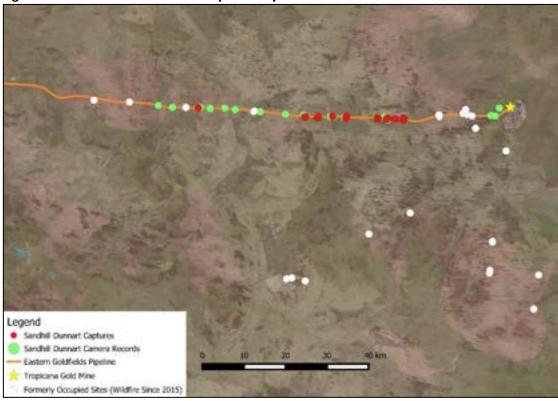
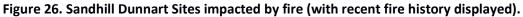
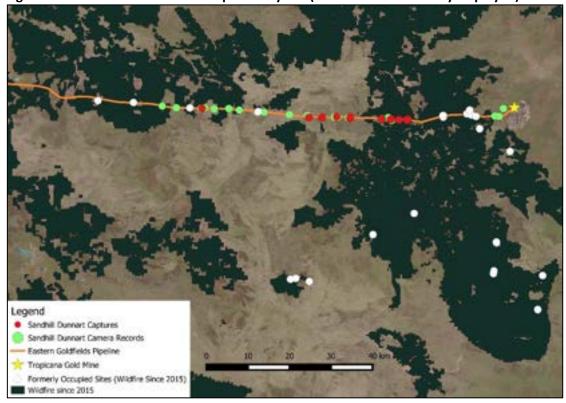




Figure 25. Sandhill Dunnart Sites impacted by fire.

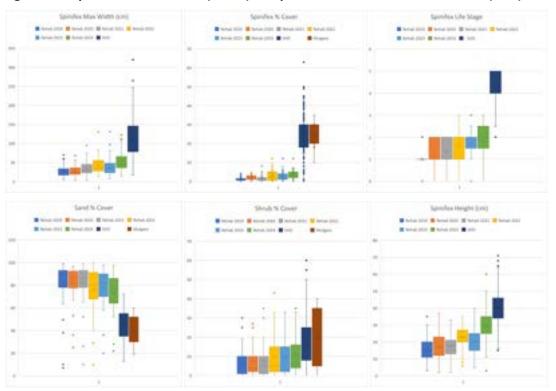
Eastern Goldfields Pipeline Influences

Sandhill Dunnart Monitoring assesses the significance of any impacts associated with the Eastern Goldfields Pipeline upon the local Sandhill Dunnart population. Significant Impact Guidelines on Matters of National Environmental Significance (e.g. species listed under the EPBC Act such as the Sandhill Dunnart) have been prepared (DOTE, 2013), providing a framework for the assessment of impact.

These include:

- Will the action lead to a long-term decrease in the size of a population?
- Will the action reduce the area of occupancy of the species?
- Will the action fragment an existing population?
- Will the action adversely affect habitat critical to the survival of a species?
- Will the action disrupt the breeding cycle of a population?
- Will the action modify, destroy, remove, isolate, or decrease the availability or quality of habitat to the extent that the species is likely to decline?
- Will the action result in introducing invasive species that are harmful to a critically endangered or endangered species becoming established in the endangered or critically endangered species' habitat?
- Will the action introduce disease that may cause the species to decline? and
- Will the action interfere with the recovery of the species?

The EPA's Environmental Factor Guidelines (EPA 2016) also list the major impacts to terrestrial fauna and these are considered with regard to the Sandhill Dunnart. Impacts are associated with the loss, fragmentation and modification of habitat, the interruption to movement and foraging, increased predation pressure, degradation of habitat (due to weed invasion or grazing by introduced herbivores) and altered fire regimes. Sandhill Dunnart monitoring aims to address both the Significant Impact Guidelines on Matters of National Significance and the EPA's Environmental Factor Guidelines. These are summarised and discussed in Table 19.


To assess long-term habitat change, the rehabilitation of habitat along the pipeline corridor was also assessed. Critical habitat for the Sandhill Dunnart is mature spinifex dominated shrublands, as these provide the range and abundance of sites required for shelter and protection from predators. Shelters are associated with or under large, mature hummocks of vegetation (typically spinifex but also Lepidobolus or Schoenus) and a diverse, structurally complex shrubland provides protection from predators. Clearing for the pipeline corridor resulted in the loss of such habitat, however, since the pipeline's construction in 2015, the pipeline corridor has undergone rehabilitation (both assisted and natural). To assess the development of rehabilitation and its potential to provide habitat for the Sandhill Dunnart, measures of vegetation (see Section 4.3.7) were conducted via standardised vegetation quadrats and compared to intact, mature vegetation, supporting the Sandhill Dunnart at shelter sites (N = 213). Thirty nine quadrats (5 x 5m) located within the rehabilitating pipeline corridor were assessed for habitat suitability. These were also compared to equivalent parameters recorded at Brush-tailed Mulgara burrows (N = 11).

Vegetation within the rehabilitating pipeline corridor is maturing and several species associated with Sandhill Dunnart habitat are now present. *Triodia* (*desertorum* or *basedowii*) spinifex hummocks (an important component of shelter habitat) are also present and over successive years are increasing in size and cover (Figure 27). The measures of vegetation (Figures 27 and 28, Table 18) reveal a positive trend (as vegetation grows) as habitat rehabilitates towards that suitable to support the Sandhill Dunnart (Figure 27). All major indices of habitat (vegetation cover and measures of spinifex such as life stage and size) reveal differences between intact habitat and the vegetation observed within the pipeline corridor (Table 18, Figure 27). Indicative of some localised change, measures of Triodia and shrub cover at some sites are close to replicating Sandhill Dunnart habitat, however, vegetation parameters overall are still reduced. Spinifex hummocks have not (yet) reached a size suitable for shelter, and remain sparsely distributed overall. Other taxa providing habitat (such as *Lepidobolus*) remain immature or absent.

Table 13. T-test comparisons of vegetation at intact habitat and the pipeline corridor.

Vegetation Index	Spinifex Stage	Spinifex Cover	Shrub Cover	Ground Cover	Spinifex Height	Spinifex maximum width
T Test: P Value SHD	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
T Test: P Value Mulgara	< 0.05	< 0.05	< 0.05	< 0.05		
Comment	Significant Difference	Significant Difference	Significant Difference	Significant Difference	Significant Difference	Significant Difference

Figure 27. Pipeline rehabilitation (rehab) compared to Sandhill Dunnart habitat (SHD).

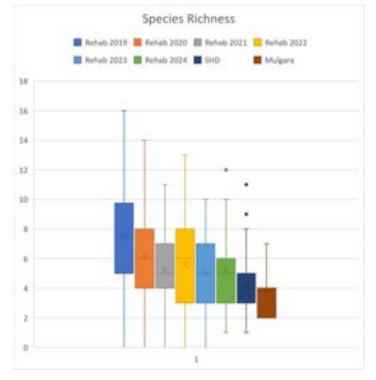


Figure 28. Species richness (rehab) compared to Sandhill Dunnart (SHD) habitat.

While slowly recovering, vegetation within the rehabilitating pipeline corridor has undergone some change (Figures 27 and 28). Species richness has declined along the corridor as disturbance specialists, which originally colonised the corridor (post disturbance), are gradually making way for the established vegetation dominant across Sandhill Dunnart habitat. Figures 27 and 28 show the gradual succession of vegetation towards replicating that utilised by the Sandhill Dunnart and Brush-tailed Mulgara (species richness, spinifex size, stage, and cover). The Brush-tailed Mulgara favours open areas with reduced shrub cover (and therefore reduced species richness, Figure 28), however rehabilitation currently also remains unsuitable for the species.

The Feral Cat is known to predate a wide range of native species across Australia (Woolley *et al.*, 2019), which in the GVD includes the Sandhill Dunnart and Brushtailed Mulgara. Predation by Feral Cats has been implicated in the extinction of many mammal species, and in the ongoing decline of many extant species (Woolley *et al.*, 2019). A recent analysis of cat predation across Australia (Woolley *et al.*, 2019) has shown that native species occurring in lower rainfall areas (arid areas such as the GVD), that do not use rocky habitat refuges, and have a body mass in the critical weight range of 35 – 5500 g are the most likely to be killed by cats. The Sandhill Dunnart falls into these three categories and is ranked by Woolley (*et al.* 2019) within the top five Australian species at most risk of predation by Feral Cats. The coexistence of the Feral Cat, European Red Fox, and the Sandhill Dunnart at sites in the GVD is cause for concern.

Feral predators are known to favour open and disturbed areas, and small, ground foraging mammals are particularly vulnerable to predation in open habitats (Dickman, 1996). The Eastern Goldfields Pipeline provides an open corridor, enabling

the movement and predation of feral animals, particularly the European Red Fox and Feral Cat. Both species have been recorded to move extensively along the pipeline corridor and were widely recorded during the survey period. Numerous tracks and scats were recorded, and both species were detected on several cameras. While the associated effects of predation along the pipeline corridor are uncertain, Sandhill Dunnart (and Brush-tailed Mulgara) remains have been recorded in Feral Cat scats and during radiotracking. However, capture rates at intact Sandhill Dunnart sites have been consistent. The Sandhill Dunnart persists at most known sites surveyed along the pipeline corridor, where mature vegetation remains intact and can provide shelter and protection from predation.

The Sandhill Dunnart's occurrence along the Eastern Goldfields Pipeline is likely to be influenced by the complex interactions of predation and fire. While the species can persist in fragmented landscapes, there is the potential for elevated predation pressure, as mesopredators have been shown to preferentially hunt in open and recently burnt areas (McGregor *et al.*, 2015). However, the corridor is regenerating and as predation is linked to vegetation cover and maturity, predation pressure is likely to reduce over time as vegetation matures along the pipeline corridor.

Table 14. EPBC Impact Assessment Criteria.

Aspect	Comment	Outcome	Recommendation
Lead to a long-	Key indicators of population status include presence, abundance, movement, home range size and	Population decrease	Significant impact unlikely.
term decrease	shape (Section 3.1). Survey results suggest stability within intact vegetation; however, population loss	attributable to habitat	The results of monitoring
in the size of a	has been recorded, and attributable to habitat loss and the complex interactions of predation and	loss associated with fire	indicate that population
population.	fire. Population loss is likely to have arisen during the initial clearing of the pipeline (from direct	and the initial pipeline	numbers along the EGP
	mortality and the loss of habitat). Since the commencement of monitoring, habitat loss has occurred	clearance. Species persists	fluctuate due to rainfall
	in association with the widespread effects of wildfire. In intact habitat, local populations persist in	at most intact sites,	and fire, but can recover
	most areas subsequent to the construction (and operation) of the pipeline corridor. However, as a	suggesting population	after disturbance. Local
	result of fire removing the habitat required for shelter and protection, the species appears to have	stability. This suggests the	populations have been
	been removed from nine monitoring sites.	construction of the	recorded to persist after
	Mature vegetation including hummocks of spinifex (and other similar sized plants such as	pipeline has not lead to a	construction of the
	Lepidobolus), provide critical habitat as these contain the range and abundance of sites the Sandhill	long-term decrease in the	pipeline.
	Dunnart requires for shelter. Clearing for the pipeline corridor resulted in the loss of such habitat,	I	
	however, since the pipeline's construction in 2015, the pipeline corridor has undergone rehabilitation		
	(both assisted and natural). While vegetation cover has increased (since clearing), it lacks the size and		
	structure to provide shelter habitat for the Sandhill Dunnart. Spinifex (<i>Triodia desertorum</i> and <i>Triodia</i>		
	basedowii) is in the early stages of regeneration, cover is sparse and other species providing habitat	Dunnart.	
	(such as Lepidobolus) are largely absent.). As the vegetation along the cleared pipeline matures, it is		
	likely to provide habitat for the Sandhill Dunnart and offset that lost during the initial pipeline		
	construction.		
			Significant impact unlikely.
	(distribution, IUCN, 2001). AOO estimates are difficult to determine for arid zone populations that are	Reduction in area of	The known AOO has
1	necessarily fluid and dynamic to track intermittent resources, affected by a myriad of immeasurable	occupancy attributable to	increased substantially
the species.	factors (due to their rarity and remote locations) and are prone to "boom and bust". The Sandhill	fire (absent from 11	since monitoring begun.
	Dunnart is threatened as its distribution has contracted by over 50 % (since it was first documented	formerly occupied sites).	
	by Europeans) and continues to contract, there are few existing populations known, populations are	Given the known area of	
	frequently destroyed by wildfires and its local persistence is uncertain (Riley 2020). The Sandhill	occupancy has increased	
	Dunnart is known to occur across approximately 200 km of the south-western Great Victoria Desert,	since monitoring	
	with the population along the Eastern Goldfields Pipeline occurring at its northern extreme. Along	commenced, the	
	the Eastern Goldfields Pipeline the species has been recorded from 23 spatially independent sites,	construction of the	
	resulting in the expansion of the species known distribution. However, monitoring has identified	pipeline has not reduced	
	significant habitat loss from fire (Figures 30 - 33) A reduction in area of occupancy is attributable to	the area of occupancy of	

Aspect	Comment	Outcome	Recommendation
	fire rather than the effects of the pipeline.	the species.	
Fragment an existing	The Sandhill Dunnart can persist in fragmented landscapes and the species has been recorded foraging and sheltering on both sides of the cleared pipeline corridor. Although, movements and	•	Significant impact unlikely. Radiotracking results and
population into	home ranges associated with the pipeline have varied, tracked dunnarts have had home ranges		captures in pitfall traps
	overlapping the pipeline, traversing the cleared pipeline corridor during nightly foraging and to locate		established within the
populations.	shelter sites. Movement across the pipeline corridor suggests that foraging and home range are not		pipeline corridor reveal
	interrupted. Population fragmentation is unlikely, however, there is potential for increased predation in small, isolated areas of habitat.		movement across the
	III stilali, isolateu areas oi riabitat.		pipeline corridor post- disturbance.
Adversely	Critical habitat for the Sandhill Dunnart is mature spinifex dominated shrublands, as these provide	Habitat loss recorded.	Significant impact unlikely.
	the range and abundance of sites required for shelter and protection from predators. The Sandhill	0 0	The quality of habitat is
	Dunnart shelters within or under large, mature hummocks of vegetation (Spinifex typically Life Stages	_	expected to increase over
survival of a	3-5, <i>T. desertorum</i> or <i>T. basedowii, Lepidobolus</i> or <i>Schoenus</i>). A diverse shrub layer is also typically		time as vegetation
species.	present, as a mature, structurally complex habitat provides protection from predators (see Section	Dunnart.	continues to mature.
	5.4). Clearing for the pipeline corridor resulted in the loss of such habitat, however, since the		
	pipeline's construction in 2015, the pipeline corridor has undergone rehabilitation (both assisted and		
	natural). While vegetation cover has increased (since clearing), it lacks the size and structure to		
	provide shelter habitat for the Sandhill Dunnart. Spinifex (<i>Triodia desertorum</i> and <i>Triodia basedowii</i>)		
	is in the early stages of regeneration, cover is sparse and other species providing habitat (such as <i>Lepidobolus</i>) are largely absent. While the rehabilitated pipeline corridor does not yet provide		
	significant shelter habitat for the Sandhill Dunnart, the species has been recorded from 12 sites		
	within the corridor, likely during transit and foraging. As vegetation cover is expected to increase		
	over time, it is likely shelter habitat will develop within the rehabilitation.		
Disrupt the	Breeding cycle has not been disrupted; breeding recorded adjacent to corridor.	Breeding documented.	Significant impact unlikely.
breeding cycle		5	, ,
of a			
population.			
Modify,	Clearing for the pipeline resulted in habitat loss across the known extent of the Sandhill Dunnart – an	Habitat loss recorded.	Significant impact unlikely.
destroy,	approximately 100km stretch of sand dunes and sandplains from Hope Campbell Lakes to Tropicana		
remove,	Gold Mine. Within this range, the Sandhill Dunnart has a highly fragmented (fire-induced) and	-	
•	declining occurrence, and due to its restriction to mature habitats, is vulnerable to habitat loss and		
decrease the	isolation. While the removal of habitat is unlikely to have isolated populations (see population	Dunnart.	

Aspect	Comment	Outcome	Recommendation
availability or	fragmentation above), areas of long unburnt spinifex hummock grasslands, critical to the species		
quality of	survival were cleared. Monitoring since the pipeline's construction has since aimed to detect any		
habitat to the	changes in occurrence, including within areas of rehabilitation, which will eventually mature to a		
extent that the	stage suitable for the Sandhill Dunnart, and offset the initial habitat clearance.		
species is likely	Since the pipeline's construction in 2015, the pipeline corridor has undergone rehabilitation (both		
to decline.	assisted and natural). While vegetation cover has increased (since clearing) along the pipeline, the		
	corridor lacks the structure to provide extensive habitat for the Sandhill Dunnart. Spinifex (<i>Triodia</i>		
	desertorum and Triodia basedowii) is in the early stages of regeneration. As the vegetation along the		
	cleared pipeline matures, it is likely to provide habitat for the Sandhill Dunnart and offset that lost		
	during the initial pipeline construction.		
Result in	Feral fauna are recorded regularly along the pipeline corridor and Feral Cat and Fox predation has	Feral predators	Significant impact unlikely.
invasive	been recorded (Sandhill Dunnart remains found in Feral Cat and Fox scats and predation recorded	widespread prior to	While predation pressure
species that are	during radiotracking). A recent analysis of cat predation across Australia (Woolley et al., 2019) has	disturbance. As predation	was likely to be elevated
harmful to a	shown that native species occurring in lower rainfall areas (arid areas such as the GVD), that do not	is linked to vegetation	as a result of the project's
critically	use rocky habitat refuges, and have a body mass in the critical weight range of 35 – 5500 g are the	cover and maturity,	initial construction, the
endangered or	most likely to be killed by cats. The Sandhill Dunnart falls into these three risk categories and is	predation pressure is	pipeline corridor is
endangered	ranked by Woolley (et al. 2019) within the top five Australian species at most risk of predation by	likely to reduce over time	undergoing rehabilitation,
species	Feral Cats.	as vegetation matures	and the effects of
becoming	Within intact vegetation, Sandhill Dunnart numbers appear stable, as mature vegetation provides	along the pipeline	predation are likely to
	protection from predation. However the species appears absent from sparsely vegetated, immature,	corridor.	reduce as vegetation
the	and recently burned areas. This is attributable to a lack of suitable habitat required for forging,		matures. Since the
endangered or	shelter and the complex interactions of fire and predation. Feral predators are known to favour open		project's construction, no
critically	and disturbed areas, and ground foraging mammals are particularly vulnerable to predation in open		additional invasive species
endangered	habitats (Dickman, 1996). Sparse vegetation along the pipeline corridor has the potential to elevate		have been recorded within
species'	predation pressure on local Sandhill Dunnart populations and provides predators greater access to,		the pipeline corridor.
habitat.	and movement through habitat. The Sandhill Dunnart currently persists at sites supporting feral		
	predators, where dense, mature vegetation ameliorates the threat of predation. Predation pressure		
	is linked to vegetation cover, and as the pipeline corridor is undergoing rehabilitation, the effects of		
	predation are likely to reduce as vegetation matures.		
Introduce	Considered unlikely. Initial results suggest a stable population within intact vegetation from a limited	Not Applicable.	Significant impact unlikely.
disease that	dataset.		
may cause the			

Aspec	t	Comment	Outcome	Recommendation
species	to			
decline.				
Interfere	with	Overall, the Sandhill Dunnart has been recorded from 25 monitoring sites along the EGP, however,	Due to the effects of fire	Significant impact unlikely.
the recove	ery of	currently appears present at 15 sites, with its presence considered to be influenced by the combined	and predation, the local	Results of monitoring to
the specie	S.	effects of fire and predation. The species has not been detected at 10 monitoring sites, despite the	dunnart population may	date indicate populations
		presence of apparently suitable habitat. The Sandhill Dunnarts perceived absence at intact sites may	be in decline. However,	may fluctuate according to
		be attributable to predation. The pipeline corridor may elevate predation pressure as feral predators	vegetation cover is	rainfall and fire but
		are known to preferentially hunt in open or sparsely vegetated areas. However, the corridor is	increasing along the	recover after disturbance.
		regenerating (see habitat loss). Vegetation cover is increasing over time and will eventually mature to	pipeline corridor.	A short period of
		a stage suitable to support the Sandhill Dunnart and offset the habitat lost during the initial clearing.		disturbance associated
				with the pipeline
				construction is unlikely to
				interfere substantially
				with the recovery of the
				species.

7. CONCLUSIONS

The Sandhill Dunnart is a large desert dunnart, favouring old, mature vegetation which provides shelter from predation. Monitoring during 2024 has revealed the persistence of the Sandhill Dunnart, including from new areas, via the use of motion-activated cameras (but did not detect the species west of Hope Campbell Lake where suitable habitat occurs). Previous research along the Eastern Goldfields Pipeline (https://doi.org/10.1093/jmammal/gyab024) has revealed the Sandhill Dunnart is unique among many native mammals in that it has a specialised diet (eating mostly ants and termites), is able to dig deep burrows in sandy soils, and is able to regulate its body temperature and metabolism (saving energy and water). The Sandhill Dunnart can also travel long distances (up to three kilometres in an hour) and cross open, burned or rehabilitated habitats. These unique traits enable the species to survive adverse desert conditions such as droughts, and persist in desert landscapes fragmented by bushfire.

The Sandhill Dunnart Monitoring along the Eastern Goldfields Pipeline details the habitat critical to the species' survival and provides data on distribution, movement, diet, and predation - valuable for the species' conservation. The monitoring programme extends over approximately half of the Sandhill Dunnart's known range, which appears highly restricted and fragmented in the southern Great Victoria Desert. The programme has also highlighted other important components of the desert's fauna assemblage.

The Sandhill Dunnart has been identified as highly vulnerable to a number of threatening processes and highlighted for monitoring (Woinarski *et al.* 2014; Woolley *et al.* 2019). Population monitoring is a critical component of threatened species management (Woinarski *et al.* 2014, Legge *et al* 2018). Monitoring provides the evidence required to assess and review the status of a species in an area, indicate the relative impacts of threats and hence help direct any management response, measure the effectiveness of and help refine management actions and indicate the level of urgency required for management intervention (Legge *et al.*, 2018). Monitoring is particularly important for Australia's mammal species which have experienced significant decline in the arid zone (Woinarski *et al.* 2014).

Within the arid zone of Australia, resource variations influence the distribution patterns of plants and animals as environments are shaped by flood, fire, and drought (Whitford 2002; Bradstock *et al.* 2012; Nano *et al.* 2012; Woinarski *et al.* 2014). Many species undergo marked fluctuations in abundance and distribution at decadal scales in response to drought and high rainfall years, or in response to fire history (Dickman *et al.* 2014; Greenville at al. 2016a, 2016b). Monitoring programs for desert mammals need to account for these complex and dynamic changes (Lindenmayer *et al.*, 2012). The Action Plan for Australian Mammals (Woinarski *et al.* 2014) recommends that monitoring should:

occur at appropriate intervals;

- be undertaken frequently enough to be capable of detecting rapid change and of providing timely warning of any need for conservation response; and
- relate to the life history of the target species (designed to optimise sampling).

Monitoring programs should span sufficient duration to help differentiate short-term responses to climatic and other variability from longer term trends, and extend over a long enough period to be able to detect changes that are gradual and incremental but of conservation significance (Woinarski *et al.* 2014, Legge *et al.*, 2018). As such, to understand the complex ecological patterns in arid, dynamic environments, monitoring is required over prolonged periods.

The Sandhill Dunnart Monitoring Programme was recommended to be conducted over a suitable time period to account for population fluctuations and the species low detectability, and to determine long term population trends (DBCA 2020). The initial Sandhill Dunnart guidelines (DPaW 2016) stated a minimum of six, but preferably at least 12 years of monitoring is required to account for population variability of fauna in the semi-arid and arid regions of Australia, with sufficient certainty (Kutt et al. 2009). This time period was later refined to 10 years, to account for population variability and for the influence of fire (GHD 2020).

Long-term ecological studies are critical for providing key insights in ecology, environmental change, natural resource management and biodiversity conservation (Lindenmayer *et al.*, 2012). The Sandhill Dunnart Monitoring Program has identified several areas where the species persists, but also has identified areas where the species no longer appears to occur. Along the pipeline, its absence can be partly attributable to fire, where formerly occupied sites have been burnt and large areas of habitat removed. However, the Sandhill Dunnart's absence from other areas along the pipeline corridor, after pipeline construction, remains unclear.

Monitoring along the pipeline corridor appears to indicate some fire-induced population decline. Where habitat remains intact, and vegetation can provide shelter and protection from predation, the species appears to occur in consistent numbers. However, formerly occupied sites effected by fire do not support the species, due to the removal of the mature vegetation on which the species depends.

Monitoring is proposed to continue during 2024. The results of the monitoring to date indicate that Sandhill Dunnart population numbers along the Eastern Goldfields Pipeline fluctuate due to rainfall and fire, but can recover after disturbance. Local populations have been recorded to persist after construction of the pipeline. As the vegetation along the cleared pipeline matures, it is likely to provide habitat for the Sandhill Dunnart and offset that lost during the initial pipeline construction.

REFERENCES

- Bradstock R.A., Williams R.J., Gill A.M. 2012. Flammable Australia: fire regimes, biodiversity and ecosystems in a changing world. CSIRO Publishing: Collingwood, Australia.
- Churchill, S (2001) Survey and Ecological Study of the Sandhill Dunnart *Sminthopsis* psammophila at the Eyre Peninsula and Great Victoria Desert. Report prepared for the South Australian Department for Environment and heritage Adelaide.
- Churchill, S (2001) Recovery Plan for the Sandhill Dunnart (*Sminthopsis psammophila*) Report prepared for the Biodiversity Conservation Program Department for Environment and heritage South Australia.
- Dennison S, McAlpin S, Chapple DG and Stow AJ. 2015. Genetic divergence among regions containing the vulnerable Great Desert Skink (*Liopholis kintorei*) in the Australian Arid Zone. Plos One 10, 14. DOI: 10.1371/journal.pone.0128874.
- Department of Biodiversity, Conservation and Attractions (2019). NatureMap. Fauna database accessed February 2019.
- Department of Parks and Wildlife (2016). Survey and Monitoring Guidelines for the Sandhill Dunnart (*Sminthopsis psammophila*) in Western Australia. Prepared for the Great Victoria Desert Biodiversity Trust, 2016.
- Department of Biodiversity, Conservation and Attractions (2020). Survey and Monitoring Guidelines for the Sandhill Dunnart (*Sminthopsis psammophila*) in Western Australia. Updated for the Great Victoria Desert Biodiversity Trust, 2020.
- Department of the Environment (DOTE) (2013). EPBC Act Policy Statement 1.1 Significant Impact Guidelines, Matters of National Environmental Significance, http://wwwenvironmentgovau/system/files/resources/42f84df4-720b-4dcf-b262-48679a3aba58/files/nes-guidelines 1pdf
- Dickman, C. R. (1996). 'Overview of the impacts of feral cats on Australian native fauna.' Australian Nature Conservation Agency: Canberra.
- Dickman C. R., Mahon P. S., Masters P. Gibson D. F. (1999) Long-term dynamics of rodent populations in arid Australia: the influence of rainfall. Wildlife Research 26, 389-403.
- Dickman C, Wardle G, Foulkes J. and dePreu N (2014) Desert complex environments. In. Biodiversity and Environmental Change Monitoring, Challenges and Direction (Ed. Lindenmayer D, Burns E, Thurgate N and Lowe A.) pp. 379 -438. CSIRO, Melbourne.
- ecologia Environment (2009). Tropicana Gold Project Operational Area Vertebrate Fauna Assessment. Unpublished Report for Tropicana Joint Venture.
- Environmental Protection Authority (2016). Environmental Factor Guideline: Terrestrial Fauna, EPA, Western Australia.

- Fick, S.E. and R.J. Hijmans (2017). WorldClim 2: new 1km spatial resolution climate surfaces for global land areas. International Journal of Climatology 37 (12): 4302-4315.
- Field, S. A., O'Connor, P. J., Tyre, A. J. and Possingham, H. (2007) Making monitoring meaningful. Austral Ecology 32: 485-491. http://dx.doi.org/10.1111/j.1442
- Field, S. A., Tyre, A. J. and Possingham, H. P. (2005) Optimizing allocation of monitoring effort under economic and observational constraints. The Journal of Wildlife Management 69: 473-482. http://dx.doi.org/10.2193/0022
- Gaikhorst and Lambert (2008). Sandhill Dunnart Survey of the proposed Operational Area and Infrastructure Corridors (Pinjin and Bypass). Prepared for AngloGold Ashanti Australia.
- Gaikhorst, G., Lambert, C., & Morris, K. (2008) Sandhill dunnarts W.A: survey, ecology and conservation biology: Landscope Conservation. Published: Kensington, WA, Dept. of Environment & Conservation.
- GHD (2010). Second Round Sandhill Dunnart Surveys of the Proposed Operational Area and Infrastructure Corridor. Prepared for Tropicana Joint Venture
- GHD (2020) Survey and Monitoring Guidelines for the Sandhill Dunnart in Western Australia. Prepared for Great Victoria Desert Biodiversity Trust. Editor Glen Gaikhorst, January 2020.
- Greenville, A., Wardle, G., Nguyen, V., Dickman, C. (2016). Population dynamics of desert mammals: similarities and contrasts within a multispecies assemblage. Ecosphere, 7(5), 1-19.
- Greenville, A., Wardle, G., Nguyen, V., Dickman, C. (2016). Spatial and temporal synchrony in reptile population dynamics in variable environments. Oecologia, 182(2), 475-485.
- Holyoak, D.T. (2001) Nightjars and their Allies. The Caprimulgiformes. Oxford University Press, Oxford, 773 pp.
- How, R. A., and Cooper, N. K. (2002). Terrestrial small mammals of the Abydos Plain in the north-eastern Pilbara, Western Australia. Journal of the Royal Society of Western Australia 85, 71–82.
- IUCN (2001). IUCN Red List categories and criteria: Version 3.1. Prepared by IUCN Species Survival Commission. World Conservation Union, Gland, Switzerland and Cambridge, United Kingdom.
- Kingfisher Environmental Consulting (2014). Sunrise Dam Tropicana Infrastructure Corridor Fauna Survey. Unpublished report for AngloGold Ashanti Australia Ltd.
- Kingfisher Environmental Consulting (2015a). Sandhill Dunnart Monitoring Plan. Unpublished report for APA Group Ltd.
- Kingfisher Environmental Consulting (2015b). Sandhill Dunnart Monitoring Plan April 2015 Summary report. Unpublished report for APA Group Ltd.
- Kingfisher Environmental Consulting (2015c). Sandhill Dunnart Monitoring Plan September 2015 Summary report. Unpublished report for APA Group Ltd.

- Kingfisher Environmental Consulting (2016). Sandhill Dunnart Monitoring Plan March 2015 Summary report. Unpublished report for APA Group Ltd.
- Lindenmayer D.B., Likens G.E., Andersen A., Bowman D., Bull C.M., Burns E. (2012). Value of long-term ecological studies. Austral Ecology, 37: 745–757.
- Legge, S., Lindenmayer, D.B., Robinson, N.M., Scheele, B.C., Southwell, D.M., and Wintle, B.A. (eds) (2018). Monitoring Threatened Species and Ecological Communities. 2018, CSIRO Publishing.
- McGregor H, Legge S, Jones ME, Johnson CN (2015). Feral Cats Are Better Killers in Open Habitats, Revealed by Animal-Borne Video. PLoS ONE 10(8): e0133915. https://doi.org/10.1371/journal.pone.0133915
- McAlpin, S. (2001). A recovery plan for the Great Desert Skink (Egernia kintorei). Arid Lands Environment Centre. Alice Springs, Australia.
- McAlpin S. (2011). Social structure and mating system of the great desert skink, Liopholis kintorei. Masters Thesis, Macquarie University. 2011.
- Moseby, K.E, Read, J.L., McLean, A., Ward, M. and Rogers, D. (2016). How high is your hummock? The importance of Triodia height as a habitat predictor for an endangered marsupial in a fire-prone environment.
- Nano, C. E. M., and Clarke, P. J. 2008. Variegated desert vegetation: covariation of edaphic and fire variables provides a framework for understanding mulgaspinifex coexistence. Austral Ecology 33: 848–862.
- Pearson D, Davies P, Carnegie N, Ward J. (2001). The great desert skink (Egernia kintorei) in Western Australia: distribution, reproduction and ethno-zoological observations. Herpetofauna. 2001; 31: 64–68.
- Pearson, D.J, Churchill, S., Riley, J.L and Turpin, J.M. (2021, in press). Sandhill Dunnart. The Mammals of Australia, 4th Edition. New Holland, Sydney.
- Read, J.L., Moseby, K.E., and M.J. Ward (2016). Factors influencing trap success of sandhill dunnarts, Sminthopsis psammophila, and other small mammals, in Triodia dunefields of South Australia. Unpublished report.
- Riley, J.L (2018). Sandhill Dunnart Monitoring: Summary of Radiotracking. Unpublished report to APA Group.
- Riley, J. L. (2020). Spatial ecology and conservation management of the endangered Sandhill Dunnart, Sminthopsis *psammophila*. University of Bristol.
- Saunders, D. and Ingram, J. 1995. Birds of south-western Australia. An atlas of changes in distribution and abundance of the wheatbelt fauna. Surrey Beatty, Sydney.
- Storey, G. (2008). Increasing the use of scat and hair analysis in environmental studies. Australian Institute of Biology Newsletter 8(1):20-23.
- Strayer D. L., Glitzenstein J. S., Jones C. et al. (1986) Long-Term Ecological Studies: An Illustrated Account of Their Design, Operation, and Importance to Ecology. Occasional Publication of the Institute of Ecosystem Studies. Institute of Ecosystem Studies, Millbrook. pp. 1–38.

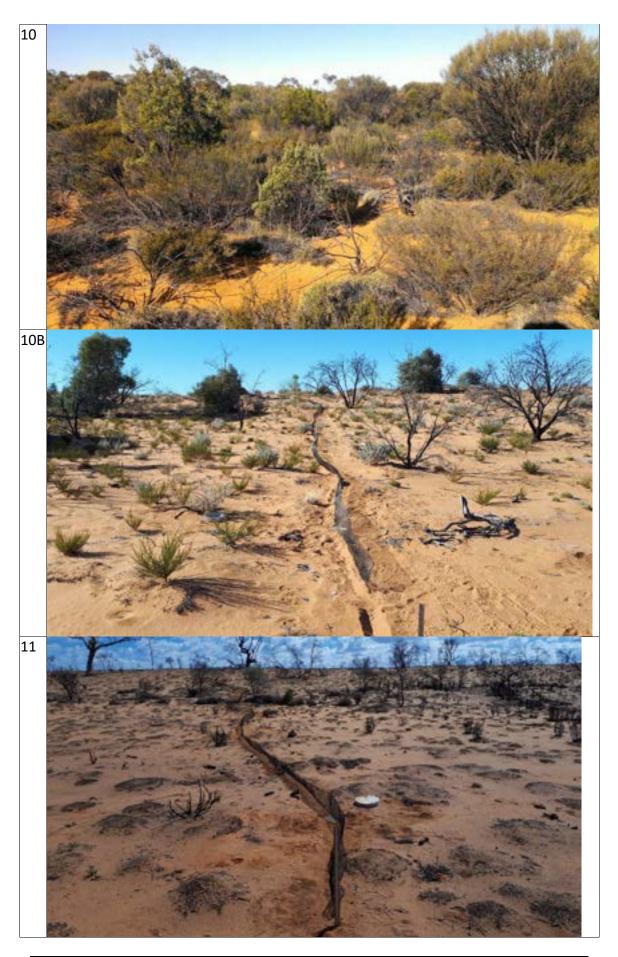
- Threatened Species Scientific Committee (2016). Conservation Advice, Liopholis kintorei great desert skink. Canberra: Department of the Environment and Energy.
- Van Dyck and Strahan, (2008) The Mammals of Australia, 3rd Edition. New Holland, Sydney.
- Whitford, W. G. (2002). The Ecology of Desert Ecosystems. Academic Press, New York.
- Woinarski, J. C. Z., A. A. Burbidge, and P. L. Harrison. (2014). The Action Plan for Australian Mammals 2012. CSIRO Publishing. Melbourne.
- Woinarski, J., Traill, B., and Booth, C. (2014). The modern outback. Nature, people and the future of remote Australia. Pew Charitable Trusts, Sydney. Available at: http://www.pewtrusts.org/en/research-andanalysis/reports/2014/10/the-modern-outback.
- Woinarski, J. C. Z., Woolley, L. A., Garnett, S. T., Legge, S. M., Murphy, B. P., Lawes, M. J., Comer, S.,
- Dickman, C. R., Doherty, T. S., Edwards, G., Nankivell, A., Palmer, R., and Paton, D. (2017). Compilation and traits of Australian bird species killed by cats. Biological Conservation 216: 1–9. doi:10.1016/j.biocon.2017.09.017.
- Woolley, L.A., Geyle, H.M., Murphy, B.P., Legge, S.M., Palmer, R., Dickman, C.R., Augusteyn, J., Comer, S., Doherty, T.S., Eager., C.E., Edwards, G.E., Harley, D.K.P., Leiper, I., McDonald, P.J., McGregor, H.W., Moseby, K.E., Myers, C., Read, J.L., Riley, J.L., Stokeld, D., Turpin, J.M., Woinarski, J.C.Z. et al. (2019). Introduced cats (*Felis catus*) eating a continental mammal fauna: inventory and traits of species killed. Mammal Review, pp. 1-15, doi: 10.1111/mam.12167.

Appendix A: Sandhill Dunnart Survey Site Locations

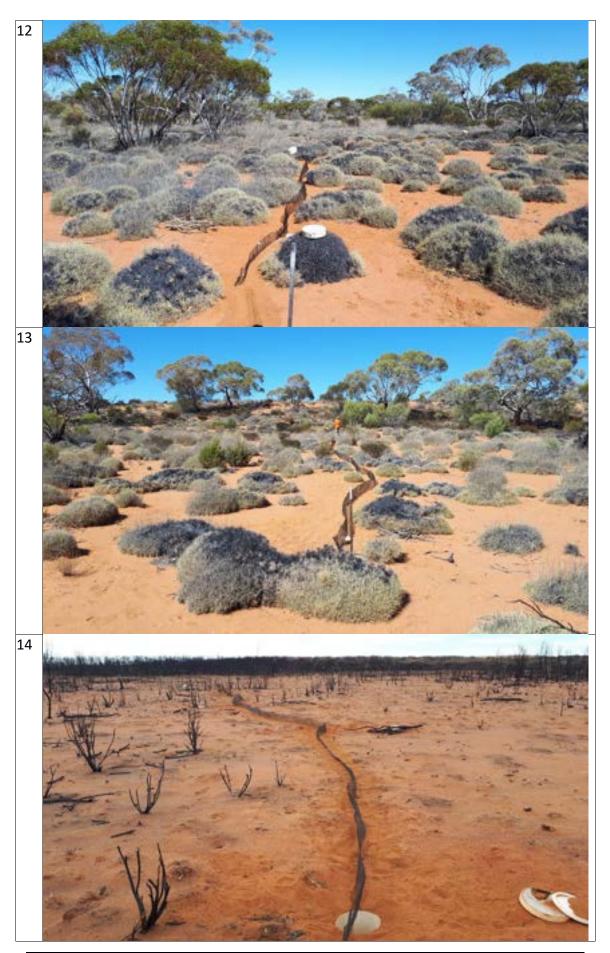
Pitfall Locations

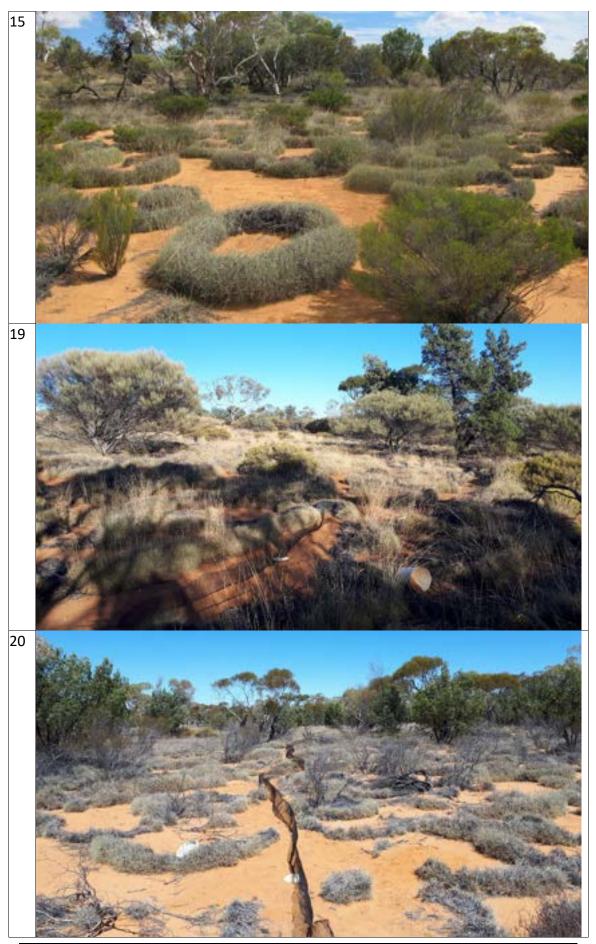
Site	Pit	Easting	Northing	Site	Pit	Easting	Northing
1	Pit 1	641234	6763205	2	Pit 1	641811	6763078
1	Pit 2	641235	6763197	2	Pit 2	641813	6763066
1	Pit 3	641235	6763188	2	Pit 3	641813	6763061
1	Pit 4	641233	6763181	2	Pit 4	641813	6763055
1	Pit 5	641236	6763172	2	Pit 5	641811	6763048
1	Pit 6	641236	6763165	2	Pit 6	641808	6763042
1	Pit 7	641160	6763213	2	Pit 7	641773	6763143
1	Pit 8	641158	6763207	2	Pit 8	641773	6763134
1	Pit 9	641154	6763198	2	Pit 9	641776	6763125
1	Pit 10	641150	6763191	2	Pit 10	641777	6763117
1	Pit 11	641148	6763180	2	Pit 11	641780	6763109
1	Pit 12	641147	6763172	2	Pit 12	641781	6763100
3	Pit 1	640804	6763212	4	Pit 1	606034	6729480
3	Pit 2	640802	6763204	4	Pit 2	605957	6729169
3	Pit 3	640797	6763192	4	Pit 3	605951	6729164
3	Pit 4	640791	6763183	4	Pit 4	605944	6729156
3	Pit 5	640789	6763176	4	Pit 5	605941	6729149
3	Pit 6	640784	6763169	4	Pit 6	605937	6729145
3	Pit 7	640759	6763221	4	Pit 7	605861	6729163
3	Pit 8	640759	6763212	4	Pit 8	605855	6729161
3	Pit 9	640758	6763207	4	Pit 9	605848	6729158
3	Pit 10	640755	6763197	4	Pit 10	605841	6729154
3	Pit 11	640755	6763188	4	Pit 11	605833	6729151
3	Pit 12	640754	6763178	4	Pit 12	605824	6729148
5	Pit 1	601839	6729764	6	Pit 1	646194	6763173
5	Pit 2	601842	6729753	6	Pit 2	646193	6763168
5	Pit 3	601843	6729746	6	Pit 3	646191	6763161
5	Pit 4	601845	6729737	6	Pit 4	646187	6763154
5	Pit 5	601846	6729726	6	Pit 5	646181	6763148
5	Pit 6	601845	6729718	6	Pit 6	646180	6763139
5	Pit 7	601807	6729775	6	Pit 7	646101	6763194
5	Pit 8	601804	6729767	6	Pit 8	646103	6763187
5	Pit 9	601803	6729758	6	Pit 9	646102	6763183
5	Pit 10	601798	6729752	6	Pit 10	646105	6763173
5	Pit 11	601792	6729743	6	Pit 11	646104	6763165
5	Pit 12	601790	6729734	6	Pit 12	646107	6763156
7	Pit 1	621440	6762911	8	Pit 1	621873	6762857
7	Pit 2	621443	6762903	8	Pit 2	621870	6762850
7	Pit 3	621445	6762895	8	Pit 3	621865	6762845
7	Pit 4	621450	6762888	8	Pit 4	621858	6762844
7	Pit 5	621455	6762883	8	Pit 5	621852	6762834
7	Pit 6	621461	6762880	8	Pit 6	621846	6762827
7	Pit 7	621349	6762937	8	Pit 7	621808	6762869
7	Pit 8	621350	6762931	8	Pit 8	621810	6762859
7	Pit 9	621347	6762925	8	Pit 9	621810	6762852

Site	Pit	Easting	Northing	Site	Pit	Easting	Northing
7	Pit 10	621345	6762918	8	Pit 10	621808	6762846
7	Pit 11	621348	6762909	8	Pit 11	621805	6762838
7	Pit 12	621347	6762902	8	Pit 12	621798	6762833
9	Pit 1	625007	6762718	10	Pit 1	626833	6762759
9	Pit 2	625007	6762707	10	Pit 2	626833	6762739
9	Pit 3	625014	6762713	10	Pit 3	626819	6762852
9	Pit 4	624997	6762689	10	Pit 4	626823	6762819
9	Pit 5	625017	6762701	10	Pit 5	626822	6762791
9	Pit 6	625026	6762696	10	Pit 6	626826	6762778
9	Pit 7	625089	6762715	10	Pit 7	626909	6762770
9	Pit 8	625086	6762723	10	Pit 8	626915	6762742
9	Pit 9	625112	6762690	10	Pit 9	626912	6762768
9	Pit 10	625108	6762698	10	Pit 10	626911	6762794
9	Pit 11	625102	6762704	10	Pit 11	626912	6762816
9	Pit 12	625095	6762710	10	Pit 12	626913	6762839
11	Pit 1	603037	6729852	12	Pit 1	606136	6763323
11	Pit 2	603037	6729852	12	Pit 2	606139	6763323
11	Pit 3	603037	6729852	12	Pit 3	606140	6763337
11	Pit 4	603037	6729852	12	Pit 4	606144	6763345
11	Pit 5	603037	6729852	12	Pit 5	606145	6763355
11	Pit 6	603037	6729852	12	Pit 6	606151	6763363
11	Pit 7	603037	6729852	12	Pit 7	606024	6763350
11	Pit 8	603037	6729852	12	Pit 8	606036	6763347
11	Pit 9	603037	6729852	12	Pit 9	606042	6763342
11	Pit 10	603037	6729852	12	Pit 10	606048	6763337
11	Pit 11	603037	6729852	12	Pit 11	606055	6763333
11	Pit 12	603037	6729852	12	Pit 12	606064	6763334
13	Pit 1	608820	6763278	14	Pit 1	634315	6763390
13	Pit 2	608820	6763287	14	Pit 2	634316	6763400
13	Pit 3	608822	6763296	14	Pit 3	634314	6763409
13	Pit 4	608820	6763259	14	Pit 4	634312	6763419
13	Pit 5	608816	6763264	14	Pit 5	634314	6763431
13	Pit 6	608817	6763270	14	Pit 6	634312	6763442
13	Pit 7	608740	6763308	14	Pit 7	634397	6763418
13	Pit 8	608739	6763298	14	Pit 8	634400	6763427
13	Pit 9	608737	6763288	14	Pit 9	634398	6763438
13	Pit 10	608730	6763278	14	Pit 10	634398	6763448
13	Pit 11	608721	6763265	14	Pit 11	634398	6763458
13	Pit 12	608717	6763247	14	Pit 12	634399	6763468
15	Pit 1	623405	6762913	15	Pit 6	623258	6762816
15	Pit 2	623411	6762905	15	Pit 7	623258	6762816
15	Pit 3	623423	6762898	15	Pit 8	623258	6762816
15	Pit 4	623430	6762889	15	Pit 9	623258	6762816
15	Pit 5	623440	6762885	15	Pit 10	623258	6762816
16	Pit 1	639811	6764494	17	Pit 1	619212	6738684
16	Pit 2	639810	6764504	17	Pit 2	619208	6738692
16	Pit 3	639809	6764514	17	Pit 3	619203	6738697
16	Pit 4	639805	6764522	17	Pit 4	619201	6738707
Tρ	PIT 4	039805	0/04522	1/	PIT 4	019201	0/38/0/

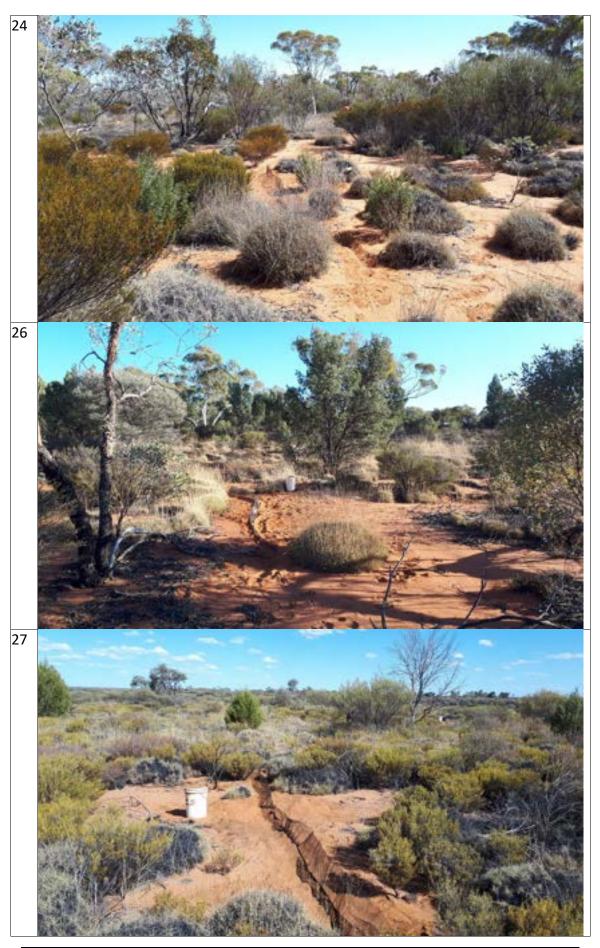

Site	Pit	Easting	Northing	Site	Pit	Easting	Northing
16	Pit 5	639802	6764532	17	Pit 5	619202	6738715
16	Pit 6	639800	6764541	17	Pit 6	619201	6738723
16	Pit 7	639915	6764523	17	Pit 7	619300	6738703
16	Pit 8	639916	6764532	17	Pit 8	619296	6738711
16	Pit 9	639914	6764541	17	Pit 9	619293	6738719
16	Pit 10	639913	6764548	17	Pit 10	619288	6738727
16	Pit 11	639911	6764555	17	Pit 11	619284	6738734
16	Pit 12	639909	6764563	17	Pit 12	619283	6738743
18	Pit 1	628037	6743144	19	Pit 1	643139	6763203
18	Pit 2	628040	6743136	19	Pit 2	643152	6763210
18	Pit 3	628046	6743127	19	Pit 3	643166	6763210
18	Pit 4	628048	6743120	19	Pit 4	643189	6763210
18	Pit 5	628052	6743114	19	Pit 5	643203	6763210
18	Pit 6	628059	6743114	19	Pit 6	643227	6763209
20	Pit 1	595435	6764689	21	Pit 1	640198	6763587
20	Pit 2			21	Pit 2	640198	6763597
		595434	6764683	21	Pit 3	640200	
20	Pit 3	595428	6764676	21			6763605
20	Pit 4	595424	6764670	21	Pit 4	640202	6763615
_	Pit 5	595420	6764660		Pit 5	640207	6763630
20	Pit 6	595417	6764653	21 21	Pit 6	640206	6763620
20	Pit 7	595275	6764614		Pit 7	640278	6763608
20	Pit 8	595282	6764623	21	Pit 8	640279	6763600
20	Pit 9	595287	6764630	21	Pit 9	640280	6763593
20	Pit 10	595293	6764635	21	Pit 10	640281	6763585
20	Pit 11	595297	6764644	21	Pit 11	640281	6763577
20	Pit 12	595302	6764652	21	Pit 12	640283	6763569
22	Pit 1	639372	6763783	10B	Pit 1 Pit 2	626803	6763395
22	Pit 2	639375	6763791 6763779	10B	Pit 2	626805	6763387
22	Pit 3	639368		10B	Pit 4	626804 626807	6763381 6763372
22	Pit 4	639362	6763773	10B	-	626807	
22	Pit 5	639357	6763766	10B	Pit 5		6763364
22	Pit 6	639353	6763758	10B	Pit 6	626809	6763356
22	Pit 7	639250	6763780	10B	Pit 7	626904	6763361
22	Pit 8	639255	6763787	10B	Pit 8	626899	6763367
22	Pit 9	639259	6763793	10B	Pit 9	626896	6763373
22	Pit 10	639261	6763802	10B	Pit 10	626894	6763379
22	Pit 11	639264	6763809	10B	Pit 11	626891	6763387
22	Pit 12	639266	6763815	10B	Pit 12	626888	6763394
23	Pit 1	614807	6763259	24	Pit 1	611942	6763390
23	Pit 6	614825	6763363	24	Pit 6	611939	6763474
23	Pit 7	614745	6763087	24	Pit 7	611831	6763382
23	Pit 12	614736	6763054	24	Pit 12	611810	6763464
26	Pit 1	646935	6763687	27	Pit 1	645207	6763257
26	Pit 2	646943	6763703	27	Pit 2	645210	6763240
26	Pit 3	646932	6763720	27	Pit 3	645203	6763227
26	Pit 4	646938	6763746	27	Pit 4	645204	6763178
26	Pit 5	646936	6763766	27	Pit 5	645204	6763167
26	Pit 6	646941	6763797	27	Pit 6	645207	6763150

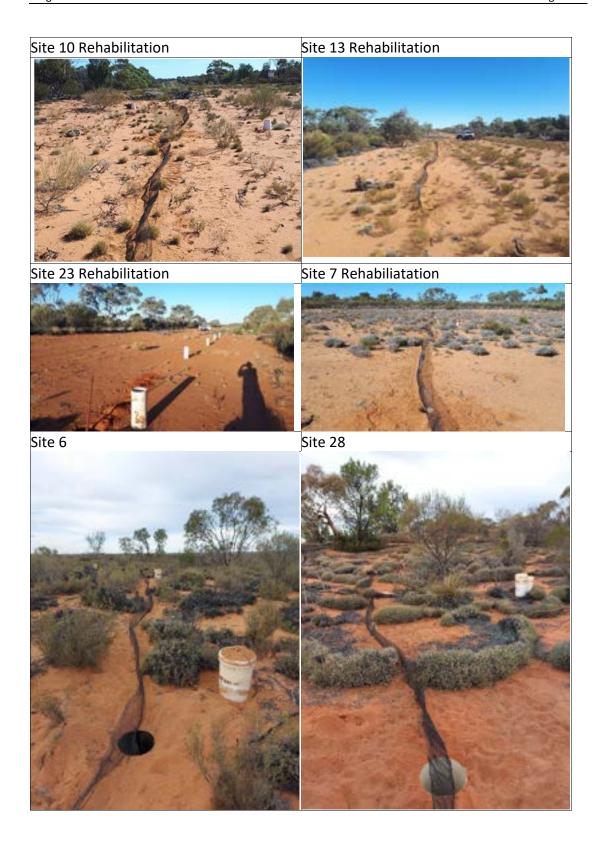
Sandhill Dunnart Monitoring Sites. 1 2 4


This document has been prepared for use by APA Group by Kingfisher Environmental

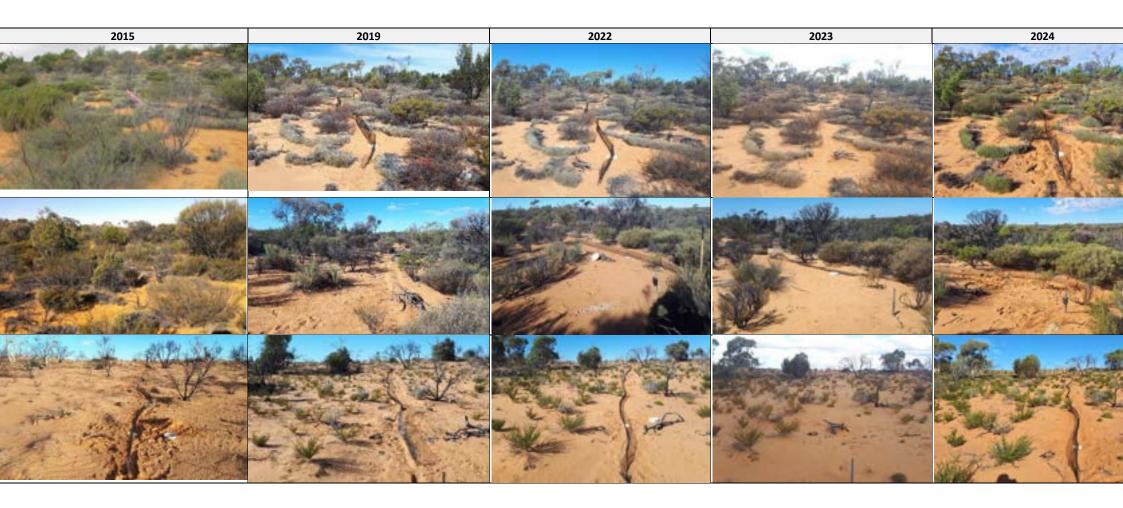

This document has been prepared for use by APA Group by Kingfisher Environmental

This document has been prepared for use by APA Group by Kingfisher Environmental

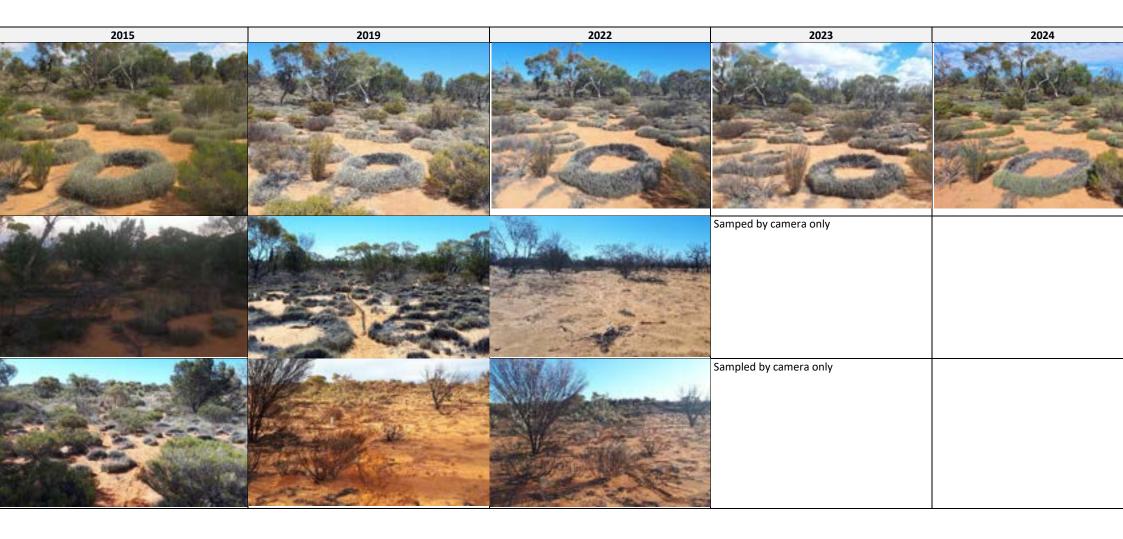

This document has been prepared for use by APA Group by Kingfisher Environmental

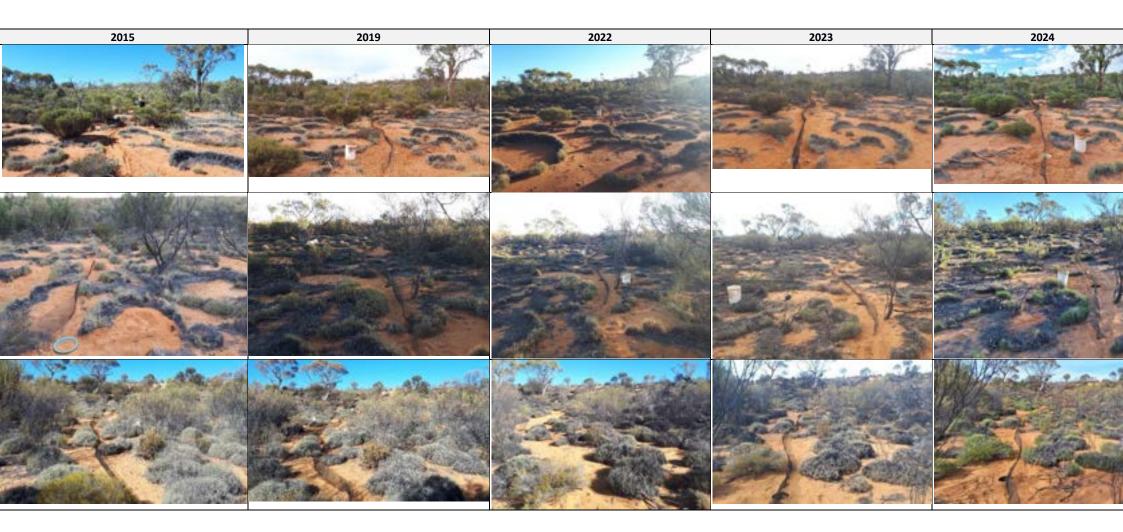

This document has been prepared for use by APA Group by Kingfisher Environmental

This document has been prepared for use by APA Group by Kingfisher Environmental

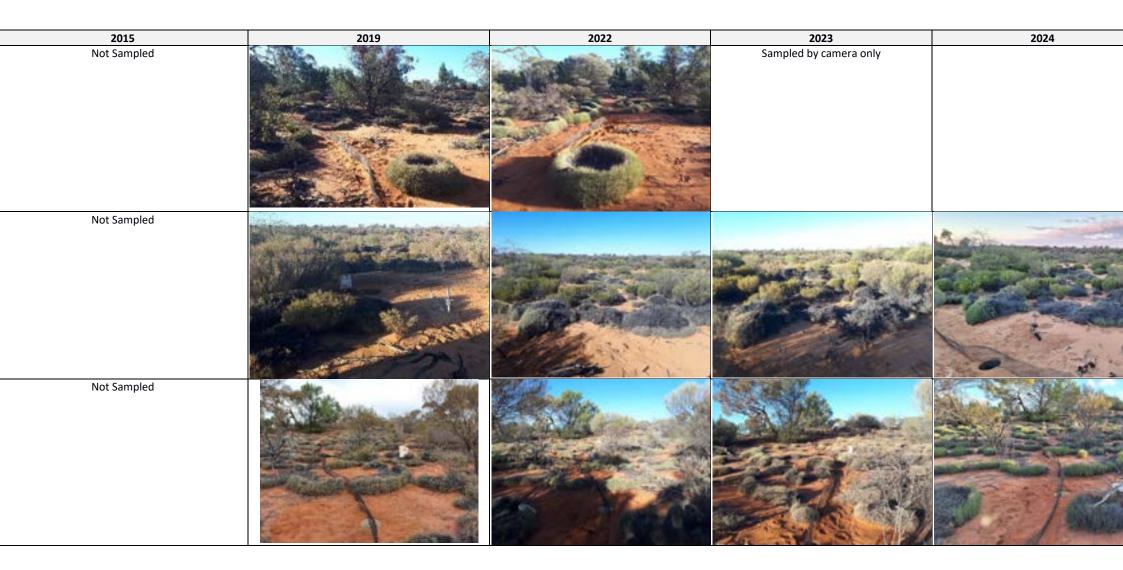


This document has been prepared for use by APA Group by Kingfisher Environmental




Site Photos showing vegetation change 2015 – 2024. 2015 2019 2022 2023 2024

This document has been prepared for use by APA Group by Kingfisher Environmental



2015	2019	2022	2023	2024
Not Sampled				
Not Sampled	Not Sampled	Not Sampled		

Appendix B: Fauna Recorded / Expected in the Survey Area.

Fauna Recorded from the Survey Area(Tables 1 to 5).

These lists are derived from the results of database and literature searches and from previous field surveys conducted in the local area. These are:

- NatureMap Database (NM);
- Birdlife Australia Database (BA);
- Species recorded from Plumridge Lakes Nature Reserve (PL);
- Species previously recorded from the Tropicana area (TPA, ecologia 2009);
- Species recorded by Jeff Turpin along the Pinjin Infrastructure Corridor (Turpin 2008) and the wide GVD (GVD);
- Species recorded by Kingfisher Environmental Consulting along the Sunrise Dam Tropicana pipeline route (KEC 2014).
- Species recorded by Kingfisher during TGM Borefields Fauna Assessment (Borefields); and
- Species recorded during Sandhill Dunnart Monitoring (including this survey).

Key:

Note the conservation status of significant taxa is also listed under "Status". This includes species listed under the EPBC and Biodiversity Conservation Acts, DBCA Priority Fauna and Locally Significant Fauna:

- EPBC Act listed species: Endangered (E), Vulnerable (V), Migratory (M), Critically Endangered (C);
- BC Act listed species: Endangered (E), Vulnerable (V), Specially Protected (OS);
- DBCA Priority Species: P1 = Priority 1, P2 = Priority 2, P4 = Priority 4;
- Locally Significant species: L = Locally Significant; and
- R refers to regional records: species recorded within 100km of the EGP.

Table 1. Frogs expected to occur and recorded in the Survey Area.

Common Name	Species Name	Status	NM	Sunrise Dam	TPA	KEC 2014	Borefields	2015 A	2015 B	2016 A	2016 B	2017 A	2017 B	2018 A	2020 A	2020 B	2021 A	2022 A	2023 A	2023 B	2024 A
HYLIDAE																					
Sheep Frog	Cyclorana maini		Χ	Х										R		R					
Water-holding Frog	Cyclorana occidentalis		Х	Х																	
Little Red Tree Frog	Litoria rubella		Х	Х																	
MYOBATRACHIDAE																					
Kunapalari Frog	Neobatrachus kunapalari		Х	Х										R							Х
Desert Trilling Frog	Neobatrachus sudellae		Х																		
Shoemaker Frog	Neobatrachus sutor		Χ	Х		Х		Х		Х	Х	Х		Х					Х		Х
Wilsmore's Frog	Neobatrachus wilsmorei		Х	Х																	
Centralian Burrowing Frog	Platyplectrum spenceri			Х																	
Western Toadlet	Pseudophryne occidentalis		Х																Х		
TOTAL	9		8	7	0	1	0	1	0	1	1	1	0	1 (3)	0	0 (1)	0	0	2	0	2

Note: Regional records recorded away from the pipeline survey area are denoted by "R".

Table 2. Reptiles expected to occur and recorded in the Survey Area.

Common Name	Species Name	Status	NM	몬	2008	TPA	2014	Borefield	2015 A	2015 B	2016 A	2016 B	2017 A	2017 B	2018 A	2018 B	2019 A	2019 B	2020 A	2020 B	2021 A	2021 B	2022 A	2022 B	2023	2024 A
		su	_		8	Þ	4	ield	Þ	B	A	6B	Ά	7 B	Ã	3 B	Ä) B	À	В	Α	В	Α :	<u> 8</u>	Ā	P P
AGAMIDAE																										
Long-nosed Dragon	Amphibolurus longirostris					Χ					Χ	Х	Χ													
Black-collared Dragon	Ctenophorus clayi					Χ			Χ		Χ	Χ	Х	Х	Χ	Χ		Χ		X	Χ	Χ	Χ	Χ	Х	X X
Crested Dragon	Ctenophorus cristatus		Χ	Χ	Х	Χ	Х	Х	Χ	Х	Χ	Χ	Χ	Χ	Χ	Χ		Χ		X				Χ	Х	Х
Mallee Military Dragon	Ctenophorus fordi		Χ		Χ	Χ	Χ	Х	Χ	Х	Χ	Χ	Χ	Χ	Χ	Χ		Χ		Χ	Χ		Χ	Χ	Χ	Х
Military Dragon	Ctenophorus isolepis		Χ	Χ		Χ	Χ	Х	Χ	Х	Χ	Χ	Χ	Χ	Χ	Χ	Х	Χ		Χ	Χ	Χ	Χ	Χ		Х
Central Netted Dragon	Ctenophorus nuchalis		Χ			Х		Х			Χ	Χ	Χ	Χ	Χ	Χ	Х	Х	Х	Χ	Х	Χ	Χ	Χ	Х	Х
Western Netted Dragon	Ctenophorus reticulatus		Χ	Χ	Χ	Χ										R		Χ						Χ	Х	
Claypan Dragon	Ctenophorus salinarum		Χ		Χ								R			R										
Lozenge-marked Dragon	Ctenophorus scutulatus		Χ		Χ		Χ	Χ																		
Mulga Dragon	Diporiphora amphiboluroides					Χ						Χ	Χ													
Plain-backed Two-line Dragon	Diporiphora reginae		Χ			Χ	Χ		Χ	Χ	Χ	Χ		Χ	Χ		Χ	Χ	Χ			Χ	Χ	Χ	Χ	Х
Thorny Devil	Moloch horridus					Χ	Χ	Χ	Χ	Х	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Х
Bearded Dragon	Pogona minor		Χ	Χ		Χ	Χ	Х	Χ	Х	Χ	Χ	Χ	Χ	Χ	Χ		Χ		Χ	Χ	Χ	Χ	Χ		Х
DIPLODACTYLIDAE																										
Fat-tailed Gecko	Diplodactylus laevis						Х	Х	Χ		Χ		Χ		Χ			Χ		Х				Χ	Х	Х
Beautiful Gecko	Diplodactylus pulcher		Χ	Х																				R		
Desert Wood Gecko	Diplodactylus wiru								Х		Χ	Х	Χ	Х	Χ			Χ				Х		Х	Х	Х
Beaded Gecko	Lucasium damaeum		Χ	Х		Х	Х	Х	Х	Х	Χ	Х	Χ	Х	Χ	Х	Х	Х		Х	Х	Х	Х	Х	Х	х
Beaked Gecko	Rhynchoedura ornata		Χ	Χ		Х	Х	Х		Х	Χ	Х	Χ	Х	Χ			Χ		Х		Χ	Χ	Χ	Х	х
Thorn -tailed Gecko	Strophurus assimilis		Χ				Х		Х	Х		Х		Х						Х						
Jewelled Gecko	Strophurus elderi		Χ			Χ	Χ	Х			Χ	Χ	Χ		Χ	Χ		Χ		Х			Χ	Χ		
Ring-tailed Gecko	Strophurus strophurus		Х			Х			Х		Х		Х	С												
CARPHODACTYLIDAE																										
Pale Knob-tailed Gecko	Nephrurus laevissimus			Χ		Х	Х	Х		Х	Χ	Х	Χ	Х	Χ	Χ		Χ		Х	Х	Χ	Χ	Χ	Х	х
Smooth Knob-tailed Gecko	Nephrurus levis			Χ		Х	Х				Χ							Χ					Χ	Χ	Х	Х
Barking Gecko	Nephrurus milii		Χ												R									R		
Midline Knob-tail	Nephrurus vertebralis		Χ	Χ																			R			
GEKKONIDAE																										
Purplish Dtella	Gehyra purpurascens		Х	Χ		Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Χ		Х		Х			Х	Х	Х	Х
Tree Dtella	Gehyra variegata		Х	Х	Х	Х	Х	Х	Х			Х	Х		Χ											
Bynoe's Gecko	Heteronotia binoei		Х	Χ	Х	Х	Х						Х													
PYGOPODIDAE																										
Unbanded Dema	Delma butleri		Х			Х				Х	Χ	Х	Х	Χ	Χ	Х	Х	Х			Х	Х	Х		Х	х
Sharp-snouted delma	Delma nasuta		Х			Х	Х	Х	Х			Х		Χ				Х	Х							Х
Peterson's Delma	Delma petersoni		Х			Х	Х		Х	Х	Х	Х	Х	Х	Χ	Х		Х		Х	Х	Х		Х	Х	х
Burton's Legless-Lizard	Lialis burtonis		Х			Х		Х	Х	Х	Χ	Х	Х	Χ	Χ	Х	Х	Х						Х	Х	х
Western Hooded Scaly-foot	Pygopus nigriceps		Х	Х		Х	Х	Х			Х	Х		Х	Χ			Х		Х	Х	Х		Х	Х	Х
SCINCIDAE																										
A skink	Cryptoblepharus australis		Х	Х								Х		Х		Х	Х					Х	Х	Х		Х
A skink	Cryptoblepharus buchananii		Х	Х																						\top
Southern Mallee Skink	Ctenotus atlas			Х					Х	Х	Х	Х													Х	\top
A skink	Ctenotus ariadnae					Х																				
A skink	Ctenotus brooksi		Х			Х	Х	Х		Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	Х	Х	Х	Х	Х	хх
A skink	Ctenotus calurus					Х	Х				Х	Х	Х		Х			Х			Х			Х	Х	хх

Common Name	Species Name	Status	Z	PL	2008	TPA	2014	Borefield	2015 A	2015 B	2016 A	2016 B	2017 A	2017 B	2018 A	2018 B	2019 A	2019 B	2020 A	2020 B	2021 A	2021 B	2022 A	2022 B	2023 A	2023 B	2024 A
A skink	Ctenotus dux		Х			Х	Х	x	Х	Х	Х	Х		Х	Х	Х					Х	Х	Х	Х	Х	Х	Х
A skink	Ctenotus grandis					Х																					
A skink	Ctenotus greeri		Х			Х	Х																				
A skink	Ctenotus helenae		Х	Х	Х	Х	Х	Х	Х		Х		Х		Х						Х				Х		
A skink	Ctenotus kutjupa																							Х	Х	Χ	Х
A skink	Ctenotus leae										Х										Х			Х			
Leonhardi's Ctenotus	Ctenotus leonhardii		Х	Х	Х	Х	Х																				
A skink	Ctenotus pantherinus		Х			Х	Х			Х	Х	Х	Х	Х		Х	Х	Х			Х	Х	Х	Х	Х	Х	Х
A skink	Ctenotus piankai																										
A skink	Ctenotus quattuordecimlineatus		Х	Х		Х	Х	Х		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Barred Wedge-snouted Ctenotus	Ctenotus schomburgkii		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Spotted Ctenotus	Ctenotus uber		Х													R											
Spinifex Slender Blue-tongue	Cyclodomorphus melanops		Х	Х		Х	Х		Х	Х	Х	Х	Х		Х	Х		Х				Х	Х		Х	Х	Х
Pygmy Spiny-tailed Skink	Egernia depressa	+	X	^	Х	^	X		^	^	^	^	^		^	R		^					^		^.	X	X
Goldfields Crevice Skink	Egernia formosa	-	^		^		^									11										^	^
Western Sandswimmer	Eremiascincus pallidus																										_
	Eremiascincus pailiaus		v			v	v				V	v			V									Х	Х	V	v
Broad-banded Sandswimmer			X			X	X	.,	.,		X	X		.,	X	v	Х	V			Х	· ·	· ·			X	X
North-western Sandslider	Lerista bipes		X	X		X	X	Х	Х	Х	X	Х	X	Х	X	Х	Х	X		.,	Х	Х	Х	Х	X	X	X
Central Deserts Robust Slider	Lerista desertorum		Х	Х		Х	Х				Х		Х		Х			Х		Х					Х	Х	
Common Mulch Lerista	Lerista kingi				Х																						
Dotty-tailed Robust Slider	Lerista puncticauda	P2													R												
Ribbon Slider	Lerista taeniata		Х			Х		Х		Х	Х	Х		Х	Х			Х		X				Х		Χ	
Common Mulch Lerista	Lerista timda		Х	Х		Х	Х						Х		Х					Х						Χ	
Great Desert Skink	Liopholis kintorei	V																Х	Х				Х			Χ	
Desert Skink	Liopholis inornata		Х	Х		Х	Х	Х		Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	Х	Х		Χ	Х	Χ	Х
Night Skink	Liopholis striata					Х												X	Χ	X			Χ	Χ	Χ	Χ	
Common Dwarf Skink	Menetia greyii		Х	Х		Х	Х			Х	Χ	Х	Х	Χ	Χ	Х		Х				Х			Χ	Χ	
Woodland Dark Fleck Skink	Morethia butleri		Х	Х		Χ	Χ			Χ		Χ	Χ	Χ	Х	Χ		Χ		Х				Χ		Χ	Χ
Western Soil-crevice Skink	Proablepharus reginae		Χ			Х	Χ		Χ	Χ	Χ	Χ	Χ	Χ	Х	Х	Х	Χ	Χ	Х	Χ	Х	Χ	Х	Χ	Χ	Х
Centralian Blue-tongue	Tiliqua multifasciata					Χ		Х	Х			Х			Х	Х											
Western Blue-tongue	Tiliqua occipitalis		Х		Х	Х	Х	Х	Х	Х		Х	Х	R						Х				Χ	Χ	Χ	
Bobtail	Tiliqua rugosa				Х									R	R	R											
VARANIDAE																											
Short-tailed Pygmy Monitor	Varanus brevicauda					Х														Х							
Pygmy Mulga Monitor	Varanus caudolineatus		Х																								
Pygmy Desert Monitor	Varanus eremius					Х					Х	Х	Х	Х	Х	Х				Х	Х			Х	Х	Χ	Х
Perentie	Varanus giganteus					Х	Х				Х		Х	Х	Х			Х	Х					Х	Х	R	
Mulga Monitor	Varanus gilleni		Х	Х		Х																					
Sand Monitor	Varanus gouldii		Х	Х	Х	Х	Х	Х			Х	Х	Х	Х	Х	Х	Х		Х	Х	Х		Х	Х	Х	Х	Х
Yellow-spotted Monitor	Varanus panoptes		Х				Х																				
Racehorse Monitor	Varanus tristis					Х		Х	Х	Х	Х	Х	Х	Х	Х	Х				Х		Х		Х	Х	Х	Х
TYPHLOPIDAE		+				-					-				-	^				^				^	,,	^	
Dark-spinned Blind Snake	Anilios bicolor	-							Х		Х		Х	Х						Х				Х		Х	
Prong-snouted Blind Snake	Anilios bituberculatus		Х	Х					^		^	Х	X	X						^				^		^	
Interior Blind Snake		-	X	^		Х						^	^	R										Х	Х		
	Anilios endoterus		-			^								ĸ				v						۸	۸		
Hook-Snouted Blind Snake	Anilios hamatus		X															Х									

Common Name	Species Name	Status	Z	몬	2008	TPA	2014	Borefield	2015 A	2015 B	2016 A	2016 B	2017 A	2017 B	2018 A	2018 B	2019 A	2019 B	2020 A	2020 B	2021 A	2021 B	2022 A	2022 B	2023 A	2023 B	2024 A
Buff-snouted Blind Snake	Anilios margaretae	P2																									
Common Beaked Blind Snake	Anilios waitii		Х			Х			Χ	Х	Х		Х			Х									Х	Х	
BOIDAE																											
Stimson's Python	Antaresia stimsoni		Х											R													
Woma	Aspidites ramsayi														R										R		
Carpet Python	Morelia spilota											Х						R									
ELAPIDAE																											
Desert Death Adder	Acanthophis pyrrhus					Х																					
Narrow-banded Shovel-nosed Snake	Brachyurophis fasciolata					Х	Х	Х	Х		Х	Х	Х	Х	Х			Х		Х				Х	Х	Х	Х
Southern Shovel-nosed Snake	Brachyurophis semifasciata			Х		Х	Х	Х			Х	Х		Х						Х				Х			
Yellow-faced Whipsnake	Demansia psammophis					Х	Χ			Х		Х	Х	Х	Х	Х				Х			Х	П			
Moon Snake	Furina ornata		Х																								
Black-naped Snake	Neelaps bimaculatus		Х			Х																		Х			
Monk Snake	Parasuta monachus		Х			Х	Х			Х	Х		Х	Х	Х	Х				Х				Х		Х	Х
Mulga Snake	Pseudechis australis		Х		Х	Х		Х	Х	Х	Х		Х	Х	Х	Х	Х				Х			Х	Х	Х	Х
Spotted Mulga Snake	Pseudechis butleri		Х																								
Ringed Brown Snake	Pseudonaja modesta			Х		Х							Х	Х	Х	Х		Х									
Western Brown Snake	Pseudonaja mengdeni				Х	Х		Х														R					
Desert Banded Snake	Simoselaps anomalus																										
Jan's Banded Snake	Simoselaps bertholdi		Х	Х		Х	Х	Х		Х	Х	Х	Х	Х	Х		Х	Х		Х				Х	Х	Х	Х
Rosen's Snake	Suta fasciata		Х																								
Total Number of Species Expec Total Recorded during SHD Mo Total Recorded along APA pipe Total Recorded by KEC: 87 Total Recorded at Tropicana: 8	nitoring: 87 line: 77																										
Total Recorded:		3	70	3	1 8	7	5 0	3	3	3 5	5 0	5	5	4 8	4 7	3 9	1 8		1	3 7	2 5	27	28	50	46	50	35

Table 3. Birds expected to occur and recorded in the Survey Area.

Common Name	Species Name	J .						1																				
Common Name	Species Name	Status	NM/BA	PL	GVD	TPA	KE2014	3orefield	2015 A	2015 B	2016 A	2016 B	2017 A	Aug 17	2017 B	2018 A	Aug 18	2018 B	2019 A	2019 B	2020 A	2020 B	2021 A	2021 B	2022 B	2022 B	2023 B	2024 A
CASUARIIDAE																										П	Т	
Emu	Dromaius novaehollandiae		Х	Х	х	Х	Х	Х	х	х		Х	Х	Х	Х	Х		Х	Х	Х	Х	Х	Х	Х	Х	Х	X >	x >
PHASIANIDAE																											T	
Stubble Quail	Coturnix pectoralis		Х		Х											R	Х										х	
MEGAPODIIDAE																											\top	
Malleefowl	Leipoa ocellata	٧		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	x >	x >
ANATIDAE																											T	
Musk Duck	Biziura lobate		Х		Р													Р										
Black Swan	Cygnus atratus		Х		Р																						T	
Australian Shelduck	Tadorna tadornoides		Х		Х									Х													х	+
Australian Wood Duck	Chenonetta jubata		Х		Х											Х											х	>
Pacific Black Duck	Anas superciliosa		Х		Х										Х										R		\top	
Pink-eared Duck	Malacorhynchus membranaceus		Х	t	Х								Р	Х										T		Ħ	\dagger	+
Grey Teal	Anas gracilis		Х		Х								Х	Х	х	Х								T		Ħ	\dagger	>
Australasian Shoveler	Anas rhynchotis		Х																					T		Ħ	\dagger	1
Hardhead	Aythya australis		Х		Р													Р						H			\top	
Freckled Duck	Stictonetta naevosa																	Р									\top	
PODICIPEDIDAE																											\top	
Australasian Grebe	Tachybaptus novaehollandiae		Х		Р													Р						H			\top	
Hoary-headed Grebe	Poliocephalus poliocephalus		Х		Х	Х												Р									\top	>
PHALACROCORACIDAE																											\top	
Little Pied Cormorant	Microcarbo melanoleucos				Х											Х											T	
Little Black Cormorant	Phalacrocorax sulcirostris				Х																			H			\top	
COLUMBIDAE																											\top	
Common Bronzewing	Phaps chalcoptera		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	x >	x >
Crested Pigeon	Ocyphaps lophotes		Х		Х	Х	Х	Х						Х	R		Х	Х									\top	
Diamond Dove	Geopelia cuneate				Х	Х									R		Х										T	>
PODARGIDAE																											T	
Tawny Frogmouth	Podargus strigoides		Х	Х	Х	Х	Х		Х	Х	Х	Х	Х		Х	Х	Х	Х	Х)	Х
EUROSTOPODIDAE																											\top	
Spotted Nightjar	Eurostopodus argus		Х		Х		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	Х	Х		Х	Х		Х	x >	х
AEGOTHELIDAE																											T	
Australian Owlet-nightjar	Aegotheles cristatus		Х	Х	Х	Х	Х		Х	Х	Х	Х	Х		Х	Х	Х	Х						Т		П	x >	x >
APODIDAE																											\top	
Fork-tailed Swift	Apus pacificus	М																						t			\top	
ARDEIDAE																											\top	
White-faced Heron	Egretta novaehollandiae		Х		х									Х		Х								H			\top	
White-necked Heron	Ardea pacifica		Х		Х								Х														\top	>
Eastern Great Egret	Ardea modesta	М																						H			\top	
Straw-necked Ibis	Threskiornis spinicollis				Х						Х													T		Х	\dagger	1
Glossy Ibis	Plegadis falcinellus																	Х						T		\forall	\dagger	+
ACCIPITRIDAE																								T		\forall	+	\dagger
Black-shouldered Kite	Elanus axillaris		Х		Х										R											\vdash	+	-
Square-tailed Kite	Lophoictinia isura																							<u> </u>		\forall	+	+
Jquai e-taileu Kite																											1	-1

Common Name	Species Name	Status	NM / BA	먼	GVD	TPA	KE2014	Borefield	2015 A	2015 B	2016 A	2016 B	2017 A	Aug 17	2017 B	2018 A	Aug 18	2018 B	2019 A	2019 B	2020 A	2020 B	2021 A	2021 B	2022 B	2022 B	2023 A	2023 B	2024 A
Whistling Kite	Haliastur sphenurus		Х																							Х			-
Black Kite	Milvus migrans																												
Brown Goshawk	Accipiter fasciatus		Х	Х	Х			Х	Х	Х		Х	Х		Х					Х							T		
Collared Sparrowhawk	Accipiter cirrocephalus		Х		Х	Х			Х				Х															_	
Spotted Harrier	Circus assimilis				Х										R		Х											-	
Wedge-tailed Eagle	Aquila audax		Х	Х	Х	Х	Х	Х	Х	Х		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	Х	Х		Х	Х	Х
Little Eagle	Hieraaetus morphnoides		Х		Х	Х	Х	Х		Х	Х		Х		Х	Х				Х						Х	Х	Х	
FALCONIDAE																											T		Г
Nankeen Kestrel	Falco cenchroides		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х		Х		Х	Х	Х	Х	Х	Х
Brown Falcon	Falco berigora		Х	Х	Х	Х	Х	Х	Х	Х		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Australian Hobby	Falco longipennis		Х	Х	Х	Х	_	Х		Х			Х		Х		Х		Х	Х	Х				Х	Х	\exists		
Peregrine Falcon	Falco peregrinus	OS	Х	Х	Х	Х			Х				Х			Х											\exists		
Grey Falcon	Falco hypoleucos	V		Х																							\exists		Г
RALLIDAE																													
Eurasian Coot	Fulica atra		Х		Х	Х									Р												\exists		Г
Black-tailed Native-hen	Tribonyx ventralis		Х		Р										Р												\dashv		Г
OTIDIDAE																													
Australian Bustard	Ardeotis australis	L	Х	Х	Х	Х	Х	Х		Х	Х		Х	Х	Х	Х		Х	Х	Х	Х		Х	Х	Х	Х	Х	Х	X
BURHINIDAE	, ii deotis dasti ans	-									^					^			^	^					^	^			Ĺ
Bush Stone-curlew	Burhinus grallarius	L			Х										Х												-	_	H
RECURVIROSTRIDAE	Januaria granaria	_																									-	_	H
Red-necked Avocet	Recurvirostra novaehollandiae				Х								Н								Х						_		×
Black-winged Stilt	Himantopus himantopus		Х		P																						Х	_	X
Banded Stilt	Cladorhynchus		-																										<i>,</i>
CHARADRIIDAE	C.a.cyc.a.c																										-	_	Ė
Red-capped Plover	Charadrius ruficapillus		Х	Х	Х		Х							Х													+		Г
Black-fronted Dotterel	Elseyornis melanops		X		Р																						_		H
Red-kneed Dotterel	Erythrogonys cinctus		X																								\dashv		H
Inland Dotterel	Charadrius australis		Х		Х													R									\dashv		H
Oriental Plover	Charadrius veredus	М	^		^													- 1									\dashv		H
Grey Plover	Pluvialis squatarola	IVI			Х									Х													-		H
Banded Lapwing	Vanellus tricolor		Х		X	Х							Х	^ X		Х											\dashv		×
SCOLOPACIDAE	vunenus tricolor		^		^	^							^	^		^											\dashv		ŕ
Commo Greenshank	Tringa nebularia	М	Х		Р																						\dashv		\vdash
Wood Sandpiper	Tringa glareola		X		P																						-		H
Red-necked Stint		M	X		Р																								H
	Calidris ruficollis Calidris acuminata	M	^																								_		\vdash
Sharp-tailed Sandpiper		M																									\dashv		\vdash
Curlew Sandpiper	Calidris ferruginea	M																									\dashv		\vdash
Common Sandpiper	Actitis hypoleucos	М																									_		F
TURNICIDAE	Timelianal		.,	.,	.,						.,				.,		v										\dashv		H
Little Button-quail	Turnix velox		X	Х	Х						Х				Х		Х										\dashv		X
LARIDAE																											\dashv		L
Silver Gull	Larus novaehollandiae																										\dashv		L
CACATUIDAE	Eolophus roseicapillus																										4		L
Galah			Χ		Х	Х	Х	Х		Х	Х	Х	Х	Х	Х	Χ	Х		Χ	Х	Х	Х			Х	Х	Х	Х	X

Common Name	Species Name	Status	NM / BA	면	GVD	TPA	KE2014	Borefield	2015 A	2015 B	2016 A	2016 B	2017 A	Aug 17	2017 B	2018 A	Aug 18	2018 B	2019 A	2019 B	2020 A	2020 B	2021 A	2021 B	2022 B	2022 B	2023 A	2022 R	2024 A
Cockatiel	Nymphicus hollandicus		X		Х	Х	Х				Х				Х	Х	Х												
Major Mitchell's Cockatoo	Lophochroa leadbeateri	L			Х		Х			Х	Х	Х	Х		R			Х						Х		Х	T	Х	Х
PSITTACIDAE																											T		
Purple-crowned Lorikeet	Glossopsitta porphyrocephala	L	Х		Х	Х							Х			Х			Х								T		
Princess Parrot	Polytelis alexandrae	٧																									T		
Regent Parrot	Polytelis anthopeplus	L			Х	Х									R	R		R			Х		Х		R		T		
Australian Ringneck	Barnardius zonarius		Х		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Mulga Parrot	Psephotus varius		Х		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Χ	Х	Х	Х	Х				Х	Х	Х	Х	Х
Budgerigar	Melopsittacus undulatus		Х	Х	Х	Х	Х	Х			Х	Х	Х		Х	Х	Χ	Х								Х	T	х	Х
Bourke's Parrot	Neopsephotus bourkii		Х		Х												Χ										T		
Scarlet-chested Parrot	Neophema splendida	L		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Χ	Х	Х	Х	Х	Х				Х	T		Х
Night Parrot	Pezoporus occidentalis	С																									T		
CUCULIDAE																											T		
Horsfield's Bronze-Cuckoo	Chalcites basalis		Х		Х	Х	Х	Х	Х	х	Х	Х	Х	Х	Х	Х	Χ	Х	Х	Х	Х	Х		Х		Х	Х	х	Х
Black-eared Cuckoo	Chalcites osculans		Х		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х			Х					Х	T		Х
Pallid Cuckoo	Cacomantis pallidus		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ										T		
Fan-tailed Cuckoo	Cacomantis flabelliformis								Х																		T		
STRIGIDAE																											T		
Southern Boobook	Ninox novaeseelandiae		Х	Х	Х		Х	Х			Х	х	Х	Х	Х	Х	Х										T		
TYTONIDAE																											T		
Eastern Barn Owl	Tyto alba				Х						Х	Х	Х		R	Х	Х										T		
HALCYONIDAE																											T		
Red-backed Kingfisher	Todiramphus pyrrhopygius		Х	Х	Х	Х	Х	Х		Х	Х	Х			Х	Х		Х		Х				Х			Х	Х	
Sacred Kingfisher	Todiramphus sanctus		Х	Х																							T		
MEROPIDAE																											T		
Rainbow Bee-eater	Merops ornatus	М	Х	Х	Х	Х	Х	Х		Х		Х	Х		Х	Х				Х						Х	T	Х	
CLIMACTERIDAE																											T		
White-browed Treecreeper	Climacteris affinis		Х	Х	Х	Х		Х		Х				Х					Х								T		
Rufous Treecreeper	Climacteris rufa	L			Х		Х		Х	Х	Х	Х	Х	Х	Х			Х	Х	Х	Х					R	T		
PTILONORHYNCHIDAE																											T		
Western Bowerbird	Ptilonorhynchus guttatus		Х		Х		Х	Х							R		Х									-	\neg		_
MALURIDAE																										-	\neg		_
Splendid Fairy-wren	Malurus splendens		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
White-winged Fairy-wren	Malurus leucopterus		Х	Х	Х		Х	Х		х			Х	Х		Х	Χ		Х							Х	Х	х	Х
Variegated Fairy-wren	Malurus lamberti		Х		Х								Х		Х		Χ										Х		
Striated Grasswren	Amytornis striatus striatus	L	Х		Х		Х		Х		Х			Х	Х	Х		Х	Х				Х				Х	Х	Х
Rufous-crowned Emu-wren	Stipiturus ruficeps	L			Х									Х					Х								T		
ACANTHIZIDAE																											\neg		_
Rufous Fieldwren	Calamanthus campestri				Х									?	R		Х										1		_
Redthroat	Pyrrholaemus brunneus		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Weebill	Smicrornis brevirostris		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	Х	Х		Х	-	-+	Χ	Х
Western Gerygone	Gerygone fusca		Х	Х	Х												Х										+	+	_
Yellow-rumped Thornbill	Acanthiza chrysorrhoa		Х	Х	Х	Х	Х		Х	Х	Х			Х	R		Х	Х	Х		Х				Х	\exists	Х	+	_
Chestnut-rumped Thornbill	Acanthiza uropygialis		Х	Х	Х	Х	Х	Х	Х	Х		Х	Х		Х	Х	Х	Х	Х	Х	Х		Х	Х		Х		Х	Х
Slaty-backed Thornbill	Acanthiza robustirostris		Х		Х	Х		Х	Х	Х	Х				Х					Х					Х		+	Ì	_
,		1	1.,	1	۲.	1.,	1.,	۲.	1.,	ļ.,	ļ.,		<u> </u>		ļ.,					ļ.,	1	1	1				\rightarrow	Х	Х

Common Name	Species Name	Status	NM / BA	믿	GVD	TPA	KE2014	Borefield	2015 A	2015 B	2016 A	2016 B	2017 A	Aug 17	2017 B	2018 A	Aug 18	2018 B	2019 A	2019 B	2020 A	2020 B	2021 A	2021 B	2022 B	2022 B	2023 B	2024 A
Slender billed Thornbill	Acanthiza iredalei	L	X	Х	Х									Х					Х								+	
Southern Whiteface	Aphelocephala leucopsis		Х	Х	Х	Х	Х	Х		Х				Х	R											П	T	\top
PARDALOTIDAE	, ,																									П	+	+
Spotted Pardalote	Pardalotus punctatus																								R	П	\top	+
Striated Pardalote	Pardalotus striatus		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	Х	Х	Х	Х	Х		Х	Х	Х	Х	Х	X
MELIPHAGIDAE																										П	\top	+
Pied Honeyeater	Certhionyx variegatus		Х		Х							Х														П	+	Х
Singing Honeyeater	Lichenostomus virescens		Х		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х		Х	Х	Х	Х	Х			Х	Х	хх
White-eared Honeyeater	Lichenostomus leucotis				Х										Х	R		Х	Х						R	R	\top	\top
White-plumed Honeyeater	Lichenostomus penicillatus		Х																							П	\top	\top
Yellow-plumed Honeyeater	Lichenostomus ornatus														R											R	$^{+}$	х
Grey-fronted Honeyeater	Lichenostomus plumulus		Х		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	хх
White-fronted Honeyeater	Purnella albifrons		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х			Х		Х	Х	Х	хх
Yellow-throated Miner	Manorina flavigula		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	Х	Х	Х	-	хх
Spiny-cheeked Honeyeater	Acanthagenys rufogularis		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	Х	Х	Х	Х	-	ХХ
Red Wattlebird	Anthochaera carunculata		Х	Х	Х	Х	Х	Х	Х	Х	-	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	Х	R	Ħ	_	X
Crimson Chat	Epthianura tricolor		Х	X	Х	X	X	X	^	Х		Х	^		Х	Х				^	^		^	^		H	Х	x x
White-fronted Chat	Epthianura albifrons		Х	^	Х	^	^	^		^		^		Х	^	^		Р								Н	_	X
Orange Chat	Epthianura aurifrons		^	Х	^									^											Х	Х	+	X
Black Honeyeater	Sugomel niger		Х	Х	Х																				^	$\stackrel{\wedge}{\vdash}$	+	+^
Brown Honeyeater	Lichmera indistincta		X	^	X	Х	Х						Р	Х				Х							Х	H	Х	-
Brown-headed Honeyeater	Melithreptus brevirostris		^		X	^	^						F	X	Х	R		X	Х						^ R	Н	^	+
POMATOSTOMIDAE	ivientineptus bievirostris				^									^	^	IX		^	^						IX.	Н	+	+
White-browed Babbler	Pomatostomus superciliosus		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	хх
PSOPHODIDAE	Fornatostornas supercinosas		^	^	^	^	^	^	^	^	^	^		^	^	^	^	^	^	^	^	^	^	^	^	$\stackrel{\wedge}{\vdash}$	^	
Chestnut Quail-thrush	Cinclosoma castanotus				Х		Х	Х	X	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х	Х	Х		Х	Х		Х	Х	хх
Chestnut-breasted Quail-thrush	Cinclosoma castaneothorax		Х	Х	^ X		^	^	^	^	^	^	^	^	^ X	^	X	^ X	^	^	X	H	^	^	Х	^		^ ^ X
			X	^	X										^		^	^			^	_			^	\vdash	^	^
Chiming Wedgebill	Psophodes occidentalis		^		^																	_				\vdash	_	+
NEOSITTIDAE	Danka an asitta aharrantan				Х	v	Х	Х	Х	Х	Х		Х	Х	Х	Х	Х	Х	Х	Х	Х	<u> </u>	Х	Х	Х	х	х	X
Varied Sittella	Daphoenositta chrysoptera				X	Х	X	X	Χ	Х	X		X	X	X	X	Х	Х	Х	X	X	<u> </u>	Х	Х	×	X	X	_
CAMPEPHAGIDAE	C		.,		.,	.,		Х					.,		.,	V				.,		<u> </u>			.,	H		
Ground Cuckoo-shrike	Coracina maxima		X	.,	X	X	.,		.,	.,		.,	X	.,	X	X	X	X	X	X	.,			X	X	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		X
Black-faced Cuckoo-shrike	Coracina novaehollandiae		X	Х	X	Х	X	X	Х	X	Х	Х	Х	Х	Х	Х	X	Х	X	Х	Χ	Х	Х	Χ	Х	Х	Х	Х
White-winged Triller	Lalage sueurii		Х		Х		Х	Х		Х												<u> </u>				H	\perp	+
PACHYCEPHALIDAE				.,	.,	.,	.,	.,	.,	.,	.,	.,	.,	.,	.,	.,	.,	.,		.,	.,	_		.,	.,			
Rufous Whistler	Pachycephala rufiventris		Х	Х	X	Χ	X	Χ	Х	Х	Х	Χ	Х	X	Х	Х	Х	Χ	Χ	Х	Х	Х	Х	Χ	Х	Х		X X
Gilbert's Whistler	Pachycephala inornata				Х		Х							Х								L				Н		XX
Grey Shrike-thrush	Colluricincla harmonica		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х
Crested Bellbird	Oreoica gutturalis		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
ARTAMIDAE																						<u> </u>				\sqcup	4	4
Masked Woodswallow	Artamus personatus		Х		Х	Х	Х	Х		Х			Х		Х	Х		Х		Х		<u> </u>		Х		Х		Х
Black-faced Woodswallow	Artamus cinereus		Х	Х	Х	Х	Х	Х	Х	Χ	Х	Х	Х	Х	Х	Χ	Х	Χ	Х	Х	Х	L	Х	Х	Х	Х	Х	Х
Dusky Woodswallow	Artamus cyanopterus																		Χ							Ш	\perp	1
Little Woodswallow	Artamus minor		Х		Χ		Х				Х	Х	Χ		Х		Х		Χ	Х		<u></u>				Х	1	\perp
Grey Butcherbird	Cracticus torquatus		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	Х	Х		Х	Х
Pied Butcherbird	Cracticus nigrogularis		Х	Χ	Х	Χ	Χ	Χ	Х	Χ	Χ	Χ	Х	Х	Χ	Х	Χ	Χ	Χ	Х	Х	Χ	Χ	Χ	Х	Х	Х	x x

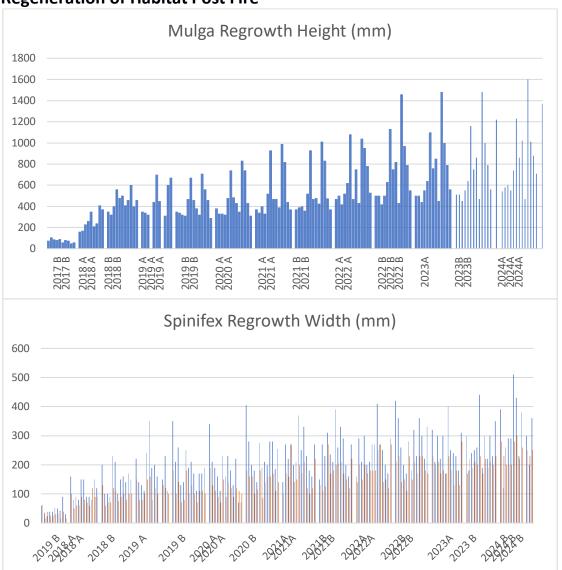
Common Name	Species Name	Status	NM / BA	Ы	GVD	TPA	KE2014	Borefield	2015 A	2015 B	2016 A	2016 B	2017 A	Aug 17	2017 B	2018 A	Aug 18	2018 B	2019 A	2019 B	2020 A	2020 B	2021 A	2021 B	2022 B	2023 A	2023 A	ECUC	2024 A
		S	BA				14	eld	>	B	Þ	В	₽	17	Β	Þ	18	В	⊳	В	>	B	⊳	В	Φ	В	> 0	,	>
Australian Magpie	Cracticus tibicen		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	Х	Χ	>
Grey Currawong	Strepera versicolor		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	Х	Х	>
RHIPIDURIDAE																													
Grey Fantail	Rhipidura albiscapa		Х		Х										Х	R											T		
Willie Wagtail	Rhipidura leucophrys		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	Х	Х	Х	Х	Х	
CORVIDAE																													
Little Crow	Corvus bennetti		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	Х	Х	Х	Х		>
Torresian Crow	Corvus orru		Х	Х	Х		Х	Х	Х				Х	Х	Х		Х		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	>
Australian Raven	Corvus coronoides				Х																						R		
MONARCHIDAE																											T		_
Magpie-lark	Grallina cyanoleuca		Х		Х	Х	Х				Х	Х	Х		Х	Х	Х		Х	Х		Х	Х	Х	Х		Х		
PETROICIDAE																											T		_
Red-capped Robin	Petroica goodenovii		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х			Х	Х	Х	Х	>
Hooded Robin	Melanodryas cucullata		Х		Х	Х	Х	Х		Х		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х		Х	Х	Х	>
Jacky Winter	Microeca fascinans		Х	Х	х	Х	Х	Х	Х	Х	Х	Х		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	х	>
Southern Scrub-robin	Drymodes brunneopygia	L			Х		Х		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	>
MEGALURIDAE	, , , , , , ,																									+	\neg		_
Rufous Songlark	Cincloramphus mathewsi		Х		Х										R			Х									T		
Brown Songlark	Cincloramphus cruralis		Х		Х		Х		Х					Х	Х														_
Spinifexbird	Megalurus carteri				х										R												T		
HIRUNDINIDAE																													_
White-backed Swallow	Cheramoeca leucosterna		Х		Х	Х	Х	Х	Х	Х	Х	Х		Х	Х				Х	Х	Х		Х			Х	Х	х	>
Welcome Swallow	Hirundo neoxena		Х		Х		Х																				T		
Fairy Martin	Petrochelidon ariel		Х		Х		Х		Х					Х	Х		Х			Х	Х			Х	Х		Х		>
Tree Martin	Petrochelidon nigricans		Х		Х	Х	Х	Х			Х	Х	Х		Х	Х		Х									T	Х	
NECTARINIIDAE																											T		
Mistletoebird	Dicaeum hirundinaceum		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	>
ESTRILDIDAE																											T		_
Zebra Finch	Taeniopygia guttata		Х	Х	Х	Х	Х	Х			Х	Х		Х	Х	Х	Х	Х									T		>
MOTACILLIDAE																											T		_
Australasian Pipit	Anthus novaeseelandiae		Х		Х	Х	Х	Х	Х	Х				Х	R		Х	Х	Х		Х		Х	Х	Х		Х	Х	>
Total Number of Species Expe	cted: 161																												
Total Recorded during SHD M	onitoring: 109																												
Total Recorded along APA pip	eline: 109																												
Total Recorded by KEC: 121	116																												
Total Recorded at Tropicana:	110																_	_	_	_	_	-			_	_			_
Total Recorded:		23	118	48	123	73	78	70	59	66	62	61	67	73	73	73		7 0		5 8	5 2	3 2	4				0 9		6 8

Note: Species recorded along the Eastern Goldfields Pipeline marked "x", species recorded on Pinjin station marked "P", species recorded on Hampton Hill Station marked "H". Species recorded across the wider bioregion are marked "R" (recorded within 100km of the Eastern Goldfields Pipeline).

Table 4. Mammals expected to occur and recorded in the Survey Area.

Common Name	Species Name							В																			
		Status	N N	PL	2008	TPA	2014	Borefields	2015 A	2015 B	2016 A	2016 B	2017 A	2017 B	2018 A	2018 B	2019 A	2019 B	2020 A	2020 B	2021 A	2021 B	2022 A	2022 B	2023 A	2023 B	2024 A
TACHYGLOSSIDAE																											
Echidna	Tachyglossus aculeatus		Х		Х	Х	x	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
DASYURIDAE	ruenygiossus dedicatus		^			^	^	^	^	^	^	^	^	^				^	^		^	^			_	_	
Brush-tailed Mulgara	Dasycercus blythi	P4					Х	Х	Х	S	S	S	Х	Х	Х	Χ	Х	Х	Х	Х	Χ	Χ	Х		Х	Χ	Х
Ride's Ningaui	Ningaui ridei		Х	Х		Х	Х	Х	Х	Х	Х	Х	Х	Х	X	Х	X	Х	Х	Х	Х	Х	Х	Х	Х	Х	X
Mallee Ningaui	Ningaui yvonneae		Х			^			,,		/\		^	^		R	X	Х	Х		Х	Х	X	Х	X	Х	X
Kultarr	Antechinomys laniger	L	Х															^	^	^		^			À	_	X
Woolley's Pseudantechinus	Pseudantechinus woolleyae	L					x	Х						Х			Х								Х	Х	
Fat-tailed Dunnart	Sminthopsis crassicaudata	_	Х	Х		Х	^	^						^								Х			^		R
Little Long-tailed Dunnart	Sminthopsis dolichura		X			X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х	Х	Х	Х	Χ	χ
Hairy-footed Dunnart	Sminthopsis hirtipes		Х			X	X	^	X	X	X	X	X	X	X	X	X	X	Х		X	Х	X	X	X	X	, X
Long-tailed Dunnart	Sminthopsis longicaudata		Х			^	^		^	^	^	^	^	R	^	^		^	^	^	^	^			$\stackrel{\wedge}{+}$	Х	_
Stripe-faced Dunnart	Sminthopsis macruora		X											R											\dashv	^	F
Ooldea Dunnart	Sminthopsis macraora Sminthopsis ooldea		X	Х		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х			Х		Х	Х	Х	Х	Х		·
Sandhill Dunnart	Sminthopsis psammophila	Е	^	^		^	X	^	X		X	X	X	X	X	X	Х	Х	^ X	Х	^ X	X	X	X	X	Х	^ X
	Sminthopsis youngsoni						^		^	^	^	^	^	^	^	^	^	^	^	^	^	^	^	_	X	^	γ
Lesser Hairy-foot Dunnart NOTORYCTIDAE	Sminthopsis youngsom																								^		_^
	Nataryatas tymblans					v	Х	Х	Х		Х		Х			Х	Х						Х		Х	_	_
Southern Marsupial Mole BURRAMYIDAE	Notoryctes typhlops					^	^	^	^		۸		^			^	^						^		^	_	_
	Companytotus consilerus											Х						· ·							\dashv	_	_
Western Pygmy Possum	Cercartetus concinnus											^						Х							\dashv	_	_
MACROPODIDAE Western Grey Kangaroo	Magranus fuliginasus				Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
	Macropus fuliginosus		Х		X	X	^	X	^	X	X	X	X	X	X	X		X	^ X		^ X	X	X	X	X	^ X	_^
Euro Pad Kangaraa	Macropus robustus		X		^	X	X	-	^	X	۸	^	^	X	X	X	X	^	^	^	^	^	^	^	X	^	_
Red Kangaroo	Macropus rufus		^			^	^	^		^				^	^	^	۸							\vdash	^	_	
EMBALLONURIDAE	Tanhazawa hilli					Х													v						\dashv	_	_
Hill's Sheathtail Bat	Taphozous hilli					^													Х								
MOLOSSIDAE Inland Freetail Bat	Ozimona natarsi					v	Х														~			\vdash			
Western Freetail Bat	Ozimops petersi					^	^														Χ				\dashv	_	_
	Ozimops kitcheneri				.,	.,	.,		.,					.,			.,		.,							_	
White-striped Freetail Bat	Austronomus australis			Х	Х	Х	Х		Х					Х		Χ	Х		Х		Χ				Х	_	
VESPERTILIONIDAE	Chalia alah wa sa uldii			v		v	v						· ·	· ·					· ·		· ·			\vdash			
Gould's Wattled Bat	Chalinolobus gouldii		.,	Х		Х	Х						Х	Х					Х		Χ				_	_	
Chocolate Wattled Bat	Chalinolobus morio		X			.,	.,												.,						_	_	
Lesser Long-eared Bat	Nyctophilus geoffroyi		Х			X	Х												Х		Χ				_	_	
Greater Long-eared Bat	Nyctophilus timoriensis	P4				X								.,										\vdash	=		
Inland Broad-nosed Bat	Scotorepens balstoni			Х		Х								Х											_	_	
Southern Forest Bat	Vespadelus regulus		.,																								
Inland forest bat	Vespadelus baverstocki		X																.,					\vdash			
Inland Cave Bat	Vespadelus finlaysoni		Х			Х								Х					Х					\vdash	Х		
MURIDAE																										_	_
Spinifex Hopping Mouse	Notomys alexis		Х	Х		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х	Х	Х	Х	Χ	Χ	Χ	Х	Х	Χ	Х
Mitchell's Hopping Mouse	Notomys mitchellii																							$\vdash \vdash$	\dashv		
Bolam's Mouse	Pseudomys bolami	-		Х																				\vdash	\dashv	_	
Desert Mouse	Pseudomys desertor					Х	Х		Х		Χ	-	Х		Х	Χ	Х								Х		
Sandy Inland Mouse	Pseudomys hermannsburgensis	5	Х	Х		Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х	Χ	Х	Х	Х	Х	Χ	Χ	Χ	Х	Χ	Х	Х

Common Name	Species Name	Status	NM	PL	2008	TPA	2014	Borefields	2015 A	2015 B	2016 A	2016 B	2017 A	2017 B	2018 A	2018 B	2019 A	2019 B	2020 A	2020 B	2021 A	2021 B	2022 A		2023 A	2023 B	2024 A
INTRODUCED MAMMALS	S																										
Dingo / Dog	Canis lupus					Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х
European Red Fox	Vulpes vulpes				Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х
Feral Cat	Felis catus		Х			Х	Х	х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х
Rabbit	Oryctolagus cuniculus		Х		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х
House Mouse	Mus musculus		Х	Х		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	Х	Х		Х	Х	Х	Х		Х
Dromedary Camel	Camelus dromedarius				Х	Х	Х	х	Х	Х	Х	Х	Х	х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х
Total Number of Native Total Recorded during S Total Recorded along AF Total Recorded by KEC: 2 Total Recorded at Tropic	HD Monitoring: 19 PA pipeline: 15 25	5	17	7 9	4	21	1 9	1 3	1 4	1	1 2	1 2	1 4	1 9	1 3	1 5	1	1 2	1 7	1	1 6	1 3	1 3	1 2	1 9	1	1 5
Total Number of Introdu	iced Species: 10		3	1	5	6	6	6	6	6	6	6	6	6	6	6	5	6	6	6	5	6	6	6	6	5	6


Appendix C: Fire Regeneration: Mulga and Spinifex Assessment.

Code	Species	н	w	E	N		201 Lutur	_	2018 Spring	May 2019		ring 119	2020	0 A 202	20 B	202	1 A	202:	1 B	2	022 A		202	22 B	202	3 A	20	23 B	202	24
						Pit	н	w	H W	H W	н	w	н	w H	w	Н	w	Н	w	н	w	L	Н	w	Н	W	Н	w	Н	w
M01	Acacia incurvaneura	75	90	627209	6763193	NA 1	.60 2	230	290 350	350 420	350	400	380	440 370	470	370	430	370	585	470	480	520	500	700	500	580	510	580	540	670
M02	Acacia incurvaneura	108	130	627202	6763202	NA 1	.70 2	280	230 320	340 450	340	490	330	500 330	620	340	560	390	440	500	620	500	500	540	500	690	510	700	580	820
M03	Acacia incurvaneura	89	135	627178	6763185	NA 2	30 3	340	290 400	320 420	320	460	330	460		400	490	400	500	420	420	500	420	580	440	540	450	550	600	720
M04	Acacia incurvaneura	82	140	627167	6763171	1 AN	1 AV	NA	370 560		310	510	320	610		330	590	360	615	520	540	640	500	670	550	700	550	700	550	800
M05	Acacia incurvaneura	92	144	627169	6763155	NA 2	60 4	150	300 480	440 590	470	550	480	590 480		520	690	520	720	620	740	720	630	770	640	750	640	750	740	950
M06	Acacia incurvaneura	60	146	626950	6763027	NA 3	50 4	160	520 500	700 640	670	630	740	670		930	960	930	890	1080	1160	1090	1130	1250	1100	1290	1160	1340	1230	1350
M07	Acacia caesaneura	80	60	626932	6763011	1 AN	1 AV	NA	NA NA	450 370	460	400	485	410		470	460	470	460	750	530	330	750	580	760	880	750	870	860	930
M08	Acacia caesaneura	74	108	626782	6763110	NA 2	10 3	320	270 410		380	180	430	220		470	340	480	420	750	460	450	820	570	850	540	860	550	1020	650
M09	Acacia caesaneura	50	94	626775	6763118	1 AN	1 AV	NA	NA NA	310 400	320	400	350	420		390	520	425	550	430	470	470	430	480	450	500	470	530	470	490
M10	Acacia caesaneura	58	50	626771	6763196	NA 2	40 2	280	340 460	600 550	710	510	830	560		990	740	1010	710	1040	980	850	1460	1020	1480	1070	1480	1020	1600	1200
M11	Acacia caesaneura	NA	NA	627160	6763173	NA 4	10 5	580	490 600	670 740	560	650	740	800		820	850	830	910	950	1010	940	970	1040	1000	1060	1000	1140	1010	1030
M12	Acacia caesaneura	NA	NA	626933	6763012	NA 3	70 3	330	400 400		460	400	430	500 430		440	570	475	610	780	790	590	790	830	790	820	790	860	880	750
M13	Acacia caesaneura	NA	NA	626877	6763269	NA 2	00 3	300	230 460		290	510	310	510 330	510	370	560	370	575	530	740	600	550	580	560	790	560	790	710	1000
M14	Acacia incurvaneura			Next to	13															630	810	760								
M15	Acacia incurvaneura	NA	NA																								1220	1320	1370	1490
A01	Aluta maisonneuvei	60	60	627209	6763193	NA 1	.80 2	200	250 200	280 220	290	280	290	290 300	300	320	330	305	290	480	380	330	360	410	380	430	390	440	440	520
A02	Aluta maisonneuvei	36	60	627202	6763202	NA 1	.60 1	120	240 220	280 250	280	330	300	280 310	350	300	300	320	290	360	360	400	380	400	390	400	390	390	450	520
A03	Aluta maisonneuvei	59	82	627178	6763185	NA 2	10 2	230	250 280	300 350	300	300	300	350 315	340	320	340	320	380	350	400	400	310	410	360	330	360	360	410	470
A04	Aluta maisonneuvei	48	55	627167	6763171	1 AN	1 AV	NA	210 290		350	370	360	320 340	350	300	370	320	360	310	400	350	290	360	310	410	330	390	330	440
A05	Aluta maisonneuvei	72	115	627169	6763155	NA 1	.60 2	290	200 290	300 360	310	280	370	370		350	400	320	380	370	410	360	360	410	380	430	380	440	360	480
A06	Aluta maisonneuvei	54	58	626950	6763027	NA 2	50 3	300	280 320	320 340	340	340	360	380		360	570	430	605	510	720	760	520	820	620	800	540	770	610	840
A07	Aluta maisonneuvei	34	36	626932	6763011	NA N	1 AV	NA	NA NA	300 130	300	150	300	140 340	245	330	160	330	160	510		390	550	600	560	600	560	600	570	730
A08	Aluta maisonneuvei	26	20	626776	6763110	NA 1	.00 1	100	190 130		320	250	360	220		380	350	390	410	430	340	320	430	380	480	440	480	470	470	400
A09	Aluta maisonneuvei	54	48	626775	6763118	NA N	1 AV	NA	NA NA	300 200	310	190	310	230 300		390	350	390	350	450	440	430	440	450	490	420	460	440	520	480


							1																			ı				
A10	Aluta maisonneuvei	68	40	626771	6763196	NA	190	190	270 290	300 32	0 4	40 !	560 450	510 465	5	510	620	490	630	640		660	620	870	660	760	680	750	700	800
A11	Aluta maisonneuvei	NA	NA	627160	6763173	NA	150	230	200 250	300 31	0 2	60 3	370 270	370		290	450	300	440	350	380 4	450	350	470	370	480	370	490	400	530
A12	Aluta maisonneuvei	NA	NA	626933	6763012	NA	200	120	240 120				500	330		490	500	310	160	530	580 5	520	400	770	400	260	400	280	410	360
A13	Aluta maisonneuvei	NA	NA	626877	6763269	Na	NA	NA	180 190		20	00 2	210 220	180		250	280	240	245	240	260 2	210	250	270	240	270	250	280	260	300
A15	Aluta maisonneuvei	NA	NA																								470	480	460	540
T01	Triodia desertorum	64	60	626803	6763395	West 100W	100	160	130 200	150 22	0 1	80 3	350 190	340 180	405	100	140	130	150	140	160	160	210	420	280	310	170	300	280	390
T02	Triodia desertorum	15	35	626805	6763387	100E	50	80	60 100	80 14	0 10	00 2	210 130	210 160	280	170	270	110	270	200	290 2	260	230	360	130	180	220	180	230	120
T03	Triodia desertorum	38	24	626804	6763381	180E	60	90	70 100	80 13	0 1	40 2	260 110	190 160	200	160	220	125	230	150	210 2	200	140	260	180	230	190	240	200	260
T04	Triodia desertorum	25	38	626807	6763372	Dead. New=	60	80	70 90	100 11	0 7	70 3	130 90	160 100	180	270	270	270	310	200	300	300	150	200	130	240	210	250	200	290
T05	Triodia desertorum	26	38	626807	6763364	½ way- 4 & 5	90	150	120 230	150 24	0 8	30 3	140 70	110 11	140	140	200	170	235	170	200	190	110	170	180	250	200	260	200	290
T06	Triodia desertorum	30	52	626809	6763356	200NE	80	150	110 210	160 35	0 1	80 2	250 150	230 180	275	150	210	180	210	180	210 2	240	230	280	230	400	230	440	280	510
T07	Triodia desertorum	32	50	626884	6763395	East P12:120S	70	90	75 100	80 19	0 1	00	190 90	160 85	190	200	370	200	390	180	270	320	150	180	170	320	170	190	300	430
T08	Triodia desertorum	15	42	626891	6763387	P11:100E	60	90	90 150	120 20	0 1	30 2	210 140	230 140	210	170	250	205	260	180	270 2	240	210	320	180	210	220	300	220	230
T09	Triodia desertorum	38	90	626894	6763379	P10:200NW	120	80	100 160	100 16	0 10	00	170 120	180 160	200	210	330	210	330	250	410	410	170	230	170	300	190	220	260	380
	Triodia desertorum b	etwe	en pi	its 3 and	4 on easte	rn line			80 140		7	70 :	110 90	130 160	280)		170	290	270	270 2	240	230	360						
T11	Triodia desertorum	NA	NA	626896	6763373	P09: west	90	150	100 170	130 15	0 1	10	170 120	220 170	280	100	180	150	200	140	250 2	250	230	300	210	220	210	300	250	300
T10	Triodia desertorum	16	30	626899	6763377	P07:300E	90	120	100 150	120 23	0 1	10	170 110	70 110	185	120	160	120	160	150	200	190	180	220	200	300	200	230	230	200
T12	Triodia desertorum									100 11	0 10	00	190 100	70 140	255	220	270	220	270	120	170	160	170	330	230	170	230	350	250	360
	Triodia desertorum – ado	dition	nal m	easurem	ent															270	290 2	250								
B01	Bertya dimerostigma					West	240	410	290 680	280 38	0 4	00 9	900 370	540 430	550	450	730	530	780	520	650	690	500	810	520	640	530	640	550	670
B02	Bertya dimerostigma					West	160	260	200 390	320 27	0 3	80 4	440 440	540 340	430	350	510	330	520	440	590	530	430	600	370	410	380	410	370	420
В03	Bertya dimerostigma					West	160	170	220 270	320 36	0 48	80 5	550 330	700 410	700	500	590	535	600	560	790	550	600	790	300	420	370	440	330	400
B04	Bertya dimerostigma					West	140	590	210 670	350 60	0 4	00	60 260	430 330	400	440	790	540	800	490	950 8	870	550	102	380	530	480	620	500	650
B05	Bertya dimerostigma					West	130	170	180 220	310 40	0 20	00 3	300 340	300 480	530	250	370	280	360	350	490	560	360	550	540	690	620	680	620	730
В06	Bertya dimerostigma					West	140	120	200 200	350 37	0 3	60	610 490	450 440	530	400	500	370	275	450	760	540	430	490	450	520	430	490	400	53
B07	Bertya dimerostigma					East	140	140	160 180	420 85	0 4	00 !	510 540	750 510	770	490	590	320	405	330	400 2	280	450	540	550	800	550	800	550	840
B08	Bertya dimerostigma					East	140	430	200 570	360 45	0 3	30	440 350	470 330	440	400	680	420	665	230	440	400	450	690	450	590	460	620	470	710
B09	Bertya dimerostigma					East	200	280	310 300	580 51	0 2	70 !	560 500	530 490	570	300	390	380	420	450	670	540	330	420	570	800	570	800	630	900

B10 Bertya dimerostigma	East	160 210 240 330 480 830	320 320 420 810 530 790 320	320 510 570 560	680 660 370 410	540 1000 500	930 600 1070
B11 Bertya dimerostigma	East	150 230 190 340	320 400 220 320 240 320 430	460 410 480 410	500 490 490 870	320 530 360	560 370 640

Regeneration of Habitat Post Fire

Vegetation Change Associated with Fire

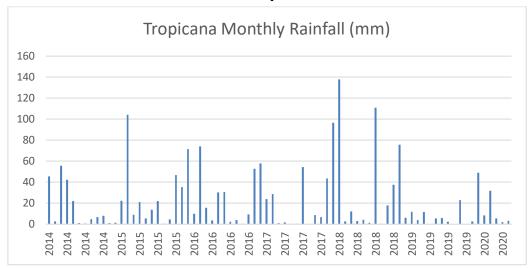
This document has been prepared for use by APA Group by Kingfisher Environmental

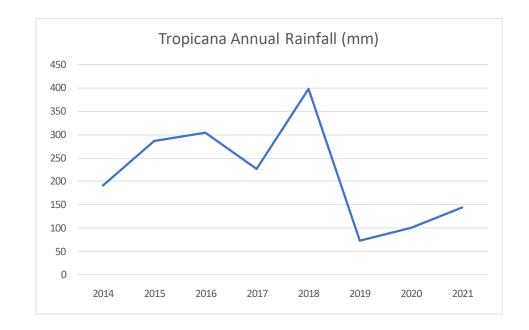
Kingfisher Environmental Sandhill Dunnart Monitoring

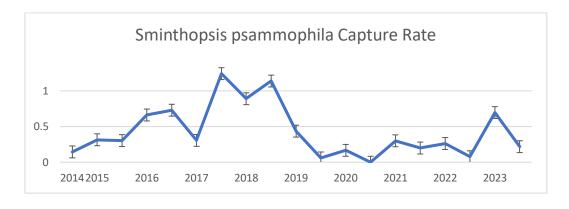
Appendix D: Sandhill Dunnart Predator Scat Analysis.

							1							1							ı												
Date	Site	Scat	Sminthopsis dolichura	Sminthopsis hirtipes	Sminthopsis sp.	Dasycercus blythi	Notomys alexis	Rodent	Pseudomys desertor	P. hermannsburgensis	Mus musculus	Macropus rufus	Macropus robustus	Macropod sp.	Notoryctes typhlops	Cow	Goat	Rabbit	Cat	Fox	Dog	Skink	Bearded dragon	Dragon	Goanna	Snake	Bird	Beetle /bug	Grasshopper/cricket	Scorpion	Spider	Centipede	Unidentified invertebrate
20/09/18	1	Cat					60											40															
20/09/18	15	Cat					80				20																						
20/09/18	22	Cat	20					20		50												10											
20/09/18	7	d/c										100																					
20/09/18	15	Dog											100																				
15/09/18	9	Dog											100																				
20/09/18	MM	Dog											100																				
20/09/18	9	Dog				20	20						10		50																		
9/06/18	9	Cat					90																						10				
16/03/18	5	Dog						5					60					30										5					
3/07/2018	7	Dog											100																				
20/9/18	15	Dog											10									30		40				10	10				
16/3/18	5	Dog											100																				
18/3/18	4	Dog											100																				
20/03/2017	7	Dog											100																				
17/10/2017	7	Cat									10											20			40			30					
27/10/2017	14	Cat			5		30				60																		5				
25/10/2017	21	Dog											100																				
16/10/2017	15	Cat		70							10																	5	15				
17/10/2017	19	Dog																100															
9/10/2017	7	Dog												100																			
17/10/2017	C50	Dog					50															10		30				10					
17/10/2017	С9	Cat					80				20																						
17/10/2017	22	Cat									10											10			50			5	20			5	
9/10/2017	7	Dog											100																				
17/10/2017	7	Dog											100																				
17/10/2017	7	Cat				29			30																		40			1			
17/10/2017	7	Dog												100																			
12/04/2017	14	Fox													100																		

Date	Site	Scat	Sminthopsis dolichura	Sminthopsis hirtipes	Sminthopsis sp.	Dasycercus blythi	Notomys alexis	Rodent	Pseudomys desertor	P. hermannsburgensis	Mus musculus	Macropus rufus	Macropus robustus	Macropod sp.	Notoryctes typhlops	Cow	Goat	Rabbit	Cat	Fox	Dog	Skink	Bearded dragon	Dragon	Goanna	Snake	Bird	Beetle /bug	Grasshopper/cricket	Scorpion	Spider	Centipede	Unidentified invertebrate
8/02/2016	5	Dog																															
27/03/2017	13	Cat									30														60			10					
27/03/2017	1	Fox					50															5						20		5			
27/03/2017	14	Dog											100																				
19/03/2016	13	Cat			5		75															10						10					
19/03/2016	7	Dog										100																					
18/03/2016	5	Dog										95																5					
17/03/2016	1	Dog														100																	
20/03/2016	11	Dog										100									0.01												
17/03/2016	1	Dog			1																90		9										
18/03/2016	4	Dog											100																				
18/03/2016	5	Fox				5																5						30	10			50	
18/03/2016	5	Fox						1												0.01		10			70			15					
18/03/2016	5	Fox																															
18/03/2016	5	Fox																80				2		3				10				5	
17/03/2016	9	Dog														100																	
17/03/2016	1	Dog																										5					
18/03/2016	9	Fox					50																					20	10			20	
18/03/2016	4	Goanna																										50			10		40


Kingfisher Environmental Sandhill Dunnart Monitoring


2015 Results


LOIJ	Results																													
	Site	Date	Scat Sample	dent	ifica	atio	n an	d Co	nter	nt of s	cat sa	mple	è																	
Sample			Species	Sminthopsis psammophila	Sminthopsis hirtipes	Sminthopsis dolichura	Dasycercus blythi	Notomys alexis	Mus musculus	Macropus rufus	Macropus robustus	Macropod sp.	Notoryctes typhlops	Camel	Goat	Cat	Dog	Skink	Bearded dragon	Goanna	Snake	Bird	Beetle /bug	Grasshopper/ cricket	Scorpion	Grub	Ant/termite	Grass	Rubbish	Comments
1	Site 7/8	17/04/15	Fox						40														60							
2	Site 7/8	17/04/15	Cat(probable)				10	10	5				10		60						4			1						
3	Site 5	17/04/15	Owl																				1	1	1					
4	Site 5	17/04/15	Dog							100																				
5	Site 1	17/04/15	Cat																			100								
6	Site 1	17/04/15	Dog									100																		M robustus/fuliginosus
7	Site 1	17/04/15	Dog													90						10								
8		17/04/15	-	4	0*				10																5	45				
9	Site 5	17/04/15	Cat																			99	1							Black feathers
10	Site 5	21/4/15	Raptor															1					2							
11	Site 5	17/4/15	Dog									99											1							
12			Sminthopsis psammophila																								100			
13			Sminthopsis psammophila																				10				50			Dunnart grooming hair
14			Sminthopsis psammophila	10																						50	40			Dunnart grooming hair
15			Sminthopsis psammophila																								100			
16	635135 6763376		Dog								100*																			
17	635075 6763369		Fox									100																		
18		14/9/15	Cat							99													1							
19	124.38/5/	14/07/15				60					40*																			Macropod bone . 2 human hairs
20	634718 6763308	13/07/15	Dog								100*						0.01													
21	Site 11	15/9/15	Dog														100													
22	Site 11	16/9/15	Dog														100													Prey
23	Site 11	18/9/15	Cat							10								5					5					80		Grass from herbivore
24	633924 6763197	13/7/15	Dog							100																				

	Site	Date	Scat Sample	Ider	ntific	atio	n an	d Co	nter	nt of s	cat sa	mple	e																	
Sample			Species	Sminthopsis psammophila	Sminthopsis hirtipes	Sminthopsis dolichura	Dasycercus blythi	Notomys alexis	Mus musculus	Macropus rufus	Macropus robustus	Macropod sp.	Notoryctes typhlops	Camel	Goat	Cat	Dog	Skink	Bearded dragon	Goanna	Snake	Bird	Beetle /bug	Grasshopper/cricket	Scorpion	Grub	Ant/termite	Grass	Rubbish	Comments
25	Site 4	15/9/15	Fox											40					50						5		5			
26	635040 6763362	14/7/15	Dog							100																				
27	621326 6762868	14/7/15	Dog							100																				
28	634269 6763201	14/7/15	Cat	15																		70				15				
29	Site 10	15/9/15	Cat															60		30			5		5					
30	KP265	14/7/15	Cat							100*																				
31	618588 6762974	12/7/15	Fox					100																						
32	Site 4	12/7/15	Dog							100																				
33	635451 6763472	14/7/15	Dog									100																		
34	634937 6763343	13/7/15	Fox																									100		
35	635162 6763390	14/7/15	Dog																											Elastic, cloth wipe, pumpkin seeds

Appendix E: Rainfall Recorded at Tropicana Gold Mine.

